Statistics: Difference between revisions
Appearance
No edit summary |
|||
| Line 36: | Line 36: | ||
* ksjlfda | * ksjlfda | ||
== Hierarchical clustering == | |||
<pre> | |||
lr = read.table("C:/ArrayTools/Sample datasets/Pomeroy/Pomeroy -Project/NORMALIZEDLOGINTENSITY.txt") | |||
lr = as.matrix(lr) | |||
hclust1 <- function(x) hclust(x, method="ward") | |||
library(gplots) | |||
heatmap.2(lr, col=bluered(75), hclustfun = hclust1, distfun = dist, | |||
density.info="density", scale = "none", | |||
key=FALSE, symkey=FALSE, trace="none", | |||
main = "Ward") | |||
</pre> | |||
Revision as of 12:30, 1 April 2013
Boxcox transformation
Finding transformation for normal distribution
Visualize the random effects
http://www.quantumforest.com/2012/11/more-sense-of-random-effects/
Sensitivity/Specificity/Accuracy
| Predict | ||||
| 1 | 0 | |||
| True | 1 | TP | FN | Sens=TP/(TP+FN) |
| 0 | FP | TN | Spec=TN/(FP+TN) | |
| N = TP + FP + FN + TN | ||||
- Sensitivity = TP / (TP + FN)
- Specificity = TN / (TN + FP)
- Accuracy = (TP + TN) / N
ROC curve and Brier score
Elements of Statistical Learning
Bagging
Chapter 8 of the book.
- Bootstrap mean is approximately a posterior average.
- Bootstrap aggregation or bagging average: Average the prediction over a collection of bootstrap samples, thereby reducing its variance. The bagging estimate is defined by
- [math]\displaystyle{ \hat{f}_{bag}(x) = \frac{1}{B}\sum_{b=1}^B \hat{f}^{*b}(x). }[/math]
- ksjlfda
Hierarchical clustering
lr = read.table("C:/ArrayTools/Sample datasets/Pomeroy/Pomeroy -Project/NORMALIZEDLOGINTENSITY.txt")
lr = as.matrix(lr)
hclust1 <- function(x) hclust(x, method="ward")
library(gplots)
heatmap.2(lr, col=bluered(75), hclustfun = hclust1, distfun = dist,
density.info="density", scale = "none",
key=FALSE, symkey=FALSE, trace="none",
main = "Ward")