ICC: Difference between revisions
Appearance
No edit summary |
|||
| Line 132: | Line 132: | ||
[https://www.uvm.edu/~statdhtx/StatPages/icc/icc-overall.html Intraclass Correlation: Multiple Approaches] from [https://www.uvm.edu/~statdhtx/StatPages/ David C. Howell]. The data appeared on the paper by Shrout and Fleiss 1979. | [https://www.uvm.edu/~statdhtx/StatPages/icc/icc-overall.html Intraclass Correlation: Multiple Approaches] from [https://www.uvm.edu/~statdhtx/StatPages/ David C. Howell]. The data appeared on the paper by Shrout and Fleiss 1979. | ||
[[File:Rating.png| | [[File:Rating.png|220px]] | ||
<pre> | <pre> | ||
Revision as of 20:32, 2 January 2021
Basic
ICC: intra-class correlation
- https://en.wikipedia.org/wiki/Intraclass_correlation (the random effect [math]\displaystyle{ \alpha_j }[/math] in the one-way random model should be subjects, not raters)
- Intraclass Correlation from Statistics How To
- Shrout, P.E., Fleiss, J.L. (1979), Intraclass correlation: uses in assessing rater reliability, Psychological Bulletin, 86, 420-428.
- ICC(1,1): each subject is measured by a different set of k randomly selected raters?;
- ICC(2,1): k raters are randomly selected, then, each subject is measured by the same set of k raters;
- [math]\displaystyle{ Y_{ij} = \mu + \alpha_i + \varepsilon_{ij}, }[/math] where [math]\displaystyle{ \alpha_i }[/math] is the random effect from subject i,
- [math]\displaystyle{ ICC(1,1) = \frac{\sigma_\alpha^2}{\sigma_\alpha^2+\sigma_\varepsilon^2}. }[/math]
- Intraclass correlation coefficient vs. F-test (one-way ANOVA)?
- Good ICC, bad CV or vice-versa, how to interpret?
- Intraclass Correlation Coefficient in R. icc() [irr package] and the function ICC() [psych package] are considered with a simple example.
R packages
The main input is a matrix of n subjects x p raters. Each rater is a class/group.
- psych: ICC()
- irr: icc() for one-way or two-way model. This works on my data 30k by 58. The default option gives ICC(1). It can also compute ICC(A,1)/agreement and ICC(C,1)/consistency.
- psy: icc(). No options are provided. I got an error: vector memory exhausted (limit reached?) when the data is 30k by 58.
- rptR:
Examples
psych package data
It shows ICC1 = ICC(1,1)
R> library(psych)
R> (o <- ICC(anxiety, lmer=FALSE) )
Call: ICC(x = anxiety, lmer = FALSE)
Intraclass correlation coefficients
type ICC F df1 df2 p lower bound upper bound
Single_raters_absolute ICC1 0.18 1.6 19 40 0.094 -0.0405 0.44
Single_random_raters ICC2 0.20 1.8 19 38 0.056 -0.0045 0.45
Single_fixed_raters ICC3 0.22 1.8 19 38 0.056 -0.0073 0.48
Average_raters_absolute ICC1k 0.39 1.6 19 40 0.094 -0.1323 0.70
Average_random_raters ICC2k 0.43 1.8 19 38 0.056 -0.0136 0.71
Average_fixed_raters ICC3k 0.45 1.8 19 38 0.056 -0.0222 0.73
Number of subjects = 20 Number of Judges = 3
R> library(irr)
R> (o2 <- icc(anxiety, model="oneway")) # subjects be considered as random effects
Single Score Intraclass Correlation
Model: oneway
Type : consistency
Subjects = 20
Raters = 3
ICC(1) = 0.175
F-Test, H0: r0 = 0 ; H1: r0 > 0
F(19,40) = 1.64 , p = 0.0939
95%-Confidence Interval for ICC Population Values:
-0.077 < ICC < 0.484
R> o$results["Single_raters_absolute", "ICC"]
[1] 0.1750224
R> o2$value
[1] 0.1750224
R> icc(anxiety, model="twoway", type = "consistency")
Single Score Intraclass Correlation
Model: twoway
Type : consistency
Subjects = 20
Raters = 3
ICC(C,1) = 0.216
F-Test, H0: r0 = 0 ; H1: r0 > 0
F(19,38) = 1.83 , p = 0.0562
95%-Confidence Interval for ICC Population Values:
-0.046 < ICC < 0.522
R> icc(anxiety, model="twoway", type = "agreement")
Single Score Intraclass Correlation
Model: twoway
Type : agreement
Subjects = 20
Raters = 3
ICC(A,1) = 0.198
F-Test, H0: r0 = 0 ; H1: r0 > 0
F(19,39.7) = 1.83 , p = 0.0543
95%-Confidence Interval for ICC Population Values:
-0.039 < ICC < 0.494
library(magrittr)
library(ggplot2)
set.seed(1)
r1 <- round(rnorm(20, 10, 4))
r2 <- round(r1 + 10 + rnorm(20, 0, 2))
r3 <- round(r1 + 20 + rnorm(20, 0, 2))
df <- data.frame(r1, r2, r3) %>% pivot_longer(cols=1:3)
df %>% ggplot(aes(x=name, y=value)) + geom_point()
df0 <- cbind(r1, r2, r3)
icc(df0, model="oneway") # ICC(1) = -0.262 --> Negative.
# Shift can mess up the ICC. See wikipedia.
icc(df0, model="twoway", type = "consistency") # ICC(C,1) = 0.846 --> Make sense
icc(df0, model="twoway", type = "agreement") # ICC(A,1) = 0.106 --> Why?
ICC(df0)
Call: ICC(x = df0, lmer = T)
Intraclass correlation coefficients
type ICC F df1 df2 p lower bound upper bound
Single_raters_absolute ICC1 -0.26 0.38 19 40 9.9e-01 -0.3613 -0.085
Single_random_raters ICC2 0.11 17.43 19 38 2.9e-13 0.0020 0.293
Single_fixed_raters ICC3 0.85 17.43 19 38 2.9e-13 0.7353 0.920
Average_raters_absolute ICC1k -1.65 0.38 19 40 9.9e-01 -3.9076 -0.307
Average_random_raters ICC2k 0.26 17.43 19 38 2.9e-13 0.0061 0.555
Average_fixed_raters ICC3k 0.94 17.43 19 38 2.9e-13 0.8929 0.972
Number of subjects = 20 Number of Judges = 3
Wine rating
Intraclass Correlation: Multiple Approaches from David C. Howell. The data appeared on the paper by Shrout and Fleiss 1979.
> library(psych); library(lme4)
> rating <- matrix(c(9, 2, 5, 8,
6, 1, 3, 2,
8, 4, 6, 8,
7, 1, 2, 6,
10, 5, 6, 9,
6, 2, 4, 7), ncol=4, byrow=TRUE)
> (o <- ICC(rating))
> o$results[, 1:2]
type ICC
Single_raters_absolute ICC1 0.1657423 # match with icc(, "oneway")
Single_random_raters ICC2 0.2897642 # match with icc(, "twoway", "agreement")
Single_fixed_raters ICC3 0.7148415 # match with icc(, "twoway", "consistency")
Average_raters_absolute ICC1k 0.4427981
Average_random_raters ICC2k 0.6200510
Average_fixed_raters ICC3k 0.9093159
# Plot
> rating2 <- data.frame(rating) %>%
dplyr::bind_cols(data.frame(subj = paste0("s", 1:nrow(rating)))) %>%
tidyr::pivot_longer(1:4, names_to="group", values_to="y")
rating2%>% ggplot(aes(x=group, y=y)) + geom_point()
> library(irr)
> icc(rating, "oneway")
Single Score Intraclass Correlation
Model: oneway
Type : consistency
Subjects = 6
Raters = 4
ICC(1) = 0.166
F-Test, H0: r0 = 0 ; H1: r0 > 0
F(5,18) = 1.79 , p = 0.165
95%-Confidence Interval for ICC Population Values:
-0.133 < ICC < 0.723
> icc(rating, "twoway", "agreement")
Single Score Intraclass Correlation
Model: twoway
Type : agreement
Subjects = 6
Raters = 4
ICC(A,1) = 0.29
F-Test, H0: r0 = 0 ; H1: r0 > 0
F(5,4.79) = 11 , p = 0.0113
95%-Confidence Interval for ICC Population Values:
0.019 < ICC < 0.761
> icc(rating, "twoway", "consistency")
Single Score Intraclass Correlation
Model: twoway
Type : consistency
Subjects = 6
Raters = 4
ICC(C,1) = 0.715
F-Test, H0: r0 = 0 ; H1: r0 > 0
F(5,15) = 11 , p = 0.000135
95%-Confidence Interval for ICC Population Values:
0.342 < ICC < 0.946
> anova(aov(y ~ subj + group, rating2))
Analysis of Variance Table
Response: y
Df Sum Sq Mean Sq F value Pr(>F)
subj 5 56.208 11.242 11.027 0.0001346 ***
group 3 97.458 32.486 31.866 9.454e-07 ***
Residuals 15 15.292 1.019
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> (11.242 - (97.458+15.292)/18) / (11.242 + 3*(97.458+15.292)/18)
[1] 0.165751 # ICC(1) = (BMS - WMS) / (BMS + (k-1)WMS)
# k = number of raters
> (11.242 - 1.019) / (11.242 + 3*1.019 + 4*(32.486-1.019)/6)
[1] 0.2897922 # ICC(2,1) = (BMS - EMS) / (BMS + (k-1)EMS + k(JMS-EMS)/n)
# n = number of subjects/targets
> (11.242 - 1.019) / (11.242 + 3*1.019)
[1] 0.7149451 # ICC(3,1)
Wine rating2
Introclass correlation (from Real Statistics Using Excel) with a simple example.
R> wine <- cbind(c(1,1,3,6,6,7,8,9), c(2,3,8,4,5,5,7,9),
c(0,3,1,3,5,6,7,9), c(1,2,4,3,6,2,9,8))
R> icc(wine, model="oneway")
Single Score Intraclass Correlation
Model: oneway
Type : consistency
Subjects = 8
Raters = 4
ICC(1) = 0.728
F-Test, H0: r0 = 0 ; H1: r0 > 0
F(7,24) = 11.7 , p = 2.18e-06
95%-Confidence Interval for ICC Population Values:
0.434 < ICC < 0.927
# For one-way random model, the order of raters is not important
R> wine2 <- wine
R> for(j in 1:8) wine2[j, ] <- sample(wine[j,])
R> icc(wine2, model="oneway")
Single Score Intraclass Correlation
Model: oneway
Type : consistency
Subjects = 8
Raters = 4
ICC(1) = 0.728
F-Test, H0: r0 = 0 ; H1: r0 > 0
F(7,24) = 11.7 , p = 2.18e-06
95%-Confidence Interval for ICC Population Values:
0.434 < ICC < 0.927
R> icc(wine, model="twoway", type="agreement")
Single Score Intraclass Correlation
Model: twoway
Type : agreement
Subjects = 8
Raters = 4
ICC(A,1) = 0.728
F-Test, H0: r0 = 0 ; H1: r0 > 0
F(7,24) = 11.8 , p = 2.02e-06
95%-Confidence Interval for ICC Population Values:
0.434 < ICC < 0.927
R> icc(wine, model="twoway", type="consistency")
Single Score Intraclass Correlation
Model: twoway
Type : consistency
Subjects = 8
Raters = 4
ICC(C,1) = 0.729
F-Test, H0: r0 = 0 ; H1: r0 > 0
F(7,21) = 11.8 , p = 5.03e-06
95%-Confidence Interval for ICC Population Values:
0.426 < ICC < 0.928
Two-way fixed effects model
R> wine3 <- data.frame(wine) %>%
dplyr::bind_cols(data.frame(subj = paste0("s", 1:8))) %>%
tidyr::pivot_longer(1:4, names_to="group", values_to="y")
R> wine3 %>% ggplot(aes(x=group, y=y)) + geom_point()
R> anova(aov(y ~ subj + group, data = wine3))
Analysis of Variance Table
Response: y
Df Sum Sq Mean Sq F value Pr(>F)
subj 7 188.219 26.8884 11.7867 5.026e-06 ***
group 3 7.344 2.4479 1.0731 0.3818
Residuals 21 47.906 2.2813
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
R> anova(aov(y ~ group + subj, data = wine3))
Analysis of Variance Table
Response: y
Df Sum Sq Mean Sq F value Pr(>F)
group 3 7.344 2.4479 1.0731 0.3818
subj 7 188.219 26.8884 11.7867 5.026e-06 ***
Residuals 21 47.906 2.2812
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
R> library(car)
R> Anova(aov(y ~ subj + group, data = wine3))
Anova Table (Type II tests)
Response: y
Sum Sq Df F value Pr(>F)
subj 188.219 7 11.7867 5.026e-06 ***
group 7.344 3 1.0731 0.3818
Residuals 47.906 21
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1