MediaWiki API result
This is the HTML representation of the JSON format. HTML is good for debugging, but is unsuitable for application use.
Specify the format parameter to change the output format. To see the non-HTML representation of the JSON format, set format=json.
See the complete documentation, or the API help for more information.
{
"batchcomplete": "",
"continue": {
"lecontinue": "20251110221654|897",
"continue": "-||"
},
"query": {
"logevents": [
{
"logid": 907,
"ns": 0,
"title": "Man",
"pageid": 741,
"logpage": 741,
"revid": 43136,
"params": {},
"type": "create",
"action": "create",
"user": "Brb",
"timestamp": "2025-12-26T14:57:43Z",
"comment": "Created page with \"= Resources = * [https://www.howtogeek.com/663440/how-to-use-linuxs-man-command-hidden-secrets-and-basics/ How to Use Linux\u2019s man Command: Hidden Secrets and Basics] * [https://www.maketecheasier.com/read-linux-man-page/ How to Easily Read a Linux Man Page] ** Underlined or Italicized Text: It means you need to replace it with an appropriate argument. ** Ellipses: It means that argument or expression is repeatable. = Navigation = [https://wiki.gentoo.org/wiki/Man_page...\""
},
{
"logid": 906,
"ns": 6,
"title": "File:Annotation legend param.png",
"pageid": 740,
"logpage": 740,
"revid": 43099,
"params": {},
"type": "create",
"action": "create",
"user": "Brb",
"timestamp": "2025-12-22T15:08:09Z",
"comment": "<syntaxhighlight lang='r'>\nlibrary(RColorBrewer)\nlibrary(ComplexHeatmap)\n\nset.seed(123)\nn <- 100\ndf <- data.frame(\n Subtype = sample(c(\"Hyperdiploid\", \"Ph-like\", \"DUX4\", \"Ph\"), n, replace = TRUE),\n Sex = sample(c(\"Male\", \"Female\"), n, replace = TRUE),\n Age_Group = sample(c(\"Childhood\", \"Adult\"), n, replace = TRUE)\n)\n\n# 1. Define distinct palettes\n# Subtype: Using \"Set3\" or \"Paired\" for many categories\nsubtype_cols <- setNames(\n colorRampPalette(brewer.pal(12, \"Paired\"))(length(unique(df$S..."
},
{
"logid": 905,
"ns": 6,
"title": "File:Annotation legend param.png",
"pageid": 740,
"logpage": 740,
"revid": 43099,
"params": {
"img_sha1": "k2dzaaabngbv76a2waly26842vnuywr",
"img_timestamp": "2025-12-22T15:08:09Z"
},
"type": "upload",
"action": "upload",
"user": "Brb",
"timestamp": "2025-12-22T15:08:09Z",
"comment": "<syntaxhighlight lang='r'>\nlibrary(RColorBrewer)\nlibrary(ComplexHeatmap)\n\nset.seed(123)\nn <- 100\ndf <- data.frame(\n Subtype = sample(c(\"Hyperdiploid\", \"Ph-like\", \"DUX4\", \"Ph\"), n, replace = TRUE),\n Sex = sample(c(\"Male\", \"Female\"), n, replace = TRUE),\n Age_Group = sample(c(\"Childhood\", \"Adult\"), n, replace = TRUE)\n)\n\n# 1. Define distinct palettes\n# Subtype: Using \"Set3\" or \"Paired\" for many categories\nsubtype_cols <- setNames(\n colorRampPalette(brewer.pal(12, \"Paired\"))(length(unique(df$S..."
},
{
"logid": 904,
"ns": 6,
"title": "File:Uwot.png",
"pageid": 739,
"logpage": 739,
"revid": 43070,
"params": {},
"type": "create",
"action": "create",
"user": "Brb",
"timestamp": "2025-12-19T18:33:54Z",
"comment": "<syntaxhighlight lang='r'>\n# Prepare data\nlibrary(uwot)\nlibrary(ggplot2)\nlibrary(dplyr)\n\n# training and test sets (as given)\niris_train <- iris[c(1:10, 51:60), ]\niris_test <- iris[100:110, ]\n\n# numeric feature matrices\nx_train <- as.matrix(iris_train[, 1:4])\nx_test <- as.matrix(iris_test[, 1:4])\n\n# Fit UMAP on training data (keep model)\nset.seed(123)\n\numap_model <- umap(\n x_train,\n n_neighbors = 5,\n min_dist = 0.1,\n n_components = 2,\n ret_model = TRUE\n)\n\n# training embedding\ntrain_embe..."
},
{
"logid": 903,
"ns": 6,
"title": "File:Uwot.png",
"pageid": 739,
"logpage": 739,
"revid": 43070,
"params": {
"img_sha1": "ossc7jksh8ljb3qd4rjrpctahvotvpl",
"img_timestamp": "2025-12-19T18:33:54Z"
},
"type": "upload",
"action": "upload",
"user": "Brb",
"timestamp": "2025-12-19T18:33:54Z",
"comment": "<syntaxhighlight lang='r'>\n# Prepare data\nlibrary(uwot)\nlibrary(ggplot2)\nlibrary(dplyr)\n\n# training and test sets (as given)\niris_train <- iris[c(1:10, 51:60), ]\niris_test <- iris[100:110, ]\n\n# numeric feature matrices\nx_train <- as.matrix(iris_train[, 1:4])\nx_test <- as.matrix(iris_test[, 1:4])\n\n# Fit UMAP on training data (keep model)\nset.seed(123)\n\numap_model <- umap(\n x_train,\n n_neighbors = 5,\n min_dist = 0.1,\n n_components = 2,\n ret_model = TRUE\n)\n\n# training embedding\ntrain_embe..."
},
{
"logid": 902,
"ns": 6,
"title": "File:Youtube-embed.png",
"pageid": 738,
"logpage": 738,
"revid": 42999,
"params": {},
"type": "create",
"action": "create",
"user": "Brb",
"timestamp": "2025-12-07T00:21:25Z",
"comment": ""
},
{
"logid": 901,
"ns": 6,
"title": "File:Youtube-embed.png",
"pageid": 738,
"logpage": 738,
"revid": 42999,
"params": {
"img_sha1": "6bc2vatazfvxfnwgoh4a28chnhzx82j",
"img_timestamp": "2025-12-07T00:21:25Z"
},
"type": "upload",
"action": "upload",
"user": "Brb",
"timestamp": "2025-12-07T00:21:25Z",
"comment": ""
},
{
"logid": 900,
"ns": 6,
"title": "File:Dendro colorbars.png",
"pageid": 737,
"logpage": 737,
"revid": 42978,
"params": {},
"type": "create",
"action": "create",
"user": "Brb",
"timestamp": "2025-12-01T15:48:30Z",
"comment": "<syntaxhighlight lang='r'>\nlibrary(ComplexHeatmap)\nlibrary(circlize)\nlibrary(RColorBrewer)\n\nset.seed(123)\n\n# --- Example data (10 samples) ---\nmat <- matrix(rnorm(30), nrow = 10)\nrownames(mat) <- paste0(\"Sample\", 1:10)\nmat[1:5, ] <- mat[1:5, ]\nmat[6:10, ] <- mat[6:10, ] + 2\n\n# Cluster on samples (rows)\nhc <- hclust(dist(mat))\n\n# Annotations in ORIGINAL sample order\ngroups <- rep(c(\"A\", \"B\"), each = 5)\nscore <- seq(0, 1, length = 10)\ncl2 <- cutree(hc, 2)\ncl3 <- cutree(hc, 3)\ncl4 <- cutree(hc,..."
},
{
"logid": 899,
"ns": 6,
"title": "File:Dendro colorbars.png",
"pageid": 737,
"logpage": 737,
"revid": 42978,
"params": {
"img_sha1": "0ozrcod1b4zjhg03r36ck3zm9gi5s1s",
"img_timestamp": "2025-12-01T15:48:30Z"
},
"type": "upload",
"action": "upload",
"user": "Brb",
"timestamp": "2025-12-01T15:48:30Z",
"comment": "<syntaxhighlight lang='r'>\nlibrary(ComplexHeatmap)\nlibrary(circlize)\nlibrary(RColorBrewer)\n\nset.seed(123)\n\n# --- Example data (10 samples) ---\nmat <- matrix(rnorm(30), nrow = 10)\nrownames(mat) <- paste0(\"Sample\", 1:10)\nmat[1:5, ] <- mat[1:5, ]\nmat[6:10, ] <- mat[6:10, ] + 2\n\n# Cluster on samples (rows)\nhc <- hclust(dist(mat))\n\n# Annotations in ORIGINAL sample order\ngroups <- rep(c(\"A\", \"B\"), each = 5)\nscore <- seq(0, 1, length = 10)\ncl2 <- cutree(hc, 2)\ncl3 <- cutree(hc, 3)\ncl4 <- cutree(hc,..."
},
{
"logid": 898,
"ns": 6,
"title": "File:Umap-iris.png",
"pageid": 736,
"logpage": 736,
"revid": 42818,
"params": {},
"type": "create",
"action": "create",
"user": "Brb",
"timestamp": "2025-11-10T22:16:54Z",
"comment": "<syntaxhighlight lang='r'>\nlibrary(umap)\n\n# Load the built-in Iris dataset\ndata(iris)\n\n# Separate the features (variables) from the species labels\niris_features <- iris[, 1:4]\niris_species <- iris[, 5]\n\n# Run UMAP, reducing the 4 dimensions down to 2\n# n_neighbors: Controls how UMAP balances local vs. global structure.\n# min_dist: Controls how tightly points are packed together.\niris_umap_results <- umap(iris_features, random_state = 42)\n\n# The result is a list. The actual 2D coordinates are..."
}
]
}
}