Delta: Difference between revisions
(Created page with "Delta method * https://en.wikipedia.org/wiki/Delta_method * R examples. ** Var(xbar/ybar) https://gist.github.com/arraytools/c39f52b9280f4f1858da83a6bc60f185.") |
No edit summary |
||
Line 1: | Line 1: | ||
Delta method | Delta method | ||
= Theory = | |||
<ul> | |||
<li>https://en.wikipedia.org/wiki/Delta_method | |||
</ul> | |||
Let’s say that X̄ is approximately normally distributed with mean μx and variance σx^2/n, and Ȳ is approximately normally distributed with mean μy and variance σy^2/n. | |||
The first-order Taylor expansion of g(X̄, Ȳ) around (μx, μy) is: | |||
* | :<math> | ||
** Var( | g(\bar{X}, \bar{Y}) ≈ g(\mu_x, \mu_y) + g_1(\mu_x, \mu_y)(\bar{X} - \mu_x) + g_2(\mu_x, \mu_y)(\bar{Y} - \mu_y) | ||
</math> | |||
where g1(μx, μy) and g2(μx, μy) are the partial derivatives of g with respect to X̄ and Ȳ evaluated at (μx, μy), respectively. | |||
= Examples = | |||
== <math>Var(log(\bar{X}/\bar{Y}))</math> == | |||
R codes https://gist.github.com/arraytools/c39f52b9280f4f1858da83a6bc60f185. | |||
: <math> | |||
\begin{align} | |||
g(\bar{X}, \bar{Y}) &\approx g(\mu_x, \mu_y) + g_1(\mu_x, \mu_y)(\bar{X} - \mu_x) + g_2(\mu_x, \mu_y)(\bar{Y} - \mu_y) \\ | |||
Var(g(\bar{X}, \bar{Y})) &\approx g_1(\mu_x,\mu_y)^2 * Var(\bar{X}) + g_2(\mu_x,\mu_y)^2 *Var(\bar{Y}) + \\ | |||
& \qquad 2*g_1(\mu_x, \mu_y)*g_2(\mu_x, \mu_y)*Cov(\bar{X}, \bar{Y}) | |||
\end{align} | |||
</math> | |||
where <math>g_1(\mu_x, \mu_y)</math> and <math>g_2(\mu_x, \mu_y)</math> are the partial derivatives of g with respect to X̄ and Ȳ evaluated at (μx, μy), respectively. In the case of log(X̄/Ȳ), we have: | |||
g1(μx, μy) = ∂g/∂X̄ = 1/X̄, g2(μx, μy) = ∂g/∂Ȳ = -1/Ȳ | |||
Substituting these values into the formula above gives: | |||
:<math> | |||
\begin{align} | |||
Var(log(\bar{X}/\bar{Y})) &≈ (1/\mu_x)^2 * Var(\bar{X}) + (-1/\mu_y)^2 * Var(\bar{Y}) + 2 * (1/\mu_x) * (-1/\mu_y) * Cov(\bar{X}, \bar{Y}) \\ | |||
&= \sigma_x^2/(n*\mu_x^2) + \sigma_y^2/(n*\mu_y^2) - 2Cov(\bar{X}, \bar{Y})/(\mu_x \mu_y) | |||
\end{align} | |||
</math> | |||
== Gamma method of moment estimator (bivariate normal) == | |||
http://fisher.stats.uwo.ca/faculty/kulperger/SS3858/Handouts/DeltaMethod.pdf |
Latest revision as of 21:03, 5 August 2023
Delta method
Theory
Let’s say that X̄ is approximately normally distributed with mean μx and variance σx^2/n, and Ȳ is approximately normally distributed with mean μy and variance σy^2/n.
The first-order Taylor expansion of g(X̄, Ȳ) around (μx, μy) is:
- [math]\displaystyle{ g(\bar{X}, \bar{Y}) ≈ g(\mu_x, \mu_y) + g_1(\mu_x, \mu_y)(\bar{X} - \mu_x) + g_2(\mu_x, \mu_y)(\bar{Y} - \mu_y) }[/math]
where g1(μx, μy) and g2(μx, μy) are the partial derivatives of g with respect to X̄ and Ȳ evaluated at (μx, μy), respectively.
Examples
[math]\displaystyle{ Var(log(\bar{X}/\bar{Y})) }[/math]
R codes https://gist.github.com/arraytools/c39f52b9280f4f1858da83a6bc60f185.
- [math]\displaystyle{ \begin{align} g(\bar{X}, \bar{Y}) &\approx g(\mu_x, \mu_y) + g_1(\mu_x, \mu_y)(\bar{X} - \mu_x) + g_2(\mu_x, \mu_y)(\bar{Y} - \mu_y) \\ Var(g(\bar{X}, \bar{Y})) &\approx g_1(\mu_x,\mu_y)^2 * Var(\bar{X}) + g_2(\mu_x,\mu_y)^2 *Var(\bar{Y}) + \\ & \qquad 2*g_1(\mu_x, \mu_y)*g_2(\mu_x, \mu_y)*Cov(\bar{X}, \bar{Y}) \end{align} }[/math]
where [math]\displaystyle{ g_1(\mu_x, \mu_y) }[/math] and [math]\displaystyle{ g_2(\mu_x, \mu_y) }[/math] are the partial derivatives of g with respect to X̄ and Ȳ evaluated at (μx, μy), respectively. In the case of log(X̄/Ȳ), we have:
g1(μx, μy) = ∂g/∂X̄ = 1/X̄, g2(μx, μy) = ∂g/∂Ȳ = -1/Ȳ
Substituting these values into the formula above gives:
- [math]\displaystyle{ \begin{align} Var(log(\bar{X}/\bar{Y})) &≈ (1/\mu_x)^2 * Var(\bar{X}) + (-1/\mu_y)^2 * Var(\bar{Y}) + 2 * (1/\mu_x) * (-1/\mu_y) * Cov(\bar{X}, \bar{Y}) \\ &= \sigma_x^2/(n*\mu_x^2) + \sigma_y^2/(n*\mu_y^2) - 2Cov(\bar{X}, \bar{Y})/(\mu_x \mu_y) \end{align} }[/math]
Gamma method of moment estimator (bivariate normal)
http://fisher.stats.uwo.ca/faculty/kulperger/SS3858/Handouts/DeltaMethod.pdf