Jump to content

Ggplot2: Difference between revisions

From 太極
Brb (talk | contribs)
Brb (talk | contribs)
 
(86 intermediate revisions by the same user not shown)
Line 69: Line 69:
* http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html
* http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html
* [https://www.cedricscherer.com/2019/08/05/a-ggplot2-tutorial-for-beautiful-plotting-in-r/ A ggplot2 Tutorial for Beautiful Plotting in R]
* [https://www.cedricscherer.com/2019/08/05/a-ggplot2-tutorial-for-beautiful-plotting-in-r/ A ggplot2 Tutorial for Beautiful Plotting in R]
== ggplot2 4.0.0 ==
[https://www.r-bloggers.com/2025/07/bioconductor-and-ggplot2-4-0-0-whats-changing-and-how-to-prepare/ Bioconductor and ggplot2 4.0.0: What’s Changing and How to Prepare]


= Some examples =
= Some examples =
Line 205: Line 208:
</pre>
</pre>
For more complicated plot, we can use the '''panel''' parameter.
For more complicated plot, we can use the '''panel''' parameter.
== A step-by-step chart makeover ==
[https://www.r-bloggers.com/2025/05/a-step-by-step-chart-makeover/ A step-by-step chart makeover]


= Color palette =
= Color palette =
Line 213: Line 219:
* [https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008259 Ten simple rules to colorize biological data visualization]
* [https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008259 Ten simple rules to colorize biological data visualization]
* [https://twitter.com/moriah_taylor58/status/1395431000977649665?s=20 a MEGA thread about all the ways you can choose a palette] May 2021
* [https://twitter.com/moriah_taylor58/status/1395431000977649665?s=20 a MEGA thread about all the ways you can choose a palette] May 2021
* [https://medium.com/@mokkup/how-to-select-colors-for-data-visualizations-75423140c554 How to select Colors for Data Visualizations?]


== Top color palettes ==
== Top color palettes ==
Line 229: Line 236:
# [1] -0.20  5.20 -0.01  1.00
# [1] -0.20  5.20 -0.01  1.00
</pre>
</pre>
[[File:Palettebarplot.png|250px]]
 
<li>Improved barplot()
<pre>
plot_palette_horizontal <- function(pal, main = "Color Palette") {
  n <- length(pal)
  heights <- rep(1, n)
 
  bar_locs <- barplot(
    heights,
    horiz = TRUE,
    col = pal,
    border = NA,
    names.arg = rep("", n),
    main = main,
    axes = FALSE,
    xlab = "", ylab = "",
    space = 0  # <— removes the gaps between bars
  )
 
  text(
    x = 0.5,
    y = bar_locs,
    labels = pal,
    col = "white",
    cex = 0.8,
    font = 2,
    adj = 0
  )
}
pal <- c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00")
pal |> plot_palette_horizontal()
</pre>
[[File:Palbarplot.png|250px]]
<li>[https://www.r-bloggers.com/2025/01/working-with-colours-in-r/ Working with colours in R] and the convenience function
<syntaxhighlight lang='r'>
plot_palette <- function(palette) {
  # Example:
  #  plot_palette(c("tomato", "skyblue", "yellow2"))
  #
  #  library(paletteer); plot_palette(paletteer_d("MetBrewer::Tara"))
  #
  #  all_colours <- colorRampPalette(c("tomato", "skyblue", "yellow2"))(100)
  #  plot_palette(all_colours)
 
  g <- ggplot2::ggplot(
    data = data.frame(
      x = seq_len(length(palette)),
      y = "1",
      fill = palette
    ),
    mapping = ggplot2::aes(
      x = x, y = y, fill = fill
    )
  ) +
    ggplot2::geom_tile() +
    ggplot2::scale_fill_identity() + # ensures that the fill values are interpreted directly as color codes, without requiring a scale transformation.
    ggplot2::theme_void() # removes all axes, grid lines, and labels
  return(g)
}
</syntaxhighlight>


<li>Use heatmap()
<li>Use heatmap()
Line 293: Line 359:
* [https://detroitdatalab.com/2020/04/28/4-for-4-0-0-four-useful-new-features-in-r-4-0-0/ 4 for 4.0.0 – Four Useful New Features in R 4.0.0]
* [https://detroitdatalab.com/2020/04/28/4-for-4-0-0-four-useful-new-features-in-r-4-0-0/ 4 for 4.0.0 – Four Useful New Features in R 4.0.0]
* [https://flowingdata.com/2023/05/10/improved-color-palettes-in-r/ Improved color palettes in R]
* [https://flowingdata.com/2023/05/10/improved-color-palettes-in-r/ Improved color palettes in R]
== rainbow ==
* [https://www.rdocumentation.org/packages/grDevices/versions/3.6.2/topics/Palettes ?rainbow]
* An [https://gist.github.com/arraytools/f5a5cf6e5a2d979fc83d47661196c31b Shiny app] below compares the effects of 's' and 'v' parameters. '''s (saturation)''' and '''v (value)''': These parameters control the color intensity and brightness, respectively. See also [https://en.wikipedia.org/wiki/HSL_and_HSV HSL and HSV] from wikipedia.
** '''Saturation (s)''': Determines how '''vivid''' or muted the colors are. A value of 1 (default) means fully saturated colors, while lower values reduce the intensity.
** '''Value (v)''': Controls the '''brightness'''. A value of 1 (default) results in full brightness, while lower values make the colors darker.
[[File:Rainbow default.png|250px]] [[File:Rainbow s05.png|250px]] [[File:Rainbow v05.png|250px]]


== Color blind ==
== Color blind ==
Line 344: Line 418:


== *paletteer package ==
== *paletteer package ==
* [https://paulvanderlaken.com/2020/03/17/paletteer-hundreds-of-color-palettes-in-r/ The paletteer package offers direct access to 1759 color palettes, from 50 different packages!]
* https://cran.r-project.org/web/packages/paletteer/index.html ("palette" + "eer")
* [https://emilhvitfeldt.github.io/paletteer/index.html paletteer], [https://emilhvitfeldt.github.io/paletteer/reference/paletteer_d.html paletteer_d()] function for getting discrete palette by package and name.  
** [https://paulvanderlaken.com/2020/03/17/paletteer-hundreds-of-color-palettes-in-r/ The paletteer package offers direct access to 1759 color palettes, from 50 different packages!] (2020/93)
* Interactive https://emilhvitfeldt.github.io/r-color-palettes/discrete.html and choose 'sort by length'
** [https://emilhvitfeldt.github.io/paletteer/index.html paletteer], [https://emilhvitfeldt.github.io/paletteer/reference/paletteer_d.html paletteer_d()] function for getting discrete palette by package and name.  
* [https://github.com/EmilHvitfeldt/r-color-palettes/blob/master/type-sorted-palettes.md#diverging-color-palettes Palettes sorted by type (Sequential/Diverging/Qualitative)]
* Interactive https://emilhvitfeldt.github.io/r-color-palettes/discrete.html (slow to load). Click 'sort by length' or a package name.
* [https://awesomeopensource.com/project/EmilHvitfeldt/r-color-palettes *More examples with a gallery]
** [https://github.com/EmilHvitfeldt/r-color-palettes/blob/master/type-sorted-palettes.md#diverging-color-palettes Palettes sorted by type (Sequential/Diverging/Qualitative)]
** [https://awesomeopensource.com/project/EmilHvitfeldt/r-color-palettes *More examples with a gallery]
** [https://r-graph-gallery.com/package/paletteer.html Use any color palette with paletteer]
 
[[File:Paletteer d.png|350px]]
 
<syntaxhighlight lang='r'>
my_colors <- paletteer::paletteer_d("RColorBrewer::Dark2")
barplot(1:length(my_colors), col = my_colors)


<syntaxhighlight lang='rsplus'>
paletteer_d("RColorBrewer::RdBu")
paletteer_d("RColorBrewer::RdBu")
#67001FFF #B2182BFF #D6604DFF #F4A582FF #FDDBC7FF #F7F7F7FF  
#67001FFF #B2182BFF #D6604DFF #F4A582FF #FDDBC7FF #F7F7F7FF  
Line 368: Line 449:
                                   "virginica" = "#84BD00FF"))
                                   "virginica" = "#84BD00FF"))
</syntaxhighlight>
</syntaxhighlight>
The key that paletteer_d() can print color background characters is by the [https://cli.r-lib.org/articles/semantic-cli.html cli::make_ansi_style()] function.
<pre>
cli::make_ansi_style("#CC0C00FF", bg = TRUE)("hex = #CC0C00FF")
# <cli_ansi_string>
# [1] hex = #CC0C00FF
</pre>
== wesanderson ==
* https://cran.r-project.org/web/packages/wesanderson/index.html. https://github.com/karthik/wesanderson
* [https://ckntav.github.io/color-palettte-from-wesandersion-R-package/ color palette from wesanderson R package]
<pre>
library(wesanderson)
names(wes_palettes)
# "Zissou1", "Moonrise1", "GrandBudapest1", "Royal1", etc.
palette_zissou1 <- wes_palette("Zissou1")
palette_zissou1  # a palette object. This will draw a palette.
as.vector(palette_zissou1)
# [1] "#3B9AB2" "#78B7C5" "#EBCC2A" "#E1AF00" "#F21A00"
</pre>


== ggsci ==
== ggsci ==
Line 401: Line 501:
== Pride palette ==
== Pride palette ==
[https://turtletopia.github.io/2022/08/12/show-pride-on-your-plots/ Show Pride on Your Plots]. [https://github.com/turtletopia/gglgbtq gglgbtq] package
[https://turtletopia.github.io/2022/08/12/show-pride-on-your-plots/ Show Pride on Your Plots]. [https://github.com/turtletopia/gglgbtq gglgbtq] package
== qualpalr ==
* https://stat.ethz.ch/CRAN/web/packages/qualpalr/index.html, https://qualpal.cc/
* [https://joss.theoj.org/papers/10.21105/joss.08936 Qualpal: Qualitative Color Palettes for Everyone]


== unikn ==
== unikn ==
Line 414: Line 518:
ggplot(aes(x, y)) +
ggplot(aes(x, y)) +
     geom_point(alpha=.1)  
     geom_point(alpha=.1)  
</pre>
For base R, we can use the '''alpha''' parameter [https://www.rdocumentation.org/packages/grDevices/versions/3.6.2/topics/rgb rgb(,,,alpha)],
<pre>
plot(x, y, col=rgb(0,0,0, alpha=.1))
polygon(df, col=adjustcolor(c("red", "blue"), alpha.f=.3))
</pre>
</pre>


Line 433: Line 542:
</li>
</li>
<li>[https://www.datanovia.com/en/blog/ggplot-point-shapes-best-tips/ GGPLOT Point Shapes Best Tips] </li>
<li>[https://www.datanovia.com/en/blog/ggplot-point-shapes-best-tips/ GGPLOT Point Shapes Best Tips] </li>
<li>Simulated data
<pre>
df <- data.frame(x = rnorm(100), y = rnorm(100),
                Treatment = rep(c("Before", "After"), each = 50),
                Response = rep(c("Sensitive", "Resistant"), each = 50),
                Subject = rep(1:50, times = 2))
ggplot(df, aes(x = x, y = y, shape = Treatment, color = Response)) +
  geom_point() +
  geom_line(aes(group = Subject), alpha = 0.5) +  # Add lines connecting the same subject
  scale_shape_manual(values = c(16, 17)) +  # You can choose different shapes
  scale_color_manual(values = c("blue", "red")) +  # You can choose different colors
  theme_minimal() +
  labs(title = "Scatterplot with Different Shapes and Colors",
      x = "X-axis label",
      y = "Y-axis label",
      shape = "Treatment",
      color = "Response")
</pre>
</ul>
</ul>


Line 500: Line 628:
# Relabel the breaks in a categorical scale
# Relabel the breaks in a categorical scale
scale_y_discrete(labels = c(a = "apple", b = "banana", c = "carrot"))
scale_y_discrete(labels = c(a = "apple", b = "banana", c = "carrot"))
</pre>
</li>
<li>[https://stackoverflow.com/a/43770608 How to change the color in geom_point or lines in ggplot]
<pre>
ggplot() +
  geom_point(data = data, aes(x = time, y = y, color = sample),size=4) +
  scale_color_manual(values = c("A" = "black", "B" = "red"))
ggplot(data = data, aes(x = time, y = y, color = sample)) +
  geom_point(size=4) +
  geom_line(aes(group = sample)) +
  scale_color_manual(values = c("A" = "black", "B" = "red"))
</pre>
</pre>
</li>
</li>
Line 582: Line 698:
           # see https://www.htmlcsscolor.com/ for color names
           # see https://www.htmlcsscolor.com/ for color names
</syntaxhighlight>
</syntaxhighlight>
[[File:Rscales2.png|250px]]
See also the last example in [https://ggobi.github.io/ggally/reference/ggsurv.html ggsurv()] where the KM plots have 4 strata. The colors can be obtained by '''scales::hue_pal()(4)''' with hue_pal()'s default arguments.
See also the last example in [https://ggobi.github.io/ggally/reference/ggsurv.html ggsurv()] where the KM plots have 4 strata. The colors can be obtained by '''scales::hue_pal()(4)''' with hue_pal()'s default arguments.


R has a function called colorName() to convert a hex code to color name; see [https://www.stat.auckland.ac.nz/~paul/Reports/roloc/intro/roloc.html roloc] package on [https://cran.case.edu/web/packages/roloc/index.html CRAN].
R has a function called colorName() to convert a hex code to color name; see [https://www.stat.auckland.ac.nz/~paul/Reports/roloc/intro/roloc.html roloc] package on [https://cran.case.edu/web/packages/roloc/index.html CRAN].


=== transform scales ===
=== How to change the default color palette in geom_XXX ===
[http://freerangestats.info/blog/2020/04/06/crazy-fox-y-axis How to make that crazy Fox News y axis chart with ggplot2 and scales]
<ul>
 
<li>[https://www.r-bloggers.com/2024/06/simple-custom-colour-palettes-with-r-ggplot-graphs/ Simple custom colour palettes with R ggplot graphs]
== Class variables ==
<li>Change the color palette for all plots
<ul>
<ul>
<li>"Set1" is a good choice. See [http://www.sthda.com/english/wiki/colors-in-r RColorBrewer::display.brewer.all()]
<li>Create a Custom Theme
<li>For ordinal variable, brewer.pal(n, "Spectral") is good. But the middle color is too light. So I modify the middle color
<pre>
<pre>
brewer.pal(5, "Spectral")
# Define a custom theme with a specific color palette
cols[3] <- "#D4C683" # middle of "#FDAE61" and "#ABDDA4"
custom_theme <- theme_minimal() +
  scale_fill_manual(values = c("red", "blue", "green", "purple")) +
  scale_color_manual(values = c("red", "blue", "green", "purple"))
 
# Set the custom theme as the default
theme_set(custom_theme)
</pre>
</pre>
<li>[https://github.com/Mikata-Project/ggthemr ggthemr] package
<li>[https://cran.r-project.org/web/packages/rcartocolor/index.html rcartocolor] package
</ul>
</ul>


== Red, Green, Blue alternatives ==
<li>Change the color palette for the current plot only:
* Red: "maroon"
<ul>
<li>Using scale_fill_manual() and scale_color_manual()
<pre>
library(ggplot2)


== Heatmap for single channel ==
data <- data.frame(
[https://youtu.be/TP8vjWiIpgI How to Make a Heatmap of Customers in R], [https://github.com/business-science/free_r_tips source code] on github. geom_tile() and geom_text() were used. [https://r-charts.com/correlation/heat-map-ggplot2/ Heatmap in ggplot2] from https://r-charts.com/.
  category = c("A", "B", "C", "D"),
  value = c(3, 5, 2, 8)
)


https://scales.r-lib.org/
ggplot(data, aes(x = category, y = value, fill = category)) +
<syntaxhighlight lang='rsplus'>
  geom_bar(stat = "identity") +
# White <----> Blue
  scale_fill_manual(values = c("red", "blue", "green", "purple")) +
RColorBrewer::display.brewer.pal(n = 8, name = "Blues")
  theme_minimal()
</syntaxhighlight>
</pre>
 
<li>Using scale_fill_brewer() and scale_color_brewer()
== Heatmap for dual channels ==
<pre>
http://www.sthda.com/english/wiki/colors-in-r <syntaxhighlight lang='rsplus'>
library(ggplot2)
library(RColorBrewer)
library(RColorBrewer)
# Red <----> Blue
display.brewer.pal(n = 8, name = 'RdBu')
# Hexadecimal color specification
brewer.pal(n = 8, name = "RdBu")


plot(1:8, col=brewer_pal(palette = "RdBu")(8), pch=20, cex=4)
ggplot(data, aes(x = category, y = value, fill = category)) +
  geom_bar(stat = "identity") +
  scale_fill_brewer(palette = "Set3") +
  theme_minimal()
</pre>
<li>Using scale_fill_viridis() and scale_color_viridis()
<pre>
library(ggplot2)
library(viridis)


# Blue <----> Red
ggplot(data, aes(x = category, y = value, fill = category)) +
plot(1:8, col=rev(brewer_pal(palette = "RdBu")(8)), pch=20, cex=4)
  geom_bar(stat = "identity") +
</syntaxhighlight>
  scale_fill_viridis(discrete = TRUE) +
  theme_minimal()
</pre>
<li>Using scale_fill_hue() and scale_color_hue()
<pre>
ggplot(data, aes(x = category, y = value, fill = category)) +
  geom_bar(stat = "identity") +
  scale_fill_hue(h = c(0, 360), l = 65, c = 100) +
  theme_minimal()
</pre>
</ul>
<li>[https://stackoverflow.com/a/43770608 How to change the color in geom_point or lines in ggplot]
<pre>
ggplot() +
  geom_point(data = data, aes(x = time, y = y, color = sample),size=4) +
  scale_color_manual(values = c("A" = "black", "B" = "red"))


[[File:Twopalette.svg|300px]]
ggplot(data = data, aes(x = time, y = y, color = sample)) +
  geom_point(size=4) +
  geom_line(aes(group = sample)) +
  scale_color_manual(values = c("A" = "black", "B" = "red"))
</pre>
<li>[https://ggplot2.tidyverse.org/reference/scale_identity.html scale_color_identity()] function. Use color values as-is (identity mapping).<BR/>
[[File:Scale color identity.png|255px]]


== Don't rely on color to explain the data ==
<li>'''scale_color_identity()''' by default does not show the color legend. To show the legend, try
[https://cran.r-project.org/web/packages/ggpattern/index.html ggpattern]
<pre>
# Data with predefined colors and a grouping variable
data <- data.frame(
  x = 1:3,
  y = c(5, 10, 15),
  color = c("#FF0000", "#00FF00", "#0000FF"), # Predefined colors
  group = c("Red Group", "Green Group", "Blue Group") # Labels for the legend
)


== Don't use very bright or low-contrast colors, accessibility ==
# Plot with scale_color_identity() and a legend
* [https://color.a11y.com/ Color Contrast Accessibility Validator]
ggplot(data, aes(x = x, y = y, color = color)) +
* [https://developers.google.com/web/tools/lighthouse/ Google Lighthouse]
  geom_point(size = 5) +
  scale_color_identity(
    guide = "legend", # Enable legend
    breaks = data$color, # Provide the colors used in the data
    labels = data$group  # Provide the corresponding labels for the legend
  ) +
  labs(color = "Groups") + # Add legend title
  theme_minimal()
</pre>


== Create your own scale_fill_FOO and scale_color_FOO ==
<li>'''scale_color_identity()''' vs '''scale_color_manual()''' (or their '''fill''' counterparts)
[https://www.jumpingrivers.com/blog/custom-colour-palettes-for-ggplot2/ Custom colour palettes for {ggplot2}]
<pre>
# Use scale_color_identity()
data <- data.frame(
  x = 1:3,
  y = c(5, 10, 15),
  color = c("#FF0000", "#00FF00", "#0000FF") # Predefined colors
)


= Themes and background for ggplot2 =
ggplot(data, aes(x = x, y = y, color = color)) +
* [https://henrywang.nl/ggplot2-theme-elements-demonstration/ ggplot2 Theme Elements Demonstration]
  geom_point(size = 5) +
  scale_color_identity() +
  ggtitle("scale_color_identity()")


== Background ==
# Use scale_color_manual()
<ul>
data <- data.frame(
<li>[https://stackoverflow.com/a/43614963 Export plot in .png with transparent background] in base R plot.
  x = 1:3,
<pre>
  y = c(5, 10, 15),
x = c(1, 2, 3)
  group = c("Group1", "Group2", "Group3") # Categories
op <- par(bg=NA)
)
plot (x)


dev.copy(png,'myplot.png')
ggplot(data, aes(x = x, y = y, color = group)) +
dev.off()
  geom_point(size = 5) +
par(op)
  scale_color_manual(
    values = c("Group1" = "red", "Group2" = "green", "Group3" = "blue")
  ) +
  ggtitle("scale_color_manual()")
</pre>
</pre>
</li>
</ul>
<li>[https://stackoverflow.com/a/41878833 Transparent background with ggplot2]
 
=== transform scales ===
[http://freerangestats.info/blog/2020/04/06/crazy-fox-y-axis How to make that crazy Fox News y axis chart with ggplot2 and scales]
 
== Class variables ==
<ul>
<li>"Set1" is a good choice. See [http://www.sthda.com/english/wiki/colors-in-r RColorBrewer::display.brewer.all()]
<li>For ordinal variable, brewer.pal(n, "Spectral") is good. But the middle color is too light. So I modify the middle color
<pre>
<pre>
library(ggplot2)
brewer.pal(5, "Spectral")
data("airquality")
cols[3] <- "#D4C683" # middle of "#FDAE61" and "#ABDDA4"
</pre>
</ul>
 
== Red, Green, Blue alternatives ==
* Red: "maroon"


p <- ggplot(airquality, aes(Solar.R, Temp)) +
== Heatmap for single channel ==
    geom_point() +
[https://youtu.be/TP8vjWiIpgI How to Make a Heatmap of Customers in R], [https://github.com/business-science/free_r_tips source code] on github. geom_tile() and geom_text() were used. [https://r-charts.com/correlation/heat-map-ggplot2/ Heatmap in ggplot2] from https://r-charts.com/.
    geom_smooth() +
 
    # set transparency
https://scales.r-lib.org/
    theme(
<syntaxhighlight lang='rsplus'>
        panel.grid.major = element_blank(),
# White <----> Blue
        panel.grid.minor = element_blank(),
RColorBrewer::display.brewer.pal(n = 8, name = "Blues")
        panel.background = element_rect(fill = "transparent",colour = NA),
</syntaxhighlight>
        plot.background = element_rect(fill = "transparent",colour = NA)
        )
p
ggsave("airquality.png", p, bg = "transparent")
</pre>
</li>
<li>[https://www.datanovia.com/en/blog/ggplot-theme-background-color-and-grids/ ggplot2 theme background color and grids]
<pre>
ggplot() + geom_bar(aes(x=, fill=y)) +
          theme(panel.background=element_rect(fill='purple')) +
          theme(plot.background=element_blank())


ggplot() + geom_bar(aes(x=, fill=y)) +
== Heatmap for dual channels ==
          theme(panel.background=element_blank()) +
http://www.sthda.com/english/wiki/colors-in-r <syntaxhighlight lang='rsplus'>
          theme(plot.background=element_blank()) # minimal background like base R
library(RColorBrewer)
          # the grid lines are not gone; they are white so it is the same as the background
# Red <----> Blue
display.brewer.pal(n = 8, name = 'RdBu')
# Hexadecimal color specification
brewer.pal(n = 8, name = "RdBu")


ggplot() + geom_bar(aes(x=, fill=y)) +
plot(1:8, col=brewer_pal(palette = "RdBu")(8), pch=20, cex=4)
          theme(panel.background=element_blank()) +
          theme(plot.background=element_blank()) +
          theme(panel.grid.major.y = element_line(color="grey"))
          # draw grid line on y-axis only


ggplot() + geom_bar() +
# Blue <----> Red
          theme_bw()  # very similar to theme_light()
plot(1:8, col=rev(brewer_pal(palette = "RdBu")(8)), pch=20, cex=4)
                      # have grid lines
</syntaxhighlight>
ggplot() + geom_bar() +
 
          theme_classic() # similar to base R graphic
[[File:Twopalette.svg|300px]]
                      # no borders on top and right
ggplot() + geom_bar() +
          theme_minimal() # no edge


ggplot() + geom_bar() +
== Don't rely on color to explain the data ==
          theme_void() # no grid, no edge
[https://cran.r-project.org/web/packages/ggpattern/index.html ggpattern]


ggplot() + geom_bar() +
== Accessibility ==
          theme_dark()
* [https://color.a11y.com/ Color Contrast Accessibility Validator]. Don't use very bright or low-contrast colors.
</pre>
* [https://developers.google.com/web/tools/lighthouse/ Google Lighthouse]
</li>
* [https://nrennie.rbind.io/blog/accessible-line-chart/ How to create a more accessible line chart]
</ul>


== ggthmr ==
== Create your own scale_fill_FOO and scale_color_FOO ==
[http://www.shanelynn.ie/themes-and-colours-for-r-ggplots-with-ggthemr/ ggthmr] package
[https://www.jumpingrivers.com/blog/custom-colour-palettes-for-ggplot2/ Custom colour palettes for {ggplot2}]


== Font size ==
= Themes and background for ggplot2 =
* https://ggplot2.tidyverse.org/reference/theme.html
* [https://www.r-bloggers.com/2023/11/getting-started-with-theme/ Getting started with theme()] 2023/11/23
* [https://statisticsglobe.com/change-font-size-of-ggplot2-plot-in-r-axis-text-main-title-legend Change Font Size of ggplot2 Plot in R (5 Examples) | Axis Text, Main Title & Legend]
* [https://henrywang.nl/ggplot2-theme-elements-demonstration/ ggplot2 Theme Elements Demonstration]
* [https://stackoverflow.com/a/34610941 What is the default font for ggplot2]
* [http://www.cookbook-r.com/Graphs/Fonts/ Fonts] from Cookbook for R


For example to make the subtitle font size smaller
== Background ==
<pre>
<ul>
my_ggp + theme(plot.sybtitle = element_text(size = 8))  
<li>[https://stackoverflow.com/a/43614963 Export plot in .png with transparent background] in base R plot.
# Default font size seems to be 11 for title/subtitle
<pre>
</pre>
x = c(1, 2, 3)
op <- par(bg=NA)
plot (x)


== Remove x and y axis titles ==
dev.copy(png,'myplot.png')
[http://www.sthda.com/english/wiki/ggplot2-title-main-axis-and-legend-titles#remove-x-and-y-axis-labels ggplot2 title : main, axis and legend titles]
dev.off()
 
par(op)
== Rotate x-axis labels, change colors ==
Counter-clockwise
<pre>
theme(axis.text.x = element_text(angle = 90)
</pre>
</pre>
 
</li>
[https://stackoverflow.com/a/38862452 customize ggplot2 axis labels with different colors]
<li>[https://stackoverflow.com/a/41878833 Transparent background with ggplot2]
 
== Add axis on top or right hand side ==
<ul>
<li>Specify a secondary axis, [https://ggplot2.tidyverse.org/reference/sec_axis.html sec_axis()]. This new function was added in ggplot2 2.2.0; see [https://stackoverflow.com/a/39805869 here].</li>
<li>[https://stackoverflow.com/q/51898027 Create secondary x-axis in ggplot2]. '''dup_axis(name, breaks, labels)'''. Note that ggplot2 uses '''breaks''' while base R plot uses '''at'''. See [[R#Include_labels_on_the_top_axis.2Fmargin:_axis.28.29|R &rarr; Include labels on the top axis/margin: axis()]].
<pre>
<pre>
# Bottom x-axis is the quantiles and the top x-axis is the original values
library(ggplot2)
data("airquality")


Fn <- ecdf(mtcars$mpg)
p <- ggplot(airquality, aes(Solar.R, Temp)) +
mtcars %>% dplyr::mutate(quantile = Fn(mpg)) %>%
    geom_point() +
  ggplot(aes(x= quantile, y= disp)) +
    geom_smooth() +
  geom_point() +  
    # set transparency
  scale_x_continuous(name = "quantile of mpg",
    theme(
                    breaks=c(.25, .5, .75, 1.0),
        panel.grid.major = element_blank(),  
                    labels = c("0.25", "0.50", "0.75", "1.00"),
        panel.grid.minor = element_blank(),
                    sec.axis = dup_axis(name = "mpg",
        panel.background = element_rect(fill = "transparent",colour = NA),
                                        breaks = c(.25, .5, .75, 1.0),
        plot.background = element_rect(fill = "transparent",colour = NA)
                                        labels = quantile(mtcars$mpg, c(.25, .5, .75, 1.0))))
        )
p
ggsave("airquality.png", p, bg = "transparent")
</pre>
</pre>
</li>
</li>
<li>[https://stackoverflow.com/a/46257098 How to add line at top panel border of ggplot2]
<li>[https://www.datanovia.com/en/blog/ggplot-theme-background-color-and-grids/ ggplot2 theme background color and grids]
<pre>
<pre>
mtcars %>%
ggplot() + geom_bar(aes(x=, fill=y)) +
  ggplot(aes(x= mpg, y= disp)) +
          theme(panel.background=element_rect(fill='purple')) +
  geom_point() +
          theme(plot.background=element_blank())
  annotate(geom = 'segment', y = Inf, yend = Inf, color = 'green',
 
           x = -Inf, xend = Inf, size = 4)
ggplot() + geom_bar(aes(x=, fill=y)) +
          theme(panel.background=element_blank()) +  
          theme(plot.background=element_blank()) # minimal background like base R
          # the grid lines are not gone; they are white so it is the same as the background
 
ggplot() + geom_bar(aes(x=, fill=y)) +
          theme(panel.background=element_blank()) +
          theme(plot.background=element_blank()) +
          theme(panel.grid.major.y = element_line(color="grey"))
           # draw grid line on y-axis only
 
ggplot() + geom_bar() +
          theme_bw()  # very similar to theme_light()
                      # have grid lines
ggplot() + geom_bar() +
          theme_classic() # similar to base R graphic
                      # no borders on top and right
ggplot() + geom_bar() +
          theme_minimal() # no edge
 
ggplot() + geom_bar() +
          theme_void() # no grid, no edge
 
ggplot() + geom_bar() +
          theme_dark()
</pre>
</pre>
</li>
</li>
<li>[https://whatalnk.github.io/r-tips/ggplot2-secondary-y-axis.nb.html ggplot2: Secondary Y axis] </li>
<li>[https://www.r-graph-gallery.com/line-chart-dual-Y-axis-ggplot2.html Dual Y axis with R and ggplot2] </li>
</ul>
</ul>


== Remove labels ==
== ggthmr ==
[http://environmentalcomputing.net/plotting-with-ggplot-adding-titles-and-axis-names/ Plotting with ggplot: : adding titles and axis names]
[http://www.shanelynn.ie/themes-and-colours-for-r-ggplots-with-ggthemr/ ggthmr] package


== ggthemes package ==
== Font size ==
https://cran.r-project.org/web/packages/ggthemes/index.html
<ul>
<li>https://ggplot2.tidyverse.org/reference/theme.html
<li>[https://statisticsglobe.com/change-font-size-of-ggplot2-plot-in-r-axis-text-main-title-legend Change Font Size of ggplot2 Plot in R (5 Examples) | Axis Text, Main Title & Legend]
{| class="wikitable"
|-
| Change Font Size of All Text Elements || '''theme(text = element_text(size = 20))'''
|-
| Change Font Size of Axis Text<BR />X-axis only || '''theme(axis.text = element_text(size = 20)) <BR />theme(axis.text.x = element_text(size = 20))'''
|-
| Change Font Size of Axis Titles<BR />X-axis only || '''theme(axis.title = element_text(size = 20)) <BR />theme(axis.title.x = element_text(size = 20)) '''
|-
| Change Font Size of Main Title || '''theme(plot.title = element_text(size = 20))'''
|-
| Change Font Size of Legend Text<BR/>Title || '''theme(legend.text = element_text(size = 20)) <BR />theme(legend.title = element_text(size = 20))'''
|}
<li>[https://stackoverflow.com/a/34610941 What is the default font for ggplot2] '''theme_get()$text''' and '''windowsFonts()''' / '''X11Fonts()'''
<li>[http://www.cookbook-r.com/Graphs/Fonts/ Fonts] from Cookbook for R
For example to make the subtitle font size smaller
<pre>
<pre>
ggplot() + geom_bar() +
my_ggp + theme(plot.sybtitle = element_text(size = 8))  
          theme_solarized()  # sun color in the background
# Default font size seems to be 11 for title/subtitle
</pre>
</ul>


theme_excel()
== Remove x and y axis titles ==
theme_wsj()
[http://www.sthda.com/english/wiki/ggplot2-title-main-axis-and-legend-titles#remove-x-and-y-axis-labels ggplot2 title : main, axis and legend titles]
theme_economist()
<pre>
theme_fivethirtyeight()
theme(
  plot.title = element_blank(),
  axis.title.x = element_blank(),
  axis.title.y = element_blank())
</pre>
</pre>


== rsthemes ==
== Rotate x-axis labels, alignment (hjust) ==
[https://www.garrickadenbuie.com/project/rsthemes/ rsthemes]
Counter-clockwise
<pre>
theme(axis.text.x = element_text(angle = 90, size=5, hjust=1)) # default hjust=0.5
</pre>


== thematic ==
[https://stackoverflow.com/a/38862452 customize ggplot2 axis labels with different colors]
[https://rstudio.github.io/thematic/ thematic], [https://www.infoworld.com/article/3604688/top-r-tips-and-news-from-rstudio-global-2021.amp.html Top R tips and news from RStudio Global 2021]


= Common plots =
== Add axis on top or right hand side ==
* https://ggplot2.tidyverse.org/reference/index.html
* [https://github.com/WinVector/WVPlots WVPlots], [https://win-vector.com/2020/10/26/your-lopsided-model-is-out-to-get-you/ Your Lopsided Model is Out to Get You]
 
== Scatterplot ==
[https://wilkelab.org/SDS375/slides/overplotting.html?s=09#1 Handling overlapping points] (slides) and the ebook [https://clauswilke.com/dataviz/overlapping-points.html Fundamentals of Data Visualization] by Claus O. Wilke.
 
=== Scatterplot with histograms ===
* [https://datavizpyr.com/how-to-make-scatterplot-with-marginal-histograms-in-r/ How To Make Scatterplot with Marginal Histograms in R?]
* [https://rpkgs.datanovia.com/ggpubr/reference/ggscatterhist.html ggpubr::ggscatterhist()]
* [http://www.sthda.com/english/wiki/scatter-plot-matrices-r-base-graphs Scatter Plot Matrices]
* [https://www.r-bloggers.com/2011/06/example-8-41-scatterplot-with-marginal-histograms/ Example 8.41: Scatterplot with marginal histograms] (old fashion, based on ''layout()'')
 
=== aes(color) ===
<ul>
<ul>
<li><span style="color: blue">Discrete colors</span>. [https://tidyverse.github.io/ggplot2-docs/reference/scale_brewer.html ?scale_colour_brewer]. [https://stackoverflow.com/a/67375729 How to fix 'continuous value supplied to discrete scale' in with scale_color_brewer]. [https://statisticsglobe.com/scale-colour-fill-brewer-rcolorbrewer-package-r Change ggplot2 Color & Fill Using scale_brewer Functions & RColorBrewer Package in R]
<li>Specify a secondary axis, [https://ggplot2.tidyverse.org/reference/sec_axis.html sec_axis()]. This new function was added in ggplot2 2.2.0; see [https://stackoverflow.com/a/39805869 here].</li>
<li>[https://stackoverflow.com/q/51898027 Create secondary x-axis in ggplot2]. '''dup_axis(name, breaks, labels)'''. Note that ggplot2 uses '''breaks''' while base R plot uses '''at'''. See [[R#Include_labels_on_the_top_axis.2Fmargin:_axis.28.29|R &rarr; Include labels on the top axis/margin: axis()]].
<pre>
<pre>
ggplot(mpg, aes(x = hwy, y = cty)) +
# Bottom x-axis is the quantiles and the top x-axis is the original values
  geom_point(aes(color = class), palette = "Set2")


ggplot(mpg, aes(x = displ, y = hwy, colour = manufacturer)) +
Fn <- ecdf(mtcars$mpg)
   geom_point() +
mtcars %>% dplyr::mutate(quantile = Fn(mpg)) %>%
   scale_colour_brewer(palette = "Set3")
  ggplot(aes(x= quantile, y= disp)) +
</pre>
   geom_point() +  
<li><span style="color: blue">Continuous colors</span>. The default color scale is [https://tidyverse.github.io/ggplot2-docs/reference/scale_gradient.html ?scale_colour_gradient] with prespecified 'low' and 'high' colors. [https://ggplot2.tidyverse.org/reference/scale_colour_continuous.html ?scale_colour_continuous].
   scale_x_continuous(name = "quantile of mpg",
<pre>
                    breaks=c(.25, .5, .75, 1.0),
ggplot(mpg, aes(x = displ, y = hwy, color = cty)) +
                    labels = c("0.25", "0.50", "0.75", "1.00"),
  geom_point(size = 2) +
                    sec.axis = dup_axis(name = "mpg",
  scale_color_continuous("City Miles Per Gallon")
                                        breaks = c(.25, .5, .75, 1.0),
# scale_color_continuous("City MPG Rating", low = "springgreen3", high = "red")
                                        labels = quantile(mtcars$mpg, c(.25, .5, .75, 1.0))))
</pre>
</pre>
<li>[http://www.sthda.com/english/wiki/ggplot2-colors-how-to-change-colors-automatically-and-manually ggplot2 colors : How to change colors automatically and manually?] (mainly the scatterplot and box plots)
<li>[https://ggplot2.tidyverse.org/reference/aes_colour_fill_alpha.html Colour related aesthetics: colour, fill, and alpha]
</li>
</li>
<li>[https://stackoverflow.com/a/43770608 how to change the color in geom_point or lines in ggplot].
<li>[https://stackoverflow.com/a/46257098 How to add line at top panel border of ggplot2]
* color is used outside '''aes()''': the ''color'' parameter can be used to specify the color name (eg 'red')
* color is used inside '''aes()''': it is used to specify the category/level of colors. It does not work as expected if we try to specify colors explicitly; e.g. ''aes(color=c("red", "red", "green"))''. In this case, the color names becomes a factor.
<pre>
<pre>
ggplot() +  
mtcars %>%
   geom_point(data = data, aes(x = time, y = y, color = sample),size=4) +
  ggplot(aes(x= mpg, y= disp)) +
  scale_color_manual(values = c("A" = "black", "B" = "red"))
   geom_point() +
  annotate(geom = 'segment', y = Inf, yend = Inf, color = 'green',  
          x = -Inf, xend = Inf, size = 4)
</pre>
</pre>
</li>
</li>
<li>[https://www.sharpsightlabs.com/blog/highlight-data-in-ggplot2/ How to highlight data in ggplot2] </li>
<li>[https://whatalnk.github.io/r-tips/ggplot2-secondary-y-axis.nb.html ggplot2: Secondary Y axis] </li>
<li>[https://www.r-graph-gallery.com/line-chart-dual-Y-axis-ggplot2.html Dual Y axis with R and ggplot2] </li>
</ul>
</ul>


=== groups ===
== Remove labels ==
* [https://datavizpyr.com/add-regression-line-per-group-to-scatterplot-in-r/ How To Add Regression Line per Group to Scatterplot in ggplot2?] '''geom_smooth()'''
[http://environmentalcomputing.net/plotting-with-ggplot-adding-titles-and-axis-names/ Plotting with ggplot: : adding titles and axis names]
* Multiple fitted lines in one plot
[[File:Geom smooth ex.png|250px]]


=== Bubble Chart ===
== ggthemes package ==
* [https://www.data-to-viz.com/graph/bubble.html BUBBLE PLOT]
https://cran.r-project.org/web/packages/ggthemes/index.html
* [https://finnstats.com/index.php/2021/06/18/how-to-create-a-bubble-chart-in-r/ Bubble Chart in R-ggplot & Plotly]
<pre>
ggplot() + geom_bar() +
          theme_solarized()  # sun color in the background
 
theme_excel()
theme_wsj()
theme_economist()
theme_fivethirtyeight()
</pre>


=== Ellipse ===
== rsthemes ==
* [https://ggplot2.tidyverse.org/reference/stat_ellipse.html ggplot2::stat_ellipse()]
[https://www.garrickadenbuie.com/project/rsthemes/ rsthemes]
* [https://stackoverflow.com/a/5262141 How can a data ellipse be superimposed on a ggplot2 scatterplot?]. Hint: use the [https://cran.r-project.org/web/packages/ellipse/index.html ellipse] package.


=== ggside: scatterplot + marginal density plot ===
== thematic ==
* https://cran.r-project.org/web/packages/ggside/index.html
[https://rstudio.github.io/thematic/ thematic], [https://www.infoworld.com/article/3604688/top-r-tips-and-news-from-rstudio-global-2021.amp.html Top R tips and news from RStudio Global 2021]
* [https://www.business-science.io/code-tools/2021/05/18/marginal_distributions.html ggside] package


=== ggextra: scatterplot + marginal histogram/density ===
= Common plots =
https://github.com/daattali/ggExtra
* https://ggplot2.tidyverse.org/reference/index.html
* [https://github.com/WinVector/WVPlots WVPlots], [https://win-vector.com/2020/10/26/your-lopsided-model-is-out-to-get-you/ Your Lopsided Model is Out to Get You]


== Line plots ==
== Scatterplot ==
* http://www.sthda.com/english/wiki/ggplot2-line-plot-quick-start-guide-r-software-and-data-visualization
[https://wilkelab.org/SDS375/slides/overplotting.html?s=09#1 Handling overlapping points] (slides) and the ebook [https://clauswilke.com/dataviz/overlapping-points.html Fundamentals of Data Visualization] by Claus O. Wilke.
* [https://observablehq.com/@d3/multi-line-chart Multi-Line Chart] by D3. Download the tarball. The index.html shows the interactive plot on FF but not Chrome or safari. See [https://stackoverflow.com/a/46992592 ES6 module support in Chrome 62/Chrome Canary 64, does not work locally]. Chrome is blocking it because local files cannot have cross origin requests. it should work in chrome if you put it on a server.
** [https://observablehq.com/@bencf/multi-line-chart This] and [https://observablehq.com/@shaswat-du/d3-multi-line-chart this] are examples where  X is a continuous variable.
** Click "..." and compare code.
* [https://www.r-bloggers.com/2020/12/how-to-make-stunning-line-charts-in-r-a-complete-guide-with-ggplot2/ How to Make Stunning Line Charts in R: A Complete Guide with ggplot2]


=== Ridgeline plots, mountain diagram ===
=== Scatterplot with histograms ===
* [https://github.com/wilkelab/ggridges?s=09 ggridges]: Ridgeline plots in ggplot2
* [https://datavizpyr.com/how-to-make-scatterplot-with-marginal-histograms-in-r/ How To Make Scatterplot with Marginal Histograms in R?]
* [https://www.datanovia.com/en/blog/elegant-visualization-of-density-distribution-in-r-using-ridgeline Elegant Visualization of Density Distribution in R Using Ridgeline]
* [https://rpkgs.datanovia.com/ggpubr/reference/ggscatterhist.html ggpubr::ggscatterhist()]
* [https://www.nature.com/articles/s41598-021-03432-3/figures/1 An example] from ''Scientific Reports''.
* [http://www.sthda.com/english/wiki/scatter-plot-matrices-r-base-graphs Scatter Plot Matrices]
* [https://www.r-bloggers.com/2011/06/example-8-41-scatterplot-with-marginal-histograms/ Example 8.41: Scatterplot with marginal histograms] (old fashion, based on ''layout()'')


== Histogram ==
=== aes(color) ===
Histograms is a special case of bar plots. Instead of drawing each unique individual values as a bar, a histogram groups close data points into bins.
<ul>
<li><span style="color: blue">Discrete colors</span>. [https://tidyverse.github.io/ggplot2-docs/reference/scale_brewer.html ?scale_colour_brewer]. [https://stackoverflow.com/a/67375729 How to fix 'continuous value supplied to discrete scale' in with scale_color_brewer]. [https://statisticsglobe.com/scale-colour-fill-brewer-rcolorbrewer-package-r Change ggplot2 Color & Fill Using scale_brewer Functions & RColorBrewer Package in R]
<pre>
ggplot(mpg, aes(x = hwy, y = cty)) +
  geom_point(aes(color = class), palette = "Set2")


<syntaxhighlight lang='rsplus'>
ggplot(mpg, aes(x = displ, y = hwy, colour = manufacturer)) +
ggplot(data = txhousing, aes(x = median)) +
  geom_point() +
   geom_histogram() # adding 'origin =0' if we don't expect negative values.
  scale_colour_brewer(palette = "Set3")
                    # adding 'bins=10' to adjust the number of bins
</pre>
                    # adding 'binwidth=10' to adjust the bin width
<li><span style="color: blue">Continuous colors</span>. The default color scale is [https://tidyverse.github.io/ggplot2-docs/reference/scale_gradient.html ?scale_colour_gradient] with prespecified 'low' and 'high' colors. [https://ggplot2.tidyverse.org/reference/scale_colour_continuous.html ?scale_colour_continuous].
</syntaxhighlight>
<pre>
 
ggplot(mpg, aes(x = displ, y = hwy, color = cty)) +  
[http://www.deeplytrivial.com/2020/04/p-is-for-percent.html Histogram vs barplot] from deeply trivial.
   geom_point(size = 2) +
 
  scale_color_continuous("City Miles Per Gallon")
== Boxplot ==
# scale_color_continuous("City MPG Rating", low = "springgreen3", high = "red")
Be careful that if we added '''scale_y_continuous(expand = c(0,0), limits = c(0,1))''' to the code, it will change the boxplot if some data is outside the range of (0, 1). The console gives a warning message in this case.
</pre>
 
<li>[http://www.sthda.com/english/wiki/ggplot2-colors-how-to-change-colors-automatically-and-manually ggplot2 colors : How to change colors automatically and manually?] (mainly the scatterplot and box plots)
=== Base R method ===
<li>[https://ggplot2.tidyverse.org/reference/aes_colour_fill_alpha.html Colour related aesthetics: colour, fill, and alpha]
[http://www.sthda.com/english/wiki/box-plots-r-base-graphs Box Plots - R Base Graphs]
</li>
<li>[https://stackoverflow.com/a/43770608 how to change the color in geom_point or lines in ggplot].
* color is used outside '''aes()''': the ''color'' parameter can be used to specify the color name (eg 'red')
* color is used inside '''aes()''': it is used to specify the category/level of colors. It does not work as expected if we try to specify colors explicitly; e.g. ''aes(color=c("red", "red", "green"))''. In this case, the color names becomes a factor.
<pre>
<pre>
dim(df) # 112436 x 2
ggplot() +
mycol <- c("#F8766D", "#7CAE00", "#00BFC4", "#C77CFF")
  geom_point(data = data, aes(x = time, y = y, color = sample),size=4) +
# mycol defines colors of 4 levels in df$Method (a factor)
  scale_color_manual(values = c("A" = "black", "B" = "red"))
boxplot(df$value ~ df$Method, col = mycol, xlab="Method")
</pre>
</pre>
</li>
<li>[https://www.sharpsightlabs.com/blog/highlight-data-in-ggplot2/ How to highlight data in ggplot2] </li>
</ul>


=== Color fill/scale_fill_XXX ===
=== groups ===
{{Pre}}
* [https://datavizpyr.com/add-regression-line-per-group-to-scatterplot-in-r/ How To Add Regression Line per Group to Scatterplot in ggplot2?] '''geom_smooth()'''
n <- 100
* Multiple fitted lines in one plot
k <- 12
[[File:Geom smooth ex.png|250px]]
set.seed(1234)
cond <- factor(rep(LETTERS[1:k], each=n))
rating <- rnorm(n*k)
dat <- data.frame(cond = cond, rating = rating)


p <- ggplot(dat, aes(x=cond, y=rating, fill=cond)) +
=== Bubble Chart ===
    geom_boxplot()
* [https://www.data-to-viz.com/graph/bubble.html BUBBLE PLOT]
* [https://finnstats.com/index.php/2021/06/18/how-to-create-a-bubble-chart-in-r/ Bubble Chart in R-ggplot & Plotly]


p + scale_fill_hue() + labs(title="hue default") # Same as only p
=== Ellipse ===
p + scale_fill_hue(l=40, c=35) + labs(title="hue options")
* [https://ggplot2.tidyverse.org/reference/stat_ellipse.html ggplot2::stat_ellipse()]
p + scale_fill_brewer(palette="Dark2") + labs(title="Dark2")
* [https://stackoverflow.com/a/5262141 How can a data ellipse be superimposed on a ggplot2 scatterplot?]. Hint: use the [https://cran.r-project.org/web/packages/ellipse/index.html ellipse] package.
p + colorspace::scale_fill_discrete_qualitative(palette = "Dark 3") + labs(title="Dark 3")
p + scale_fill_brewer(palette="Accent") + labs(title="Accent")
p + scale_fill_brewer(palette="Pastel1") + labs(title="Pastel1")
p + scale_fill_brewer(palette="Set1") + labs(title="Set1")
p + scale_fill_brewer(palette="Spectral") + labs(title ="Spectral")
p + scale_fill_brewer(palette="Paired") + labs(title="Paired")
# cbbPalette <- c("#000000", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7")
# p + scale_fill_manual(values=cbbPalette)
</pre>
[[File:Scalefill.png|250px]]


[https://www.datanovia.com/en/blog/the-a-z-of-rcolorbrewer-palette/ ColorBrewer palettes]  RColorBrewer::display.brewer.all() to display all brewer palettes.
=== ggside: scatterplot + marginal density plot ===
* https://cran.r-project.org/web/packages/ggside/index.html
* [https://www.business-science.io/code-tools/2021/05/18/marginal_distributions.html ggside] package


[https://ggplot2.tidyverse.org/reference/index.html Reference from ggplot2]. scale_fill_binned, '''scale_fill_brewer''', scale_fill_continuous, scale_fill_date, scale_fill_datetime, scale_fill_discrete, scale_fill_distiller, scale_fill_gradient, scale_fill_gradientc, scale_fill_gradientn, scale_fill_grey, '''scale_fill_hue''', scale_fill_identity, '''scale_fill_manual''', scale_fill_ordinal, scale_fill_steps, scale_fill_steps2, scale_fill_stepsn, scale_fill_viridis_b, scale_fill_viridis_c, scale_fill_viridis_d
=== ggextra: scatterplot + marginal histogram/density ===
https://github.com/daattali/ggExtra
 
== Line plots ==
* http://www.sthda.com/english/wiki/ggplot2-line-plot-quick-start-guide-r-software-and-data-visualization
* [https://observablehq.com/@d3/multi-line-chart Multi-Line Chart] by D3. Download the tarball. The index.html shows the interactive plot on FF but not Chrome or safari. See [https://stackoverflow.com/a/46992592 ES6 module support in Chrome 62/Chrome Canary 64, does not work locally]. Chrome is blocking it because local files cannot have cross origin requests. it should work in chrome if you put it on a server.
** [https://observablehq.com/@bencf/multi-line-chart This] and [https://observablehq.com/@shaswat-du/d3-multi-line-chart this] are examples where  X is a continuous variable.
** Click "..." and compare code.
* [https://www.r-bloggers.com/2020/12/how-to-make-stunning-line-charts-in-r-a-complete-guide-with-ggplot2/ How to Make Stunning Line Charts in R: A Complete Guide with ggplot2]
 
=== Ridgeline plots, mountain diagram ===
* [https://github.com/wilkelab/ggridges?s=09 ggridges]: Ridgeline plots in ggplot2
* [https://www.datanovia.com/en/blog/elegant-visualization-of-density-distribution-in-r-using-ridgeline Elegant Visualization of Density Distribution in R Using Ridgeline]
* [https://www.nature.com/articles/s41598-021-03432-3/figures/1 An example] from ''Scientific Reports''.
* [https://www.r-bloggers.com/2024/06/cp-1919-psr-b191921-dataset/ CP 1919 / PSR B1919+21 Dataset]
 
== Histogram ==
Histograms is a special case of bar plots. Instead of drawing each unique individual values as a bar, a histogram groups close data points into bins.


=== Jittering - plot the data on top of the boxplot ===
<ul>
<li>[[Statistics#Box.28Box_and_whisker.29_plot_in_R|What is a boxplot]]  </li>
<li>Quick look
<syntaxhighlight lang='rsplus'>
<syntaxhighlight lang='rsplus'>
# Only 1 variable
ggplot(data = txhousing, aes(x = median)) +
ggplot(data.frame(Wi), aes(y = Wi)) +  
   geom_histogram() # adding 'origin =0' if we don't expect negative values.
   geom_boxplot()
                    # adding 'bins=10' to adjust the number of bins
                    # adding 'binwidth=10' to adjust the bin width
</syntaxhighlight>


# Two variable, one of them is a factor
[http://www.deeplytrivial.com/2020/04/p-is-for-percent.html Histogram vs barplot] from deeply trivial.
ggplot() + geom_jitter(mapping = aes(x, y))


# Box plot
=== Multiple variables ===
ggplot() + geom_boxplot(mapping = aes(x, y))
* [https://stackoverflow.com/questions/3541713/how-can-i-plot-two-histograms-together-in-r How can I plot two histograms together in R?]
</syntaxhighlight>
* [https://www.statology.org/multiple-histograms-r/ How to Plot Multiple Histograms in R]
</li>
 
<li>[https://ggplot2.tidyverse.org/reference/geom_jitter.html geom_jitter()]</li>
== Boxplot ==
<li>geom_jitter can affect both X and Y values.  
Be careful that if we added '''scale_y_continuous(expand = c(0,0), limits = c(0,1))''' to the code, it will change the boxplot if some data is outside the range of (0, 1). The console gives a warning message in this case.
 
=== Base R method ===
<ul>
<li>[http://www.sthda.com/english/wiki/box-plots-r-base-graphs Box Plots - R Base Graphs]
<pre>
# Use default color palette
colors <- palette()[1:6] # "black"  "#DF536B" "#61D04F" "#2297E6" "#28E2E5" "#CD0BBC"
 
# Boxplot with default colors
boxplot(count ~ spray, data = InsectSprays, col = colors)
</pre>
 
<li>If we like to add jitters to the boxplot, we can use points() + jitter(); this [https://jtleek.com/genstats/inst/doc/02_13_batch-effects.html#adjusting-for-batch-effects-with-sva this example]. However, we need to hide outliers created by boxplot() by adding '''outline = FALSE'''
<pre>
<pre>
tibble(x=1:4, y=1:4) %>% ggplot(aes(x, y)) + geom_jitter()
boxplot(count ~ spray, data = InsectSprays, col = colors, outline = FALSE)
# par("usr")[1:2] confirms the locations of x-axis are 1, 2, 3, ...
set.seed(1)
points(jitter(as.integer(InsectSprays$spray) ), InsectSprays$count, pch=16)
</pre>
</pre>
</li>
 
<li>https://stackoverflow.com/a/17560113  </li>
<li>We can follow [[R#reorder(),_levels()_and_boxplot()|this]] to use the reorder() function to reorder the groups on the x-axis by their group mean/median.
<li>[https://stackoverflow.com/a/48822620 How to make scatterplot with geom_jitter plot reproducible?]
 
<li>If we like to rotate the boxplot by 90 degrees, we can add ''', horizontal = TRUE''' to boxplot() function.
<pre>
<pre>
set.seed(1); data %>%
InsectSprays$newFac <- with(InsectSprays, reorder(spray, count, FUN=median))
  ggplot() +
boxplot(count ~ newFac, data = InsectSprays, col = "lightgray", horizontal = TRUE, outline = FALSE)
  geom_jitter(aes(T.categ, sex, colour = status))
set.seed(1); points(InsectSprays$count, jitter(as.integer(InsectSprays$newFac) ), pch=16)
</pre>
</pre>
</li>
 
<li>[https://r-charts.com/distribution/box-plot-jitter-ggplot2/ Boxplot with jittered data points in ggplot2] </li>
<li>Another base plot approach to create a jittered boxplot is to use boxplot() + stripchart(). See [https://r-coder.com/stripchart-r/ Stripchart in R], [https://www.statology.org/strip-chart-r/ How to Create a Strip Chart in R]. Consider to add '''outline = FALSE''' to boxplot() to avoid drawing outliers in boxplot() when stripchart() has been added.
<syntaxhighlight lang='rsplus'>
<syntaxhighlight lang='rsplus'>
# df2 is n x 2
ylim <- range(df$estimate, na.rm = TRUE)
ggplot(df2, aes(x=nboot, y=boot)) +
boxplot(estimate~type, data=df, xlab=NULL, ylab=NULL, ylim=ylim, outline=F)
  geom_boxplot(outlier.shape=NA) + #avoid plotting outliers twice
set.seed(1)
  geom_jitter(aes(color=nboot), position=position_jitter(width=.2, height=0, seed=1)) +
stripchart(estimate~type, data=df, method = "jitter",
  labs(title="", y = "", x = "nboot")
pch=19, col=c("salmon", "orange", "yellowgreen", "green"),
vertical=TRUE, add=TRUE)
</syntaxhighlight>
</syntaxhighlight>
If we omit the <span style="color: red">outlier.shape=NA</span> option in '''geom_boxplot()''', we will get the following plot where some outliers will appear twice. (Another option is '''outlier.color = NA'''; see [https://stackoverflow.com/a/63785060 extra point at boxplot with jittered points (ggplot2)]).
</ul>


[[File:Jitterboxplot.png|300px]]
=== Color fill/scale_fill_XXX ===
</li>
{{Pre}}
<li>Base plot approach
n <- 100
[http://jtleek.com/genstats/inst/doc/02_13_batch-effects.html Batch effects and confounders]
k <- 12
</li>
set.seed(1234)
<li>Another base plot approach. boxplot() + stripchart(). See [https://r-coder.com/stripchart-r/ Stripchart in R], [https://www.statology.org/strip-chart-r/ How to Create a Strip Chart in R]. Consider to add '''outline = FALSE''' to avoid drawing outliers in boxplot() when stripchart() has been added.
cond <- factor(rep(LETTERS[1:k], each=n))
</li>
rating <- rnorm(n*k)
</ul>
dat <- data.frame(cond = cond, rating = rating)
 
p <- ggplot(dat, aes(x=cond, y=rating, fill=cond)) +
    geom_boxplot()  


=== Groups of boxplots ===
p + scale_fill_hue() + labs(title="hue default") # Same as only p
<ul>
p + scale_fill_hue(l=40, c=35) + labs(title="hue options")
<li>[https://datavizpyr.com/how-to-make-grouped-boxplot-with-jittered-data-points-in-ggplot2/ How to Make Grouped Boxplot with Jittered Data Points in ggplot2]. Use the '''color''' parameter in ggplot(aes()).
p + scale_fill_brewer(palette="Dark2") + labs(title="Dark2")
<li>[https://www.bioinfo-scrounger.com/archives/jittered_boxplot/ Boxplot With Jittered Points in R]
p + colorspace::scale_fill_discrete_qualitative(palette = "Dark 3") + labs(title="Dark 3")
<li>[http://cmdlinetips.com/2019/02/how-to-make-grouped-boxplots-with-ggplot2/ How To Make Grouped Boxplots with ggplot2?], [https://rpubs.com/alecri/review_longitudinal A review of Longitudinal Data Analysis in R]. Use the '''fill''' parameter such as
p + scale_fill_brewer(palette="Accent") + labs(title="Accent")
<pre>
p + scale_fill_brewer(palette="Pastel1") + labs(title="Pastel1")
mydata %>%
p + scale_fill_brewer(palette="Set1") + labs(title="Set1")
  ggplot(aes(x=Factor1, y=Response, fill=factor(Factor2))) +  
p + scale_fill_brewer(palette="Spectral") + labs(title ="Spectral")
  geom_boxplot()  
p + scale_fill_brewer(palette="Paired") + labs(title="Paired")
# cbbPalette <- c("#000000", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7")
# p + scale_fill_manual(values=cbbPalette)
</pre>
</pre>
<li>Another method is to use [https://rpkgs.datanovia.com/ggpubr/reference/ggboxplot.html ggpubr::ggboxplot()]. Papers [https://github.com/guosheng437/TumorPurity/tree/main/Fig1/Fig1A TumorPurity].
[[File:Scalefill.png|250px]]
 
[https://www.datanovia.com/en/blog/the-a-z-of-rcolorbrewer-palette/ ColorBrewer palettes]  RColorBrewer::display.brewer.all() to display all brewer palettes.
 
[https://ggplot2.tidyverse.org/reference/index.html Reference from ggplot2]. scale_fill_binned, '''scale_fill_brewer''', scale_fill_continuous, scale_fill_date, scale_fill_datetime, scale_fill_discrete, scale_fill_distiller, scale_fill_gradient, scale_fill_gradientc, scale_fill_gradientn, scale_fill_grey, '''scale_fill_hue''', scale_fill_identity, '''scale_fill_manual''', scale_fill_ordinal, scale_fill_steps, scale_fill_steps2, scale_fill_stepsn, scale_fill_viridis_b, scale_fill_viridis_c, scale_fill_viridis_d
 
=== Jittering - plot the data on top of the boxplot ===
<ul>
<li>[[Statistics#Box.28Box_and_whisker.29_plot_in_R|What is a boxplot]]  </li>
<li>Quick look
<pre>
<pre>
ggboxplot(df, "dose", "len",
# Only 1 variable
          fill = "dose", palette = c("#00AFBB", "#E7B800", "#FC4E07"), add.params=list(size=0.1),
ggplot(data.frame(Wi), aes(y = Wi)) +
          notch=T, add = "jitter", outlier.shape = NA, shape=16,
  geom_boxplot()
          size = 1/.pt, x.text.angle = 30,
 
          ylab = "Silhouette Values", legend="right",
# Two variable, one of them is a factor
          ggtheme = theme_pubr(base_size = 8)) +
ggplot() + geom_jitter(mapping = aes(x, y))
    theme(plot.title = element_text(size=8,hjust = 0.5),
 
          text = element_text(size=8),
# Box plot
          title = element_text(size=8),
ggplot() + geom_boxplot(mapping = aes(x, y))
          rect = element_rect(size = 0.75/.pt),
</pre>
          line = element_line(size = 0.75/.pt),
</li>
          axis.text.x = element_text(size = 7),
<li>[https://ggplot2.tidyverse.org/reference/geom_jitter.html geom_jitter()]. '''geom_jitter() can affect both X and Y values; geom_jitter() adds small random noise in both x and y by default'''.  
          axis.line = element_line(colour = 'black', size = 0.75/.pt),
<pre>
          legend.title = element_blank(),
tibble(x=1:4, y=1:4) %>% ggplot(aes(x, y)) + geom_jitter()
          legend.position = c(0,1),
</pre>
          legend.justification = c(0,1),
</li>
          legend.key.size = unit(4,"mm"))
<li>https://stackoverflow.com/a/17560113  </li>
<li>[https://stackoverflow.com/a/48822620 How to make scatterplot with geom_jitter plot reproducible?]
<pre>
set.seed(1); data %>%
  ggplot() +
  geom_jitter(aes(T.categ, sex, colour = status))
</pre>
</pre>
</ul>
</li>
<li>[https://r-charts.com/distribution/box-plot-jitter-ggplot2/ Boxplot with jittered data points in ggplot2]  </li>
<syntaxhighlight lang='r'>
# df2 is n x 2
ggplot(df, aes(x=nboot, y=boot)) +
  geom_boxplot(outlier.shape=NA) + #avoid plotting outliers twice
  geom_jitter(aes(color=nboot), position=position_jitter(width=.2, height=0, seed=1)) +
  # scale_color_manual(values = c('100' = "red", '500' = "green4")) +
  labs(title="", y = "", x = "nboot", colour = "nboot")
</syntaxhighlight>
If we omit the <span style="color: red">outlier.shape=NA</span> option in '''geom_boxplot()''', we will get the following plot where some outliers will appear twice. (Another option is '''outlier.color = NA'''; see [https://stackoverflow.com/a/63785060 extra point at boxplot with jittered points (ggplot2)]).


=== p-values on top of boxplots ===
[[File:Jitterboxplot.png|300px]]
</li>
<li>Make the boxplot on top of jittered points (when the number of points is large) - call geom_jitter() before geom_boxplot()
<syntaxhighlight lang='r'>
data %>%
  ggplot(aes(x = A, y = B, fill = F)) +
  geom_jitter(aes(color = F),
              position = position_jitterdodge(jitter.width = 0.2, seed = 123),
              alpha = 0.3) +
  geom_boxplot(outlier.shape = NA)
</syntaxhighlight>
 
[[File:Groupjitterboxplot.png|300px]]
</li>
<li>
Change colors
<syntaxhighlight lang='r'>
set.seed(123)
data <- data.frame(
  Group = rep(c("A", "B", "C"), each = 20),
  Value = c(rnorm(20, mean = 5), rnorm(20, mean = 7), rnorm(20, mean = 6))
)
 
ggplot(data, aes(x=Group, y=Value)) +
  geom_boxplot(outlier.shape=NA) + #avoid plotting outliers twice
  geom_jitter(aes(color=Group), position=position_jitter(width=.2, height=0, seed=1)) +
  scale_color_manual(values = c("red", "blue", "green")) +
    # c("#F8767D", "#00BFC4")  (salmon, iris blue)
    # c("#F8766D", "#00BA38", "#619CFF") (Salmon, Dark Pastel Green, Cornflower Blue)
    # c("#F8766D", "#7CAE00", "#00BFC4", "#C77CFF") (Salmon, Christi, Iris Blue, Heliotrope)
  labs(title="", y = "", x = "Group")
</syntaxhighlight>
</li>
<li>Base plot approach
[http://jtleek.com/genstats/inst/doc/02_13_batch-effects.html Batch effects and confounders]
</li>
</ul>
 
=== Groups of boxplots ===
<ul>
<ul>
<li>[https://www.r-bloggers.com/2017/06/add-p-values-and-significance-levels-to-ggplots/ Add P-values and Significance Levels to ggplots]
<li>[https://datavizpyr.com/how-to-make-grouped-boxplot-with-jittered-data-points-in-ggplot2/ How to Make Grouped Boxplot with Jittered Data Points in ggplot2]. Use the '''color''' parameter in ggplot(aes()).  
* ggpubr::stat_compare_means()
<li>[https://www.bioinfo-scrounger.com/archives/jittered_boxplot/ Boxplot With Jittered Points in R]
:<syntaxhighlight lang='rsplus'>
<li>[http://cmdlinetips.com/2019/02/how-to-make-grouped-boxplots-with-ggplot2/ How To Make Grouped Boxplots with ggplot2?], [https://rpubs.com/alecri/review_longitudinal A review of Longitudinal Data Analysis in R]. Use the '''fill''' parameter such as
library(ggpubr)
<pre>
my_comparisons <- list( c("6", "8"), c("4", "6"), c("4", "8") )
mydata %>%
ggboxplot(mtcars, x = "cyl", y = "mpg",
  ggplot(aes(x=Factor1, y=Response, fill=factor(Factor2))) +  
          color = "cyl", add = "jitter", palette = "jco") +
  geom_boxplot()  
    stat_compare_means(comparisons = my_comparisons)+ # method="t.test", default is "wilcox.test"
</pre>
    stat_compare_means(label.y = 45) # y-axis loc of overall p-value
<li>Another method is to use [https://rpkgs.datanovia.com/ggpubr/reference/ggboxplot.html ggpubr::ggboxplot()]. Papers [https://github.com/guosheng437/TumorPurity/tree/main/Fig1/Fig1A TumorPurity].
</syntaxhighlight>
<pre>
<li>[https://www.datanovia.com/en/blog/how-to-perform-multiple-paired-t-tests-in-r/ How to Perform Multiple Paired T-tests in R]
ggboxplot(df, "dose", "len",
* ggpubr::stat_pvalue_manual()
          fill = "dose", palette = c("#00AFBB", "#E7B800", "#FC4E07"), add.params=list(size=0.1),
<li>[https://datasciencetut.com/add-significance-level-and-stars-to-plot-in-r/ Add Significance Level and Stars to Plot in R]
          notch=T, add = "jitter", outlier.shape = NA, shape=16,
* ggsignif::geom_signif()
          size = 1/.pt, x.text.angle = 30,
:<syntaxhighlight lang='rsplus'>
          ylab = "Silhouette Values", legend="right",
library(ggsignif)
          ggtheme = theme_pubr(base_size = 8)) +
ggplot(mtcars, aes(factor(cyl), mpg)) +
     theme(plot.title = element_text(size=8,hjust = 0.5),  
  geom_boxplot() +
          text = element_text(size=8),  
  geom_signif(
          title = element_text(size=8),
    comparisons = list(
          rect = element_rect(size = 0.75/.pt),
      c("6","8"),
          line = element_line(size = 0.75/.pt),
      c("4","6"), c("4","8")
          axis.text.x = element_text(size = 7),
     ),
          axis.line = element_line(colour = 'black', size = 0.75/.pt),
    map_signif_level=TRUE,  
          legend.title = element_blank(),
    y_position = c(34, 35, 36)
          legend.position = c(0,1),
  )
          legend.justification = c(0,1),
</syntaxhighlight>
          legend.key.size = unit(4,"mm"))
<li>[https://stackoverflow.com/a/29263992 How to draw the boxplot with significant level?]
</pre>
* ggsignif package or geom_line() function.
<li>Paper examples
* [https://www.future-science.com/doi/10.2144/btn-2018-0179 Fig 5A,B]
* [https://ovarianresearch.biomedcentral.com/articles/10.1186/s13048-023-01129-x/figures/2 Fig 2B]
<li>Manually do it - [https://cran.r-project.org/web/packages/signibox/index.html signibox] package (small).
</ul>
</ul>


== Violin plot and sina plot ==
=== p-values on top of boxplots ===
<ul>
<ul>
<li>https://en.wikipedia.org/wiki/Violin_plot. It is similar to a box plot, with the addition of a rotated kernel '''density plot''' on each side.
<li>[https://www.r-bloggers.com/2017/06/add-p-values-and-significance-levels-to-ggplots/ Add P-values and Significance Levels to ggplots]
<li>[https://ggplot2.tidyverse.org/reference/geom_violin.html geom_violin()]
* ggpubr::stat_compare_means()
<li>[https://r-charts.com/distribution/violin-plot-mean-ggplot2/ Violin plot with mean/median in ggplot2], [https://ggplot2.tidyverse.org/reference/stat_summary.html stat_summary()]
:<syntaxhighlight lang='rsplus'>
<li>[https://ggforce.data-imaginist.com/reference/geom_sina.html sina plot] from the [https://cran.r-project.org/web/packages/ggforce/index.html ggforce] package.
library(ggpubr)
<syntaxhighlight lang='rsplus'>
my_comparisons <- list( c("6", "8"), c("4", "6"), c("4", "8") )
library(ggplot2)
ggboxplot(mtcars, x = "cyl", y = "mpg",
ggplot(midwest, aes(state, area)) + geom_violin() + ggforce::geom_sina()
          color = "cyl", add = "jitter", palette = "jco") +  
    stat_compare_means(comparisons = my_comparisons)+ # method="t.test", default is "wilcox.test"
    stat_compare_means(label.y = 45) # y-axis loc of overall p-value
</syntaxhighlight>
</syntaxhighlight>
 
<li>[https://www.datanovia.com/en/blog/how-to-perform-multiple-paired-t-tests-in-r/ How to Perform Multiple Paired T-tests in R]
[[File:Violinplot.png|250px]]
* ggpubr::stat_pvalue_manual()
<li>[https://bmcimmunol.biomedcentral.com/articles/10.1186/s12865-018-0285-5/figures/6 An example]
<li>[https://datasciencetut.com/add-significance-level-and-stars-to-plot-in-r/ Add Significance Level and Stars to Plot in R]
* ggsignif::geom_signif()
:<syntaxhighlight lang='rsplus'>
library(ggsignif)
ggplot(mtcars, aes(factor(cyl), mpg)) +
  geom_boxplot() +
  geom_signif(
    comparisons = list(
      c("6","8"),
      c("4","6"), c("4","8")
    ),
    map_signif_level=TRUE,
    y_position = c(34, 35, 36)
  )
</syntaxhighlight>
<li>[https://stackoverflow.com/a/29263992 How to draw the boxplot with significant level?]  
* ggsignif package or geom_line() function.
<li>Paper examples
* [https://www.future-science.com/doi/10.2144/btn-2018-0179 Fig 5A,B]
* [https://ovarianresearch.biomedcentral.com/articles/10.1186/s13048-023-01129-x/figures/2 Fig 2B]
<li>Manually do it - [https://cran.r-project.org/web/packages/signibox/index.html signibox] package (small).
</ul>
</ul>


== geom_density: Kernel density plot ==
== Violin plot and sina plot ==
<ul>
<ul>
<li>https://ggplot2.tidyverse.org/reference/geom_density.html
<li>https://en.wikipedia.org/wiki/Violin_plot. It is similar to a box plot, with the addition of a rotated kernel '''density plot''' on each side.
<pre>
<li>[https://ggplot2.tidyverse.org/reference/geom_violin.html geom_violin()]
<li>[https://r-charts.com/distribution/violin-plot-mean-ggplot2/ Violin plot with mean/median in ggplot2], [https://ggplot2.tidyverse.org/reference/stat_summary.html stat_summary()]
<li>[https://ggforce.data-imaginist.com/reference/geom_sina.html sina plot] from the [https://cran.r-project.org/web/packages/ggforce/index.html ggforce] package.
<syntaxhighlight lang='rsplus'>
library(ggplot2)
ggplot(midwest, aes(state, area)) + geom_violin() + ggforce::geom_sina()
</syntaxhighlight>
 
[[File:Violinplot.png|250px]]
<li>[https://bmcimmunol.biomedcentral.com/articles/10.1186/s12865-018-0285-5/figures/6 An example]
</ul>
 
== geom_density: Kernel density plot ==
<ul>
<li>https://ggplot2.tidyverse.org/reference/geom_density.html
<pre>
ggplot(iris, aes(x = Sepal.Length, fill = Species, col = Species)) +
ggplot(iris, aes(x = Sepal.Length, fill = Species, col = Species)) +
       geom_density(alpha = 0.4)
       geom_density(alpha = 0.4)
Line 1,104: Line 1,436:
</pre>
</pre>
</ul>
</ul>
== Bivariate analysis with ggpair ==
[https://www.guru99.com/r-pearson-spearman-correlation.html Correlation in R: Pearson & Spearman with Matrix Example ]


== GGally::ggpairs ==
== GGally::ggpairs ==
Line 1,117: Line 1,446:
* [https://www.blopig.com/blog/2019/06/a-brief-introduction-to-ggpairs/ A Brief Introduction to ggpairs]
* [https://www.blopig.com/blog/2019/06/a-brief-introduction-to-ggpairs/ A Brief Introduction to ggpairs]
* [https://stackoverflow.com/a/42656454 How to show only the lower triangle in ggpairs?]
* [https://stackoverflow.com/a/42656454 How to show only the lower triangle in ggpairs?]
* [https://www.guru99.com/r-pearson-spearman-correlation.html Correlation in R: Pearson & Spearman with Matrix Example]. The use of the '''alpha''' parameter is helpful if the number of points is large.
<pre>
ggpairs(data, columns = c("log_totexp", "log_income", "age", "wtrans"),
  title = "Bivariate analysis of revenue expenditure by the British household",
  upper = list(continuous = wrap("cor", size = 3)),
  lower = list(continuous = wrap("smooth",
        alpha = 0.3, size = 0.1)),
        mapping = aes(color = children_fac))
</pre>


== barplot/bar plot ==
== barplot/bar plot ==
Line 1,123: Line 1,461:
* [http://www.sthda.com/english/wiki/ggplot2-barplots-quick-start-guide-r-software-and-data-visualization ggplot2 barplots : Quick start guide - R software and data visualization]
* [http://www.sthda.com/english/wiki/ggplot2-barplots-quick-start-guide-r-software-and-data-visualization ggplot2 barplots : Quick start guide - R software and data visualization]


=== Ordered barplot and facet ===
=== ggplot2 geom_col()/geom_bar() vs base R barplot() ===
* [https://www.r-graph-gallery.com/267-reorder-a-variable-in-ggplot2.html Reorder a variable with ggplot2]
 
* [https://bugs.r-project.org/show_bug.cgi?id=18243 ‘reorder()’ gets an argument ‘decreasing’ which it passes to ‘sort()for level creation]. 2021-11-23
* '''geom_col()''': This function is more closely aligned with '''barplot()''' in base R, as '''barplot()''' also directly uses the values provided to it for the heights of the bars.
* [https://datavizpyr.com/re-ordering-bars-in-barplot-in-r/#How_To_Sort_Bars_in_Barplot_with_reorder_function_in_base_R How to Reorder bars in barplot with ggplot2 in R]. '''fct_reorder()''' and '''reorder()'''.
* '''geom_bar()''': This function is more for ''' ''counting occurrences'' ''' and creating histograms, similar to using table() with barplot().
 
<ul>
<ul>
<li>[https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/reorder.default ?reorder]. This, as '''relevel()''', is a special case of simply calling factor(x, levels = levels(x)[....]).
<li>Example with Counts from a Categorical Variable
<syntaxhighlight lang='rsplus'>
<pre>
R> bymedian <- with(InsectSprays, reorder(spray, count, median))
# Sample data
# bymedian will replace spray (a factor)  
category <- c("A", "B", "A", "C", "B", "A")
# The data is not changed except the order of levels (a factor)  
 
# In this case, the order is determined by the median of count from each spray level
# base R
#   from small to large.
# Create a table of counts
counts <- table(category)
barplot(counts,
        main = "Bar Plot of Counts",
        xlab = "Category",
        ylab = "Count",
        col = c("red", "blue", "green"))
 
# ggplot2
df <- as.data.frame(table(category))  
colnames(df) <- c("category", "count"); df
#  category count
# 1        A    3
# 2        B    2
# 3        C    1
ggplot(df, aes(x = category, y = count, fill = category)) +
  geom_col() +
  scale_fill_manual(values = c("red", "blue", "green"))
ggplot(df, aes(x = category, y = count, fill = category)) +
  geom_bar(stat = "identity") +
   scale_fill_manual(values = c("red", "blue", "green"))


R> InsectSprays[1:3, ]
df2 <- data.frame(
  category = c("A", "B", "A", "C", "B", "A")
)
 
# Creating the bar plot
ggplot(df2, aes(x = category)) +
  geom_bar() +
  labs(title = "Bar Plot Using geom_bar()",
      x = "Category",
      y = "Count") +
  theme_minimal()
 
</pre>
 
<li>Example with Precomputed Values and different colors for each bar
<pre>
# Sample data frame with precomputed values
df2 <- data.frame(
  category = c("A", "B", "C"),
  count = c(3, 2, 1)
)
 
# ggplot2
ggplot(df2, aes(x = category, y = count, fill = category)) +
  geom_bar(stat = "identity") +
  scale_fill_manual(values = c("red", "blue", "green"))
# OR
ggplot(df2, aes(x = category, y = count, fill = category)) +
  geom_col() +
  scale_fill_manual(values = c("red", "blue", "green"))
 
# base R
colors <- c("red", "blue", "green")
barplot(count ~ category,
        data = df2,
        main = "Bar Plot with Different Colors",
        xlab = "Category",
        ylab = "Count",
        col = colors)
</pre>
</ul>
 
=== Ordered barplot and facet ===
<ul>
<li>Simple example
<pre>
df <- data.frame(trt = c("a", "b", "c"), outcome = c(2.3, 1.9, 3.2))
ggplot(df, aes(outcome, reorder(trt, outcome), fill = trt)) +
  geom_col() +
  scale_fill_brewer(palette = "Set2") +
  labs(x="Outcome", y="Treatment", title ="") +
  theme_minimal()
</pre>
<li>[https://www.r-graph-gallery.com/267-reorder-a-variable-in-ggplot2.html Reorder a variable with ggplot2]
<li>[https://bugs.r-project.org/show_bug.cgi?id=18243 ‘reorder()’ gets an argument ‘decreasing’ which it passes to ‘sort()’ for level creation]. 2021-11-23
<li>[https://datavizpyr.com/re-ordering-bars-in-barplot-in-r/#How_To_Sort_Bars_in_Barplot_with_reorder_function_in_base_R How to Reorder bars in barplot with ggplot2 in R]. '''fct_reorder()''' and '''reorder()'''.
<li>[https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/reorder.default ?reorder]. This, as '''relevel()''', is a special case of simply calling factor(x, levels = levels(x)[....]).
<syntaxhighlight lang='r'>
R> bymedian <- with(InsectSprays, reorder(spray, count, median))
# bymedian will replace spray (a factor)
# The data is not changed except the order of levels (a factor)
# In this case, the order is determined by the median of count from each spray level
#  from small to large.
 
R> InsectSprays[1:3, ]
   count spray
   count spray
1    10    A
1    10    A
Line 1,224: Line 1,647:
=== Rotate x-axis labels ===
=== Rotate x-axis labels ===
* [https://datavizpyr.com/rotate-x-axis-text-labels-in-ggplot2/ How To Rotate x-axis Text Labels in ggplot2?]
* [https://datavizpyr.com/rotate-x-axis-text-labels-in-ggplot2/ How To Rotate x-axis Text Labels in ggplot2?]
* [https://stackoverflow.com/a/7267364 What do hjust and vjust do when making a plot using ggplot?] 0 means left-justified 1 means right-justified.
* [https://stackoverflow.com/a/7267364 What do hjust and vjust do when making a plot using ggplot?]  
 
** 0 means left-justified 1 means right-justified.
** Left-justified means the starting point (left edge) of the text is placed at the specified x-coordinate. So text appeared on the right side of the point.
** Right-justified means the end point (right edge) of the text is placed at the specified x-coordinate. So text appeared on the left side of the point.
** Default hjust/vjust is 0.5
<pre>
<pre>
ggplot(mydf) + geom_col(aes(x = model, y=value, fill = method), position="dodge")+
ggplot(mydf) + geom_col(aes(x = model, y=value, fill = method), position="dodge")+
   theme(axis.text.x = element_text(angle = 45, hjust=1))
   theme(axis.text.x = element_text(angle = 45, hjust=1, size= 8))
</pre>
</pre>


Line 1,256: Line 1,682:
</pre>
</pre>
[[File:ggplotbarplot.png|250px]]
[[File:ggplotbarplot.png|250px]]
[https://stats.stackexchange.com/a/3843 Base R approach].


=== Barplot with color gradient ===
=== Barplot with color gradient ===
Line 1,278: Line 1,706:


== Polygon and map plot ==
== Polygon and map plot ==
https://ggplot2.tidyverse.org/reference/geom_polygon.html
* https://ggplot2.tidyverse.org/reference/geom_polygon.html
* Base R method. ?polygon.
[[File:Polygon.png|200px]]


== geom_step: Step function ==
== geom_step: Step function ==
Line 1,322: Line 1,752:


= Special plots =
= Special plots =
* [https://readmedium.com/5-extremely-useful-plots-for-data-scientists-that-you-never-knew-existed-5b92498a878f 5 Extremely Useful Plots For Data Scientists That You Never Knew Existed].
** Chord Diagram
** Sunburst Chart
** Hexbin Plot
** Sankey Diagram
** Stream Graph/ Theme River
== Dot plot & forest plot ==
== Dot plot & forest plot ==
* Wikipedia  
* Wikipedia  
Line 1,377: Line 1,814:
'''ggpubr:: ggdotchart()'''
'''ggpubr:: ggdotchart()'''
* [http://www.sthda.com/english/articles/24-ggpubr-publication-ready-plots/ Dot charts, Lollipop chart]
* [http://www.sthda.com/english/articles/24-ggpubr-publication-ready-plots/ Dot charts, Lollipop chart]
== Candlestick chart ==
[https://www.r-bloggers.com/2025/06/how-to-draw-a-candlestick-chart-in-r-both-ggplot2-and-plotly/ How to draw a candlestick chart in R? – Both ggplot2 and plotly]


== Correlation Analysis Different ==
== Correlation Analysis Different ==
Line 1,569: Line 2,009:


== patchwork ==
== patchwork ==
* [https://cran.r-project.org/web/packages/patchwork/index.html CRAN],
* [https://datavizpyr.com/combine-multiple-plots-using-patchwork-in-r/ How to Combine Multiple ggplot2 Plots? Use Patchwork]
* [https://datavizpyr.com/combine-multiple-plots-using-patchwork-in-r/ How to Combine Multiple ggplot2 Plots? Use Patchwork]
* [https://onezero.blog/combining-multiple-ggplot2-plots-for-scientific-publications/ Combining Multiple ggplot2 Plots for Scientific Publications]
* [https://medium.com/the-researchers-guide/combining-multiple-ggplot2-plots-for-scientific-publications-7dd9908ebe5c Combining Multiple ggplot2 Plots for Scientific Publications]


=== Common legend ===
=== Common legend ===
Line 1,584: Line 2,025:


# Method 1:
# Method 1:
p1 + p2 + theme(legend.position = "bottom") + plot_layout(guides = "collect")
p1 + p2 + plot_layout(guides = "collect") + theme(legend.position = "bottom")  
                                           # two legends on the RHS
                                           # one legend on the bottom
# Method 2:
# Method 2:
p1 + p2 + plot_layout(guides = "collect") # two legends on the RHS
p1 + p2 + plot_layout(guides = "collect") # one legend on the RHS
# Method 2:
# Method 2:
p1 + theme(legend.position="none") + p2  # legend (based on p2) is on the RHS
p1 + theme(legend.position="none") + p2  # legend (based on p2) is on the RHS
Line 1,687: Line 2,128:
== name-value pairs ==
== name-value pairs ==
See several examples (color, fill, size, ...) from [https://juliasilge.com/blog/texas-opioids/ opioid prescribing habits in texas].
See several examples (color, fill, size, ...) from [https://juliasilge.com/blog/texas-opioids/ opioid prescribing habits in texas].
= Footnote =
[https://www.r-bloggers.com/2024/08/add-footnote-to-ggplot2/ Add Footnote to ggplot2]


= Prevent sorting of x labels =
= Prevent sorting of x labels =
Line 1,709: Line 2,153:
p <- ggplot(df, aes(x, y)) + geom_point(aes(colour = z))
p <- ggplot(df, aes(x, y)) + geom_point(aes(colour = z))
p + labs(x = "X axis", y = "Y axis", colour = "Colour\nlegend")
p + labs(x = "X axis", y = "Y axis", colour = "Colour\nlegend")
      # Use color to represent the legend title
p <- ggplot(df) + geom_col(aes(x=x, y=y, fill=cat), position = "dodge")
p + labs(x = "X", y = "Y", fill = "Category")
      # Use fill to represent the legend title
</pre>
</pre>
</li>
</li>
Line 1,724: Line 2,173:
</li>
</li>
</ul>
</ul>
== Remove NA factor level from color legend ==
Use '''na.translate = F''' in scale_color_XXX(). See [https://stackoverflow.com/a/54877014 ggplot: remove NA factor level in legend]


== Layout: move the legend from right to top/bottom of the plot or inside the plot or hide it ==
== Layout: move the legend from right to top/bottom of the plot or inside the plot or hide it ==
Line 1,732: Line 2,184:
gg + theme(legend.position="none")
gg + theme(legend.position="none")


gg + theme(legend.position = c(0.87, 0.25))
gg + theme(legend.position = c(0.87, 0.25)) +
    guides(colour = guide_legend(nrow = 1))


# Customize the edge color and background color
# Customize the edge color and background color
Line 1,743: Line 2,196:
</pre>
</pre>


== Guide functions for finer control ==
== Guide functions for finer control (legend, axis, color scales) ==
https://ggplot2-book.org/scales.html#guide-functions The guide functions, guide_colourbar() and guide_legend(), offer additional control over the fine details of the legend.
<ul>
 
<li>https://ggplot2-book.org/scales.html#guide-functions The guide functions, guide_colourbar() and guide_legend(), offer additional control over the fine details of the legend.
[https://ggplot2.tidyverse.org/reference/guide_legend.html guide_legend()] allows the modification of legends for scales, including fill, color, and shape.
<li>[https://ggplot2.tidyverse.org/reference/guide_legend.html guide_legend()] allows the modification of legends for scales, including fill, color, and shape. This function can be used in scale_fill_manual(), scale_fill_continuous(), ... functions.
 
This function can be used in scale_fill_manual(), scale_fill_continuous(), ... functions.
 
<pre>
<pre>
scale_fill_manual(values=c("orange", "blue"),  
scale_fill_manual(values=c("orange", "blue"),  
Line 1,762: Line 2,212:
theme(legend.position = 'bottom')
theme(legend.position = 'bottom')
</pre>
</pre>
<li>[https://ggplot2.tidyverse.org/reference/guides.html guides()]
* Legend. For example, to remove the legend title:
<pre>
ggplot(mtcars, aes(x = mpg, y = disp, color = factor(cyl))) +
  geom_point() +
  guides(color = guide_legend(title = NULL))
</pre>
* Axis. For example, to change the angle of the x-axis labels:
<pre>
ggplot(mtcars, aes(x = mpg, y = disp)) +
  geom_point() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
  guides(x = guide_axis(angle = 45))
</pre>
* Color scales. For example, to change the number of color breaks:
<pre>
ggplot(mtcars, aes(x = mpg, y = disp, color = hp)) +
  geom_point() +
  guides(color = guide_colorbar(nbin = 10))
</pre>
</ul>


== Legend symbol background ==
== Legend symbol background ==
Line 1,899: Line 2,370:
== Add numbers to the plot ==
== Add numbers to the plot ==
[https://www.infoworld.com/article/3410295/how-to-write-your-own-ggplot2-functions-in-r.html An example]
[https://www.infoworld.com/article/3410295/how-to-write-your-own-ggplot2-functions-in-r.html An example]
== Simple example ==
Original [[File:Geom bar simple.png|200px]] 
fct_reorder() [[File:Geom bar reorder.png|200px]].


== Ordered barplot and reorder() ==
== Ordered barplot and reorder() ==
Line 1,911: Line 2,387:


= stat_smooth(), geom_smooth() =
= stat_smooth(), geom_smooth() =
The 95% confidence interval for the estimated mean of y at each x-value CI = ŷ(x) ± t(0.975, df)*SE(ŷ(x)) can be created by geom_smooth(method = lm, se = TRUE). SE(ŷ(x)) represents the standard error of the estimated mean at x.
[https://ggplot2.tidyverse.org/reference/geom_smooth.html ?geom_smooth, ?stat_smooth]
[https://ggplot2.tidyverse.org/reference/geom_smooth.html ?geom_smooth, ?stat_smooth]
<pre>
<pre>
Line 1,923: Line 2,401:
<pre>
<pre>
geom_smooth(method = 'loess', se = FALSE, span = 0.3)
geom_smooth(method = 'loess', se = FALSE, span = 0.3)
</pre>
[https://www.seanbock.com/post/2022-08-25-recreating-plot/ How to recreate plots produced by geom_smooth()] by using the geom_line() function. This is useful if we want a customized method that is unavailable in geom_smooth().
== Default color and aesthetics ==
* [https://stackoverflow.com/a/79122370 You can get the default aesthetics for a geom by inspecting the corresponding ggproto object]
<syntaxhighlight lang='r'>
> print(ggplot2::GeomSmooth$default_aes)
Aesthetic mapping:
* `colour`    -> "#3366FF"
* `fill`      -> "grey60"
* `linewidth` -> 1
* `linetype`  -> 1
* `weight`    -> 1
* `alpha`    -> 0.4
</syntaxhighlight>
* [https://stackoverflow.com/a/34726475 What is default color of smooth curve in ggplot2?]
<syntaxhighlight lang='r'>
g1 <- ggplot(mpg, aes(displ, hwy)) +
    geom_smooth()
unique(ggplot_build(g1)$data[[1]]$colour)
# `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
# [1] "#3366FF"
</syntaxhighlight>
== geom_ribbon ==
* Useful for adding confidence interval. [https://ggplot2.tidyverse.org/reference/geom_ribbon.html geom_ribbon()] Ribbons and area plots.
* [https://typethepipe.com/vizs-and-tips/ggplot-geom_ribbon-shadow-confidence-interval/ Shadowing your ggplot2 lines. Forecasting confidence interval in R use case]
* Example
<pre>
set.seed(123)
df <- data.frame(
  X = seq(0, 100, by = 5),  # Pathologist estimate
  Y = seq(0, 100, by = 5) + rnorm(21, 0, 5)  # XXX prediction
)
# Choice 1: Calculate the lower and upper bounds of the confidence interval
df$lower_bound <- 0.863 * df$X  # 13.7% below X
df$upper_bound <- 1.137 * df$X  # 13.7% above X
# Choice 2: Constant width for the confidence band
c <- 13.7
df$lower_bound <- df$X - c
df$upper_bound <- df$X + c
# Plotting
ggplot(df, aes(x = X, y = Y)) +
  geom_point() +
  geom_ribbon(aes(ymin = lower_bound, ymax = upper_bound), fill = "blue", alpha = 0.2) +
  geom_smooth(method = "lm", color = "red", se = FALSE) +
  labs(x = "Pathologist Estimate", y = "XXX Prediction") +
  theme_minimal()
</pre>
</pre>


Line 1,956: Line 2,485:
= geom_errorbar(): error bars =
= geom_errorbar(): error bars =
<ul>
<ul>
<li>[http://www.cookbook-r.com/Graphs/Plotting_means_and_error_bars_(ggplot2)/ Plotting means and error bars (ggplot2)] from Cookbook for R.
<li>[https://www.datanovia.com/en/lessons/ggplot-error-bars/ GGPlot Error Bars] using geom_errorbar() and geom_segment()
<li>[https://www.datanovia.com/en/lessons/ggplot-error-bars/ GGPlot Error Bars] using geom_errorbar() and geom_segment()
<br />
<br />
Line 1,963: Line 2,493:
* Can ggplot2 do this? https://www.nature.com/articles/nature25173/figures/1
* Can ggplot2 do this? https://www.nature.com/articles/nature25173/figures/1
* [https://stackoverflow.com/questions/14069629/plotting-confidence-intervals plotCI() from the plotrix package or geom_errorbar() from ggplot2 package]
* [https://stackoverflow.com/questions/14069629/plotting-confidence-intervals plotCI() from the plotrix package or geom_errorbar() from ggplot2 package]
* http://sape.inf.usi.ch/quick-reference/ggplot2/geom_errorbar
* [http://ggplot2.tidyverse.org/reference/geom_linerange.html Vertical error bars]
* [http://ggplot2.tidyverse.org/reference/geom_linerange.html Vertical error bars]
* [http://ggplot2.tidyverse.org/reference/geom_errorbarh.html Horizontal error bars]
* [http://ggplot2.tidyverse.org/reference/geom_errorbarh.html Horizontal error bars]
Line 1,989: Line 2,518:


[[File:Stklnpt.svg|350px]]
[[File:Stklnpt.svg|350px]]
* Forest plot example using geom_errorbarh()
[[File:Geomerrorbarh.png|350px]]


= geom_rect(), geom_bar() =
= geom_rect(), geom_bar() =
Line 2,031: Line 2,563:
= Annotation =
= Annotation =


== geom_hline(), geom_vline() ==
== Add a horizontal/vertical line ==
[https://ggplot2.tidyverse.org/reference/geom_abline.html geom_hline(), geom_vline()]
<pre>
<pre>
geom_hline(yintercept=1000)
geom_hline(yintercept=1000)
Line 2,051: Line 2,584:
Note that we may need to add '''show.legend = FALSE''' in geom_text_repel() to get rid of "a" character in the legend. See [https://stackoverflow.com/questions/18337653/remove-a-from-legend-when-using-aesthetics-and-geom-text Remove 'a' from legend when using aesthetics and geom_text]
Note that we may need to add '''show.legend = FALSE''' in geom_text_repel() to get rid of "a" character in the legend. See [https://stackoverflow.com/questions/18337653/remove-a-from-legend-when-using-aesthetics-and-geom-text Remove 'a' from legend when using aesthetics and geom_text]
</li>
</li>
</ul>
<li>Difference between geom_text_repel() and geom_label_repel()
* [https://r4ds.had.co.nz/graphics-for-communication.html#annotations Annotations] from the chapter ''Graphics for communication'' of ''R for Data Science'' by Grolemund & Hadley
* geom_text_repel(): Similar to geom_text(), it places text labels near data points.
* [http://www.sthda.com/english/wiki/ggplot2-texts-add-text-annotations-to-a-graph-in-r-software ggplot2 texts : Add text annotations to a graph in R software]. The functions [https://ggplot2.tidyverse.org/reference/geom_text.html geom_text()] and [https://ggplot2.tidyverse.org/reference/annotate.html annotate()] can be used to add a text annotation at a particular coordinate/position.
* geom_label_repel(): Similar to geom_label(), it places text labels inside a '''rounded rectangle'''.
<ul>
<li>[https://r4ds.had.co.nz/graphics-for-communication.html#annotations Annotations] from the chapter ''Graphics for communication'' of ''R for Data Science'' by Grolemund & Hadley
<li>[http://www.sthda.com/english/wiki/ggplot2-texts-add-text-annotations-to-a-graph-in-r-software ggplot2 texts : Add text annotations to a graph in R software]. The functions [https://ggplot2.tidyverse.org/reference/geom_text.html geom_text()] and [https://ggplot2.tidyverse.org/reference/annotate.html annotate()] can be used to add a text annotation at a particular coordinate/position.
 
<li>https://ggplot2-book.org/annotations.html
<li>https://ggplot2-book.org/annotations.html
<pre>
<pre>
Line 2,082: Line 2,617:
</li>
</li>
<li>[https://biocorecrg.github.io/CRG_RIntroduction/volcano-plots.html Volcano plots], [https://bioconductor.org/packages/release/bioc/vignettes/EnhancedVolcano/inst/doc/EnhancedVolcano.html EnhancedVolcano] package </li>
<li>[https://biocorecrg.github.io/CRG_RIntroduction/volcano-plots.html Volcano plots], [https://bioconductor.org/packages/release/bioc/vignettes/EnhancedVolcano/inst/doc/EnhancedVolcano.html EnhancedVolcano] package </li>
</ul>
 
<li>[https://samdsblog.netlify.app/post/visualizing-volcano-plots-in-r/ Visualization of Volcano Plots in R]
<li>AI
<pre>
library(ggplot2)
library(ggrepel)
 
set.seed(123)
data <- data.frame(
    gene = paste("Gene", 1:1000, sep = "_"),
    log2FoldChange = rnorm(1000),
    pvalue = runif(1000)
)
data$pvalue[1:20] <- runif(20, 0, .001)
data$padj <- p.adjust(data$pvalue, method = "BH") # Adjusted p-values
 
significant_genes <- subset(data, padj < 0.05 & abs(log2FoldChange) > 1)
 
ggplot(data, aes(x = log2FoldChange, y = -log10(padj))) +
    geom_point(aes(color = padj < 0.05 & abs(log2FoldChange) > 1), alpha = 0.5) +
    scale_color_manual(values = c("black", "red"), na.translate = F) +
    theme_minimal() +
    labs(title = "Volcano Plot", x = "Log2 Fold Change", y = "-Log10 Adjusted P-Value") +
    geom_label_repel(
        data = significant_genes,
        aes(label = gene),
        size=3,
        seed = 1,              # default is NA
        box.padding = 0.25,    # default
        point.padding = 1e-06,  # default
        max.overlaps = 10      # default
    )
</pre>
</ul>


== Text wrap ==
== Text wrap ==
Line 2,126: Line 2,694:
[https://ivelasq.rbind.io/blog/other-geoms/ Exploring other {ggplot2} geoms]
[https://ivelasq.rbind.io/blog/other-geoms/ Exploring other {ggplot2} geoms]


== geomtextpath ==
== geomtextpath: Create curved text ==
[https://github.com/AllanCameron/geomtextpath geomtextpath]- Create curved text in ggplot2
[https://github.com/AllanCameron/geomtextpath geomtextpath]- Create curved text in ggplot2


Line 2,132: Line 2,700:
* https://ggplot2-book.org/extensions.html#new-geoms
* https://ggplot2-book.org/extensions.html#new-geoms
* [https://youtu.be/ZMHJdW6a20I Building a new geom in ggplot2] (video)
* [https://youtu.be/ZMHJdW6a20I Building a new geom in ggplot2] (video)
* [https://www.r-bloggers.com/2025/11/an-introduction-to-writing-your-own-ggplot2-geoms/ An Introduction to Writing Your Own ggplot2 Geoms]


= Fonts, icons =
= Fonts, icons =
Line 2,197: Line 2,766:
   print(p)
   print(p)
}
}
dev.off()
dev.off()
</pre>
</pre>
 
 
= graphics::smoothScatter: scatter plots with lots of points =
= graphics::smoothScatter: scatter plots with lots of points =
* [https://www.rdocumentation.org/packages/graphics/versions/3.6.2/topics/smoothScatter ?smoothScatter]
* [https://www.rdocumentation.org/packages/graphics/versions/3.6.2/topics/smoothScatter ?smoothScatter]
* [https://r-charts.com/correlation/smooth-scatter-plot/ Smooth scatter plot in R]
* [https://r-charts.com/correlation/smooth-scatter-plot/ Smooth scatter plot in R]
* [https://www.inwt-statistics.com/read-blog/smoothscatter-with-ggplot2-513.html smoothScatter with ggplot2]
* [https://www.inwt-statistics.com/read-blog/smoothscatter-with-ggplot2-513.html smoothScatter with ggplot2]
* [https://htmlpreview.github.io/?https://github.com/wwylab/DeMixTallmaterials/blob/master/online_methods.html#Figure%203b%20and%203c An example] from DeMixT. As we can see, we can we the '''lines()''' or '''abline()''' to add lines.
* [https://htmlpreview.github.io/?https://github.com/wwylab/DeMixTallmaterials/blob/master/online_methods.html#Figure%203b%20and%203c An example] from DeMixT. As we can see, we can we the '''lines()''' or '''abline()''' to add lines.
 
 
= Other tips/FAQs =
= Other tips/FAQs =
[http://zevross.com/blog/2017/06/19/tips-and-tricks-for-working-with-images-and-figures-in-r-markdown-documents/ Tips and tricks for working with images and figures in R Markdown documents]
[http://zevross.com/blog/2017/06/19/tips-and-tricks-for-working-with-images-and-figures-in-r-markdown-documents/ Tips and tricks for working with images and figures in R Markdown documents]
 
 
== Ten Simple Rules for Better Figures ==
== Ten Simple Rules for Better Figures ==
[https://journals.plos.org/ploscompbiol/article?id=10.1371%2Fjournal.pcbi.1003833&s=09 Ten Simple Rules for Better Figures]
[https://journals.plos.org/ploscompbiol/article?id=10.1371%2Fjournal.pcbi.1003833&s=09 Ten Simple Rules for Better Figures]
 
 
== Recreating the Storytelling with Data look with ggplot ==
== Five ways to improve your chart axes ==
[https://albert-rapp.de/post/2022-03-29-recreating-the-swd-look/ Recreating the Storytelling with Data look with ggplot]
[https://www.r-bloggers.com/2024/09/five-ways-to-improve-your-chart-axes/ Five ways to improve your chart axes]
 
 
== ggplot2 does not appear to work when inside a function ==
== Beyond Bar and Line Graphs ==
https://stackoverflow.com/a/17126172. Use '''print()''' or '''ggsave()'''. When you use these functions interactively at the command line, the result is automatically printed, but in ''source()'' or inside your own functions you will need an explicit '''print()''' statement.
[https://journals.plos.org/plosbiology/article?id=10.1371%2Fjournal.pbio.1002128 Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm]
 
 
= BBC =
== Recreating the Storytelling with Data look with ggplot ==
* [https://github.com/bbc/bbplot bbplot] package from github, [https://youtu.be/t7434w464SU How to customize ggplot with bbplot]
[https://albert-rapp.de/post/2022-03-29-recreating-the-swd-look/ Recreating the Storytelling with Data look with ggplot]
* [https://bbc.github.io/rcookbook/ BBC Visual and Data Journalism cookbook for R graphics] from github
 
* [https://medium.com/bbc-visual-and-data-journalism/how-the-bbc-visual-and-data-journalism-team-works-with-graphics-in-r-ed0b35693535 How the BBC Visual and Data Journalism team works with graphics in R]
== flourish.studio ==
 
https://public.flourish.studio/visualisation/24778358/
== Add your brand to ggplot graph ==
 
[https://michaeltoth.me/you-need-to-start-branding-your-graphs-heres-how-with-ggplot.html You Need to Start Branding Your Graphs. Here's How, with ggplot!]
== ggplot2 does not appear to work when inside a function ==
 
https://stackoverflow.com/a/17126172. Use '''print()''' or '''ggsave()'''. When you use these functions interactively at the command line, the result is automatically printed, but in ''source()'' or inside your own functions you will need an explicit '''print()''' statement.
= Animation and gganimate =
 
* https://gganimate.com/
== ggplot2 layer explorer ==
* [https://guyabel.com/post/football-kits/ Animating Changes in Football Kits using R]: rvest, tidyverse, xml2, purrr & magick
[https://github.com/yjunechoe/ggplot2-layer-explorer ggplot2 layer explorer]
* [https://guyabel.com/post/animated-directional-chord-diagrams/ Animated Directional Chord Diagrams] tweenr & magick
 
* [http://smarterpoland.pl/index.php/2019/01/x-mas-trees-with-gganimate-ggplot-plotly-and-friends/ x-mas tRees with gganimate, ggplot, plotly and friends]
= BBC =
* [https://www.listendata.com/2019/05/create-animation-in-r-learn-with.html Create animation in R]: learn by examples (gganimate)
* [https://github.com/bbc/bbplot bbplot] package from github, [https://youtu.be/t7434w464SU How to customize ggplot with bbplot]
* [https://pilgrim.netlify.app/post/the-usms-epostal-over-the-last-20-years/ The USMS ePostal Over the Last 20+ Years] (gganimate and bar charts)
* [https://bbc.github.io/rcookbook/ BBC Visual and Data Journalism cookbook for R graphics] from github
* [https://youtu.be/HUgaP8iHfvw R tip: Animations in R] from IDG TECHtalk
* [https://medium.com/bbc-visual-and-data-journalism/how-the-bbc-visual-and-data-journalism-team-works-with-graphics-in-r-ed0b35693535 How the BBC Visual and Data Journalism team works with graphics in R]
 
== Add your brand to ggplot graph ==
[https://michaeltoth.me/you-need-to-start-branding-your-graphs-heres-how-with-ggplot.html You Need to Start Branding Your Graphs. Here's How, with ggplot!]
 
= Animation and gganimate =
<ul>
<li>https://gganimate.com/
<li>[https://guyabel.com/post/football-kits/ Animating Changes in Football Kits using R]: rvest, tidyverse, xml2, purrr & magick
<li>[https://guyabel.com/post/animated-directional-chord-diagrams/ Animated Directional Chord Diagrams] tweenr & magick
<li>[http://smarterpoland.pl/index.php/2019/01/x-mas-trees-with-gganimate-ggplot-plotly-and-friends/ x-mas tRees with gganimate, ggplot, plotly and friends]
<li>[https://www.listendata.com/2019/05/create-animation-in-r-learn-with.html Create animation in R]: learn by examples (gganimate)
<li>[https://pilgrim.netlify.app/post/the-usms-epostal-over-the-last-20-years/ The USMS ePostal Over the Last 20+ Years] (gganimate and bar charts)
<li>[https://youtu.be/HUgaP8iHfvw R tip: Animations in R] from IDG TECHtalk
<li>A moving super mario. See [https://goodekat.github.io/posts/2019-10-31.html gganimate (with a spooky twist)] </br>
[[File:Gganimation.gif|250px]]
</ul>


= ggstatsplot =
= ggstatsplot =
Line 2,249: Line 2,834:


= Python =
= Python =
[https://plotnine.readthedocs.io/en/stable/ plotnine]: A Grammar of Graphics for Python.
* [https://plotnine.readthedocs.io/en/stable/ plotnine]: A Grammar of Graphics for Python.
 
* plotnine is an implementation of a grammar of graphics in Python, it is based on ggplot2. The grammar allows users to compose plots by explicitly mapping data to the visual objects that make up the plot.
plotnine is an implementation of a grammar of graphics in Python, it is based on ggplot2. The grammar allows users to compose plots by explicitly mapping data to the visual objects that make up the plot.
* [https://leanpub.com/plotnine-guide The Hitchhiker’s Guide to Plotnine]
 
* [https://posit.co/blog/winner-of-the-2025-plotnine-plotting-contest/ Winner of the 2025 Plotnine Plotting Contest]
[https://leanpub.com/plotnine-guide The Hitchhiker’s Guide to Plotnine]

Latest revision as of 16:34, 25 January 2026

ggplot2

Books

The Grammar of Graphics

  • Data: Raw data that we'd like to visualize
  • Geometrics: shapes that we use to visualize data
  • Aesthetics: Properties of geometries (size, color, etc)
  • Scales: Mapping between geometries and aesthetics

Scatterplot aesthetics

geom_point(). The aesthetics is geom dependent.

  • x, y
  • shape
  • color
  • size. It is not always to put 'size' inside aes(). See an example at Legend layout.
  • alpha
library(ggplot2)
library(tidyverse)
set.seed(1)
x1 <- rbinom(100, 1, .5) - .5
x2 <- c(rnorm(50, 3, .8)*.1, rnorm(50, 8, .8)*.1)
x3 <- x1*x2*2
# x=1:100, y=x1, x2, x3
tibble(x=1:length(x1), T=x1, S=x2, I=x3) %>% 
  tidyr::pivot_longer(-x) %>% 
  ggplot(aes(x=x, y=value)) + 
  geom_point(aes(color=name))

# Cf
matplot(1:length(x1), cbind(x1, x2, x3), pch=16, 
        col=c('cornflowerblue', 'springgreen3', 'salmon'))

Online tutorials

Help

> library(ggplot2)
Need help? Try Stackoverflow: https://stackoverflow.com/tags/ggplot2

Gallery

ggplot2 4.0.0

Bioconductor and ggplot2 4.0.0: What’s Changing and How to Prepare

Some examples

Examples from 'R for Data Science' book - Aesthetic mappings

ggplot(data = mpg) + 
  geom_point(mapping = aes(x = displ, y = hwy))
  # the 'mapping' is the 1st argument for all geom_* functions, so we can safely skip it.
# template
ggplot(data = <DATA>) + 
  <GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))

# add another variable through color, size, alpha or shape
ggplot(data = mpg) + 
  geom_point(aes(x = displ, y = hwy, color = class))

ggplot(data = mpg) + 
  geom_point(aes(x = displ, y = hwy, size = class))

ggplot(data = mpg) + 
  geom_point(aes(x = displ, y = hwy, alpha = class))

ggplot(data = mpg) + 
  geom_point(aes(x = displ, y = hwy, shape = class))

ggplot(data = mpg) + 
  geom_point(aes(x = displ, y = hwy), color = "blue")

# add another variable through facets
ggplot(data = mpg) + 
  geom_point(aes(x = displ, y = hwy)) + 
  facet_wrap(~ class, nrow = 2)

# add another 2 variables through facets
ggplot(data = mpg) + 
  geom_point(aes(x = displ, y = hwy)) + 
  facet_grid(drv ~ cyl)

Examples from 'R for Data Science' book - Geometric objects, lines and smoothers

How to Add a Regression Line to a ggplot?

# Points
ggplot(data = mpg) + 
  geom_point(aes(x = displ, y = hwy)) # we can add color to aes()

# Line plot
ggplot() +
  geom_line(aes(x, y))  # we can add color to aes()

# Smoothed
# 'size' controls the line width
ggplot(data = mpg) + 
  geom_smooth(aes(x = displ, y = hwy), size=1) 

# Points + smoother, add transparency to points, remove se
# We add transparency if we need to make smoothed line stands out
#                    and points less significant
# We move aes to the '''mapping''' option in ggplot()
ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) + 
  geom_point(alpha=1/10) +
  geom_smooth(se=FALSE)    

# Colored points + smoother
ggplot(data = mpg, aes(x = displ, y = hwy)) + 
  geom_point(aes(color = class)) + 
  geom_smooth()

Examples from 'R for Data Science' book - Transformation, bar plot

# y axis = counts
# bar plot
ggplot(data = diamonds) + 
  geom_bar(aes(x = cut))
# Or
ggplot(data = diamonds) + 
  stat_count(aes(x = cut))

# y axis = proportion
ggplot(data = diamonds) + 
  geom_bar(aes(x = cut, y = ..prop.., group = 1))

# bar plot with 2 variables
ggplot(data = diamonds) + 
  geom_bar(aes(x = cut, fill = clarity))

facet_wrap and facet_grid to create a panel of plots

  • The statement facet_grid() can be defined without a data. For example
    mylayout <- list(ggplot2::facet_grid(cat_y ~ cat_x))
    mytheme <- c(mylayout, 
                 list(ggplot2::theme_bw(), ggplot2::ylim(NA, 1)))
    # we haven't defined cat_y, cat_x variables
    ggplot() + geom_line() + 
      mylayout 
    
  • Multiclass predictive modeling for #TidyTuesday NBER papers
  • changing the facet_wrap labels using labeller in ggplot2. The solution is to create a labeller function as a function of a variable x (or any other name as long as it's not the faceting variables' names) and then coerce to labeller with as_labeller.

lattice::xyplot

df <- data.frame(x = rnorm(100), y = rnorm(100), group = sample(c("A", "B"), 100, replace = TRUE))

# Use the xyplot() function to create the plot
# with each group represented by a different color
# result is 1 plot only
# no annotation
xyplot(y ~ x, data = df, groups = group)
df <- data.frame(x = rnorm(100), y = rnorm(100), 
                 group = sample(c("A", "B"), 100, replace = TRUE), 
                 time = sample(c("T1", "T2"), 100, replace = TRUE))

# 2 plots grouped by time
# two colors (defined by group) was used in each plot 
# no annotation
xyplot(y ~ x | time, groups = group, data = df)

For more complicated plot, we can use the panel parameter.

A step-by-step chart makeover

A step-by-step chart makeover

Color palette

Top color palettes

Display color palettes

  • Use barplot()
    pal <- c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00")
    # pal <- sample(colors(), 10) # randomly pick 10 colors 
    
    barplot(rep(1, length(pal)), col = pal, space = 0, 
            axes = FALSE, border = NA)
    par()$usr
    # [1] -0.20  5.20 -0.01  1.00
    
  • Improved barplot()
    plot_palette_horizontal <- function(pal, main = "Color Palette") {
      n <- length(pal)
      heights <- rep(1, n)
    
      bar_locs <- barplot(
        heights,
        horiz = TRUE,
        col = pal,
        border = NA,
        names.arg = rep("", n),
        main = main,
        axes = FALSE,
        xlab = "", ylab = "",
        space = 0  # <— removes the gaps between bars
      )
    
      text(
        x = 0.5,
        y = bar_locs,
        labels = pal,
        col = "white",
        cex = 0.8,
        font = 2,
        adj = 0
      )
    }
    pal <- c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00")
    pal |> plot_palette_horizontal()
    

  • Working with colours in R and the convenience function
    plot_palette <- function(palette) {
      # Example:
      #   plot_palette(c("tomato", "skyblue", "yellow2"))
      #
      #   library(paletteer); plot_palette(paletteer_d("MetBrewer::Tara"))
      #
      #   all_colours <- colorRampPalette(c("tomato", "skyblue", "yellow2"))(100)
      #   plot_palette(all_colours)
    
      g <- ggplot2::ggplot(
        data = data.frame(
          x = seq_len(length(palette)),
          y = "1",
          fill = palette
        ),
        mapping = ggplot2::aes(
          x = x, y = y, fill = fill
        )
      ) +
        ggplot2::geom_tile() +
        ggplot2::scale_fill_identity() + # ensures that the fill values are interpreted directly as color codes, without requiring a scale transformation.
        ggplot2::theme_void() # removes all axes, grid lines, and labels
      return(g)
    }
  • Use heatmap()
    pal <- c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00")
    pal <- matrix(pal, nr=2) # acknowledge a nice warning message
    #      [,1]      [,2]      [,3]     
    # [1,] "#E41A1C" "#4DAF4A" "#FF7F00"
    # [2,] "#377EB8" "#984EA3" "#E41A1C"
    pal_matrix <- matrix(seq_along(pal), nr=nrow(pal), nc=ncol(pal))
    heatmap(pal_matrix, col = pal, Rowv = NA, Colv = NA, scale = "none", 
             ylab = "", xlab = "", main = "", margins = c(5, 5))
    # 2 rows, 3 columns with labeling on two axes
    par()$usr
    # [1] 0 1 0 1
    

  • Use image()
    pal <- palette() # R 4.0 has a new default palette
                     # The old colors are highly saturated and vary enormousely
                     # in terms of luminance
    # [1] "black"   "#DF536B" "#61D04F" "#2297E6" "#28E2E5" "#CD0BBC" "#F5C710"
    # [8] "gray62"
    pal_matrix <- matrix(seq_along(pal), nr=1)
    image(pal_matrix, col = pal, axes = FALSE)
    # 8 rows, 1 column, but no labeling
    # Starting from bottom, left.
    
    par()$usr  # change with the data dim
    text(0, (par()$usr[4]-par()$usr[3])/8*c(0:7), 
         labels = pal)
    

  • Use scales::show_col()
    scales::show_col(palette())
    

colors()

In R, colors() is a function that returns a character vector of color names available in R.

To obtain the hexadecimal codes for all colors obtained by colors()

rgb_values <- col2rgb(colors())

# Convert the RGB values to hexadecimal codes
hex_codes <- apply(rgb_values, 2, 
                   function(x) rgb(x[1], x[2], x[3], 
                   maxColorValue = 255))

# View the first few hexadecimal codes
head(hex_codes)

palette()

rainbow

  • ?rainbow
  • An Shiny app below compares the effects of 's' and 'v' parameters. s (saturation) and v (value): These parameters control the color intensity and brightness, respectively. See also HSL and HSV from wikipedia.
    • Saturation (s): Determines how vivid or muted the colors are. A value of 1 (default) means fully saturated colors, while lower values reduce the intensity.
    • Value (v): Controls the brightness. A value of 1 (default) results in full brightness, while lower values make the colors darker.

Color blind

colorblindcheck: Check Color Palettes for Problems with Color Vision Deficiency

Color picker

https://github.com/daattali/colourpicker

> library(colourpicker)
> plotHelper(colours=5)

Listening on http://127.0.0.1:6023

Color names, Complementary/Inverted colors

colorspace package

cols4all

c4a_gui() # it will create a shiny interface (but R will not be used at the same time)

c4a_types() # understand abbreviation

c4a_series() # 16 series like brewer, hcl, tableau, viridis, etc

c4a_overview() # how many palettes per series x types

c4a_palettes(type = "div", series = "hcl") # What palettes are available

# Give me the colors
c4a("hcl.purple_green", 11)
c4a("brewer.accent", 2)    # the 1st one on the website

# Plot the colors
c4a_plot("hcl.purple_green", 11, include.na = TRUE)

*paletteer package

my_colors <- paletteer::paletteer_d("RColorBrewer::Dark2")
barplot(1:length(my_colors), col = my_colors)

paletteer_d("RColorBrewer::RdBu")
#67001FFF #B2182BFF #D6604DFF #F4A582FF #FDDBC7FF #F7F7F7FF 
#D1E5F0FF #92C5DEFF #4393C3FF #2166ACFF #053061FF 

paletteer_d("ggsci::uniform_startrek")
#CC0C00FF #5C88DAFF #84BD00FF #FFCD00FF #7C878EFF #00B5E2FF #00AF66FF 

ggplot(iris, aes(Sepal.Length, Sepal.Width, color = Species)) +
      geom_point() +
      scale_color_paletteer_d("ggsci::uniform_startrek")
# the next is the same as above
ggplot(iris, aes(Sepal.Length, Sepal.Width, color = Species)) +
     geom_point() +
     scale_color_manual(values = c("setosa" = "#CC0C00FF", 
                                   "versicolor" = "#5C88DAFF", 
                                   "virginica" = "#84BD00FF"))

The key that paletteer_d() can print color background characters is by the cli::make_ansi_style() function.

cli::make_ansi_style("#CC0C00FF", bg = TRUE)("hex = #CC0C00FF")
# <cli_ansi_string>
# [1] hex = #CC0C00FF

wesanderson

library(wesanderson)
names(wes_palettes)
# "Zissou1", "Moonrise1", "GrandBudapest1", "Royal1", etc.
palette_zissou1 <- wes_palette("Zissou1")
palette_zissou1  # a palette object. This will draw a palette.
as.vector(palette_zissou1)
# [1] "#3B9AB2" "#78B7C5" "#EBCC2A" "#E1AF00" "#F21A00"

ggsci

ggokabeito

ggokabeito: Colorblind-friendly, qualitative 'Okabe-Ito' Scales for ggplot2 and ggraph. It seems to only support up to 9 classes/colors. It will give an error message if we have too many classes; e.g. Error: Insufficient values in manual scale. 15 needed but only 9 provided.)

# Bad
ggplot(mpg, aes(hwy, color = class, fill = class)) +
     geom_density(alpha = .8)

# Bad (single color)
ggplot(mpg, aes(hwy, color = class, fill = class)) +
     geom_density(alpha = .8) +
     scale_fill_brewer(name = "Class") +
     scale_color_brewer(name = "Class")

# Bad
ggplot(mpg, aes(hwy, color = class, fill = class)) +
     geom_density(alpha = .8) +
     scale_fill_brewer(name = "Class", palette ="Set1") +
     scale_color_brewer(name = "Class", palette ="Set1")

# Nice
ggplot(mpg, aes(hwy, color = class, fill = class)) +
     geom_density(alpha = .8) +
     scale_fill_okabe_ito(name = "Class") +
     scale_color_okabe_ito(name = "Class")

Pride palette

Show Pride on Your Plots. gglgbtq package

qualpalr

unikn

Colour related aesthetics: colour, fill and alpha

https://ggplot2.tidyverse.org/reference/aes_colour_fill_alpha.html

Scatterplot with large number of points: alpha

smoothScatter with ggplot2

ggplot(aes(x, y)) +
    geom_point(alpha=.1) 

For base R, we can use the alpha parameter rgb(,,,alpha),

plot(x, y, col=rgb(0,0,0, alpha=.1))
polygon(df, col=adjustcolor(c("red", "blue"), alpha.f=.3))

Combine colors and shapes in legend

  • https://ggplot2-book.org/scales.html#scale-details In order for legends to be merged, they must have the same name.
    df <- data.frame(x = 1:3, y = 1:3, z = c("a", "b", "c"))
    ggplot(df, aes(x, y)) + geom_point(aes(shape = z, colour = z), size=4)
    
  • How to Work with Scales in a ggplot2 in R. This solution is better since it allows to change the legend title. Just make sure the title name we put in both scale_* functions are the same.
    ggplot(mtcars, aes(x=hp, y=mpg)) +
       geom_point(aes(shape=factor(cyl), colour=factor(cyl))) +
       scale_shape_discrete("Cylinders") + # change the legend title from 'factor(cyl)' to 'Cylinders'
       scale_colour_discrete("Cylinders")  # combine shape and colour in one legend; avoid another legend for colour
    
  • GGPLOT Point Shapes Best Tips
  • Simulated data
    df <- data.frame(x = rnorm(100), y = rnorm(100),
                     Treatment = rep(c("Before", "After"), each = 50),
                     Response = rep(c("Sensitive", "Resistant"), each = 50),
                     Subject = rep(1:50, times = 2))
    
    ggplot(df, aes(x = x, y = y, shape = Treatment, color = Response)) +
      geom_point() +
      geom_line(aes(group = Subject), alpha = 0.5) +  # Add lines connecting the same subject
      scale_shape_manual(values = c(16, 17)) +  # You can choose different shapes
      scale_color_manual(values = c("blue", "red")) +  # You can choose different colors
      theme_minimal() +
      labs(title = "Scatterplot with Different Shapes and Colors",
           x = "X-axis label",
           y = "Y-axis label",
           shape = "Treatment",
           color = "Response")
    

ggplot2::scale functions and scales packages

  • Scales control the mapping from data to aesthetics. They take your data and turn it into something that you can see, like size, colour, position or shape.
  • Scales also provide the tools that let you read the plot: the axes and legends.
  • scales 1.2.0

ggplot2::scale_* - axes/axis, legend

https://ggplot2-book.org/scales.html and reference of all scale_* functions. Modifies the scales of the axes, such as the x- and y-axes, color, size, etc.

Naming convention: scale_AestheticName_NameDataType where

  • AestheticName can be x, y, color, fill, size, shape, ...
  • NameDataType can be continuous, discrete, manual or gradient.
  • Table of common functions
scale_AestheticName_NameDataType
scale_x_continuous
scale_x_discrete
scale_x_log10
scale_color_continuous,
scale_color_gradient
scale_color_discrete
scale_color_brewer
scale_color_manual
scale_color_paletteer_d
scale_shape_discrete
scale_fill_brewer,
scale_fill_continuous,
scale_fill_discrete,
scale_fill_gradient
scale_fill_grey,
scale_fill_hue
scale_fill_manual,
scale_colour_viridis_d


Examples:

  • See Figure 12.1: Axis and legend components on the book ggplot2: Elegant Graphics for Data Analysis
    # Set x-axis label
    scale_x_discrete("Car type")   # or a shortcut xlab() or labs()
    scale_x_continuous("Displacement")
    
    # Set legend title
    scale_colour_discrete("Drive\ntrain")    # or a shortcut labs()
    
    # Change the default color
    scale_color_brewer()
    
    # Change the axis scale
    scale_x_sqrt()
    
    # Change breaks and their labels
    scale_x_continuous(breaks = c(2000, 4000), labels = c("2k", "4k"))
    
    # Relabel the breaks in a categorical scale
    scale_y_discrete(labels = c(a = "apple", b = "banana", c = "carrot"))
    
  • See an example at geom_linerange where we have to specify the limits parameter in order to make "8" < "16" < "20"; otherwise it is 16 < 20 < 8.
    Browse[2]> order(coordinates$chr)
    [1] 3 4 1 2
    Browse[2]> coordinates$chr 
    [1] "20" "8"  "16" "16"
    
  • Differences of scale_color_gradient() and scale_color_continuous()
    • scale_color_gradient() (more common than scale_color_continuous) is used to map a continuous variable to a color gradient. It takes two arguments: low and high, which specify the colors for the minimum and maximum values of the variable, respectively. The gradient is automatically generated between these two colors.
    ggplot(data = diamonds, aes(x = carat, y = price, color = depth)) +
      geom_point() +
      scale_color_gradient(low = "blue", high = "red")
    
    • scale_color_continuous() (useful if we want to specify the labels to display on legend) does not automatically generate the color scale. Instead, it requires the user to specify the values to which the colors should be mapped. The limits argument sets the minimum and maximum values for the variable, and the breaks argument specifies the values at which breaks occur.
    ggplot(data = diamonds, aes(x = carat, y = price, color = depth)) +
         geom_point() +
         scale_color_continuous(name = "Depth", 
                                limits = c(40, 80), 
                                breaks = c(40, 60, 80),
                                labels = c("Shallow", "Moderate", "Deep"), # display on legend
                                type = "gradient")
    

ylim and xlim in ggplot2 in axes

https://stackoverflow.com/questions/3606697/how-to-set-limits-for-axes-in-ggplot2-r-plots or the Zooming part of the cheatsheet

Use one of the following

  • + scale_x_continuous(limits = c(-5000, 5000))
  • + coord_cartesian(xlim = c(-5000, 5000))
  • + xlim(-5000, 5000)

Emulate ggplot2 default color palette

The above can be created by R >= 4.0.0 using the command scales::show_col(palette.colors(palette = "ggplot2")). We should ignore the 1st color (black). Also if n>=5, the colors do not match with the result of show_col(hue_pal()(5)) .

Answer 1 It is just equally spaced hues around the color wheel. Emulate ggplot2 default color palette

gg_color_hue <- function(n) {
  hues = seq(15, 375, length = n + 1)
  hcl(h = hues, l = 65, c = 100)[1:n]
}

n = 4
cols = gg_color_hue(n)

dev.new(width = 4, height = 4)
plot(1:n, pch = 16, cex = 2, col = cols)

Answer 2 (better, it shows the color values in HEX). It should be read from left to right and then top to down.

scales package

library(scales)
show_col(hue_pal()(4)) # ("#F8766D", "#7CAE00", "#00BFC4", "#C77CFF")
                       # (Salmon, Christi, Iris Blue, Heliotrope)
show_col(hue_pal()(3)) # ("#F8766D", "#00BA38", "#619CFF")
                       # (Salmon, Dark Pastel Green, Cornflower Blue)
show_col(hue_pal()(2)) # ("#F8767D", "#00BFC4") = (salmon, iris blue) 
           # see https://www.htmlcsscolor.com/ for color names

See also the last example in ggsurv() where the KM plots have 4 strata. The colors can be obtained by scales::hue_pal()(4) with hue_pal()'s default arguments.

R has a function called colorName() to convert a hex code to color name; see roloc package on CRAN.

How to change the default color palette in geom_XXX

  • Simple custom colour palettes with R ggplot graphs
  • Change the color palette for all plots
    • Create a Custom Theme
      # Define a custom theme with a specific color palette
      custom_theme <- theme_minimal() +
        scale_fill_manual(values = c("red", "blue", "green", "purple")) +
        scale_color_manual(values = c("red", "blue", "green", "purple"))
      
      # Set the custom theme as the default
      theme_set(custom_theme)
      
    • ggthemr package
    • rcartocolor package
  • Change the color palette for the current plot only:
    • Using scale_fill_manual() and scale_color_manual()
      library(ggplot2)
      
      data <- data.frame(
        category = c("A", "B", "C", "D"),
        value = c(3, 5, 2, 8)
      )
      
      ggplot(data, aes(x = category, y = value, fill = category)) +
        geom_bar(stat = "identity") +
        scale_fill_manual(values = c("red", "blue", "green", "purple")) +
        theme_minimal()
      
    • Using scale_fill_brewer() and scale_color_brewer()
      library(ggplot2)
      library(RColorBrewer)
      
      ggplot(data, aes(x = category, y = value, fill = category)) +
        geom_bar(stat = "identity") +
        scale_fill_brewer(palette = "Set3") +
        theme_minimal()
      
    • Using scale_fill_viridis() and scale_color_viridis()
      library(ggplot2)
      library(viridis)
      
      ggplot(data, aes(x = category, y = value, fill = category)) +
        geom_bar(stat = "identity") +
        scale_fill_viridis(discrete = TRUE) +
        theme_minimal()
      
    • Using scale_fill_hue() and scale_color_hue()
      ggplot(data, aes(x = category, y = value, fill = category)) +
        geom_bar(stat = "identity") +
        scale_fill_hue(h = c(0, 360), l = 65, c = 100) +
        theme_minimal()
      
  • How to change the color in geom_point or lines in ggplot
    ggplot() + 
      geom_point(data = data, aes(x = time, y = y, color = sample),size=4) +
      scale_color_manual(values = c("A" = "black", "B" = "red"))
    
    ggplot(data = data, aes(x = time, y = y, color = sample)) + 
      geom_point(size=4) + 
      geom_line(aes(group = sample)) + 
      scale_color_manual(values = c("A" = "black", "B" = "red"))
    
  • scale_color_identity() function. Use color values as-is (identity mapping).
  • scale_color_identity() by default does not show the color legend. To show the legend, try
    # Data with predefined colors and a grouping variable
    data <- data.frame(
      x = 1:3,
      y = c(5, 10, 15),
      color = c("#FF0000", "#00FF00", "#0000FF"), # Predefined colors
      group = c("Red Group", "Green Group", "Blue Group") # Labels for the legend
    )
    
    # Plot with scale_color_identity() and a legend
    ggplot(data, aes(x = x, y = y, color = color)) +
      geom_point(size = 5) +
      scale_color_identity(
        guide = "legend", # Enable legend
        breaks = data$color, # Provide the colors used in the data
        labels = data$group  # Provide the corresponding labels for the legend
      ) +
      labs(color = "Groups") + # Add legend title
      theme_minimal()
    
  • scale_color_identity() vs scale_color_manual() (or their fill counterparts)
    # Use scale_color_identity()
    data <- data.frame(
      x = 1:3,
      y = c(5, 10, 15),
      color = c("#FF0000", "#00FF00", "#0000FF") # Predefined colors
    )
    
    ggplot(data, aes(x = x, y = y, color = color)) +
      geom_point(size = 5) +
      scale_color_identity() +
      ggtitle("scale_color_identity()")
    
    # Use scale_color_manual()
    data <- data.frame(
      x = 1:3,
      y = c(5, 10, 15),
      group = c("Group1", "Group2", "Group3") # Categories
    )
    
    ggplot(data, aes(x = x, y = y, color = group)) +
      geom_point(size = 5) +
      scale_color_manual(
        values = c("Group1" = "red", "Group2" = "green", "Group3" = "blue")
      ) +
      ggtitle("scale_color_manual()")
    

transform scales

How to make that crazy Fox News y axis chart with ggplot2 and scales

Class variables

  • "Set1" is a good choice. See RColorBrewer::display.brewer.all()
  • For ordinal variable, brewer.pal(n, "Spectral") is good. But the middle color is too light. So I modify the middle color
    brewer.pal(5, "Spectral")
    cols[3] <- "#D4C683" # middle of "#FDAE61" and "#ABDDA4"
    

Red, Green, Blue alternatives

  • Red: "maroon"

Heatmap for single channel

How to Make a Heatmap of Customers in R, source code on github. geom_tile() and geom_text() were used. Heatmap in ggplot2 from https://r-charts.com/.

https://scales.r-lib.org/

# White <----> Blue
RColorBrewer::display.brewer.pal(n = 8, name = "Blues")

Heatmap for dual channels

http://www.sthda.com/english/wiki/colors-in-r

library(RColorBrewer)
# Red <----> Blue
display.brewer.pal(n = 8, name = 'RdBu')
# Hexadecimal color specification 
brewer.pal(n = 8, name = "RdBu")

plot(1:8, col=brewer_pal(palette = "RdBu")(8), pch=20, cex=4)

# Blue <----> Red
plot(1:8, col=rev(brewer_pal(palette = "RdBu")(8)), pch=20, cex=4)

Don't rely on color to explain the data

ggpattern

Accessibility

Create your own scale_fill_FOO and scale_color_FOO

Custom colour palettes for {ggplot2}

Themes and background for ggplot2

Background

  • Export plot in .png with transparent background in base R plot.
    x = c(1, 2, 3)
    op <- par(bg=NA)
    plot (x)
    
    dev.copy(png,'myplot.png')
    dev.off()
    par(op)
    
  • Transparent background with ggplot2
    library(ggplot2)
    data("airquality")
    
    p <- ggplot(airquality, aes(Solar.R, Temp)) +
         geom_point() +
         geom_smooth() +
         # set transparency
         theme(
            panel.grid.major = element_blank(), 
            panel.grid.minor = element_blank(),
            panel.background = element_rect(fill = "transparent",colour = NA),
            plot.background = element_rect(fill = "transparent",colour = NA)
            )
    p
    ggsave("airquality.png", p, bg = "transparent")
    
  • ggplot2 theme background color and grids
    ggplot() + geom_bar(aes(x=, fill=y)) +
               theme(panel.background=element_rect(fill='purple')) + 
               theme(plot.background=element_blank())
    
    ggplot() + geom_bar(aes(x=, fill=y)) + 
               theme(panel.background=element_blank()) + 
               theme(plot.background=element_blank()) # minimal background like base R
               # the grid lines are not gone; they are white so it is the same as the background
    
    ggplot() + geom_bar(aes(x=, fill=y)) + 
               theme(panel.background=element_blank()) + 
               theme(plot.background=element_blank()) +
               theme(panel.grid.major.y = element_line(color="grey"))
               # draw grid line on y-axis only
    
    ggplot() + geom_bar() +
               theme_bw()  # very similar to theme_light()
                           # have grid lines
    ggplot() + geom_bar() +
               theme_classic() # similar to base R graphic
                           # no borders on top and right
     
    ggplot() + geom_bar() +
               theme_minimal() # no edge
    
    ggplot() + geom_bar() +
               theme_void() # no grid, no edge
    
    ggplot() + geom_bar() +
               theme_dark()
    

ggthmr

ggthmr package

Font size

  • https://ggplot2.tidyverse.org/reference/theme.html
  • Change Font Size of ggplot2 Plot in R (5 Examples) | Axis Text, Main Title & Legend
    Change Font Size of All Text Elements theme(text = element_text(size = 20))
    Change Font Size of Axis Text
    X-axis only
    theme(axis.text = element_text(size = 20))
    theme(axis.text.x = element_text(size = 20))
    Change Font Size of Axis Titles
    X-axis only
    theme(axis.title = element_text(size = 20))
    theme(axis.title.x = element_text(size = 20))
    Change Font Size of Main Title theme(plot.title = element_text(size = 20))
    Change Font Size of Legend Text
    Title
    theme(legend.text = element_text(size = 20))
    theme(legend.title = element_text(size = 20))
  • What is the default font for ggplot2 theme_get()$text and windowsFonts() / X11Fonts()
  • Fonts from Cookbook for R For example to make the subtitle font size smaller
    my_ggp + theme(plot.sybtitle = element_text(size = 8)) 
    # Default font size seems to be 11 for title/subtitle
    

Remove x and y axis titles

ggplot2 title : main, axis and legend titles

theme(
  plot.title = element_blank(),
  axis.title.x = element_blank(),
  axis.title.y = element_blank())

Rotate x-axis labels, alignment (hjust)

Counter-clockwise

theme(axis.text.x = element_text(angle = 90, size=5, hjust=1)) # default hjust=0.5

customize ggplot2 axis labels with different colors

Add axis on top or right hand side

Remove labels

Plotting with ggplot: : adding titles and axis names

ggthemes package

https://cran.r-project.org/web/packages/ggthemes/index.html

ggplot() + geom_bar() +
           theme_solarized()   # sun color in the background

theme_excel()
theme_wsj()
theme_economist()
theme_fivethirtyeight()

rsthemes

rsthemes

thematic

thematic, Top R tips and news from RStudio Global 2021

Common plots

Scatterplot

Handling overlapping points (slides) and the ebook Fundamentals of Data Visualization by Claus O. Wilke.

Scatterplot with histograms

aes(color)

groups

Bubble Chart

Ellipse

ggside: scatterplot + marginal density plot

ggextra: scatterplot + marginal histogram/density

https://github.com/daattali/ggExtra

Line plots

Ridgeline plots, mountain diagram

Histogram

Histograms is a special case of bar plots. Instead of drawing each unique individual values as a bar, a histogram groups close data points into bins.

ggplot(data = txhousing, aes(x = median)) +
  geom_histogram()  # adding 'origin =0' if we don't expect negative values.
                    # adding 'bins=10' to adjust the number of bins
                    # adding 'binwidth=10' to adjust the bin width

Histogram vs barplot from deeply trivial.

Multiple variables

Boxplot

Be careful that if we added scale_y_continuous(expand = c(0,0), limits = c(0,1)) to the code, it will change the boxplot if some data is outside the range of (0, 1). The console gives a warning message in this case.

Base R method

  • Box Plots - R Base Graphs
    # Use default color palette
    colors <- palette()[1:6] # "black"   "#DF536B" "#61D04F" "#2297E6" "#28E2E5" "#CD0BBC"
    
    # Boxplot with default colors
    boxplot(count ~ spray, data = InsectSprays, col = colors)
    
  • If we like to add jitters to the boxplot, we can use points() + jitter(); this this example. However, we need to hide outliers created by boxplot() by adding outline = FALSE
    boxplot(count ~ spray, data = InsectSprays, col = colors, outline = FALSE)
    # par("usr")[1:2] confirms the locations of x-axis are 1, 2, 3, ...
    set.seed(1)
    points(jitter(as.integer(InsectSprays$spray) ), InsectSprays$count, pch=16)
    
  • We can follow this to use the reorder() function to reorder the groups on the x-axis by their group mean/median.
  • If we like to rotate the boxplot by 90 degrees, we can add , horizontal = TRUE to boxplot() function.
    InsectSprays$newFac <- with(InsectSprays, reorder(spray, count, FUN=median))
    boxplot(count ~ newFac, data = InsectSprays, col = "lightgray", horizontal = TRUE, outline = FALSE)
    set.seed(1); points(InsectSprays$count, jitter(as.integer(InsectSprays$newFac) ),  pch=16)
    
  • Another base plot approach to create a jittered boxplot is to use boxplot() + stripchart(). See Stripchart in R, How to Create a Strip Chart in R. Consider to add outline = FALSE to boxplot() to avoid drawing outliers in boxplot() when stripchart() has been added.
    ylim <- range(df$estimate, na.rm = TRUE)
    boxplot(estimate~type, data=df, xlab=NULL, ylab=NULL, ylim=ylim, outline=F)
    set.seed(1)
    stripchart(estimate~type, data=df, method = "jitter",
    		pch=19, col=c("salmon", "orange", "yellowgreen", "green"),
    		vertical=TRUE, add=TRUE)

Color fill/scale_fill_XXX

n <- 100
k <- 12
set.seed(1234)
cond <- factor(rep(LETTERS[1:k], each=n))
rating <- rnorm(n*k)
dat <- data.frame(cond = cond, rating = rating)

p <- ggplot(dat, aes(x=cond, y=rating, fill=cond)) + 
     geom_boxplot() 

p + scale_fill_hue() + labs(title="hue default") # Same as only p 
p + scale_fill_hue(l=40, c=35) + labs(title="hue options")
p + scale_fill_brewer(palette="Dark2") + labs(title="Dark2")
p + colorspace::scale_fill_discrete_qualitative(palette = "Dark 3") + labs(title="Dark 3")
p + scale_fill_brewer(palette="Accent") + labs(title="Accent")
p + scale_fill_brewer(palette="Pastel1") + labs(title="Pastel1")
p + scale_fill_brewer(palette="Set1") + labs(title="Set1")
p + scale_fill_brewer(palette="Spectral") + labs(title ="Spectral") 
p + scale_fill_brewer(palette="Paired") + labs(title="Paired")
# cbbPalette <- c("#000000", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7")
# p + scale_fill_manual(values=cbbPalette)

ColorBrewer palettes RColorBrewer::display.brewer.all() to display all brewer palettes.

Reference from ggplot2. scale_fill_binned, scale_fill_brewer, scale_fill_continuous, scale_fill_date, scale_fill_datetime, scale_fill_discrete, scale_fill_distiller, scale_fill_gradient, scale_fill_gradientc, scale_fill_gradientn, scale_fill_grey, scale_fill_hue, scale_fill_identity, scale_fill_manual, scale_fill_ordinal, scale_fill_steps, scale_fill_steps2, scale_fill_stepsn, scale_fill_viridis_b, scale_fill_viridis_c, scale_fill_viridis_d

Jittering - plot the data on top of the boxplot

  • What is a boxplot
  • Quick look
    # Only 1 variable
    ggplot(data.frame(Wi), aes(y = Wi)) + 
      geom_boxplot()
    
    # Two variable, one of them is a factor
    ggplot() + geom_jitter(mapping = aes(x, y))
    
    # Box plot
    ggplot() + geom_boxplot(mapping = aes(x, y))
    
  • geom_jitter(). geom_jitter() can affect both X and Y values; geom_jitter() adds small random noise in both x and y by default.
    tibble(x=1:4, y=1:4) %>% ggplot(aes(x, y)) + geom_jitter()
    
  • https://stackoverflow.com/a/17560113
  • How to make scatterplot with geom_jitter plot reproducible?
    set.seed(1); data %>%
      ggplot() +
      geom_jitter(aes(T.categ, sex, colour = status))
    
  • Boxplot with jittered data points in ggplot2
  • # df2 is n x 2 
    ggplot(df, aes(x=nboot, y=boot)) +
      geom_boxplot(outlier.shape=NA) + #avoid plotting outliers twice
      geom_jitter(aes(color=nboot), position=position_jitter(width=.2, height=0, seed=1)) +
      # scale_color_manual(values = c('100' = "red", '500' = "green4")) +
      labs(title="", y = "", x = "nboot", colour = "nboot")

    If we omit the outlier.shape=NA option in geom_boxplot(), we will get the following plot where some outliers will appear twice. (Another option is outlier.color = NA; see extra point at boxplot with jittered points (ggplot2)).

  • Make the boxplot on top of jittered points (when the number of points is large) - call geom_jitter() before geom_boxplot()
    data %>% 
      ggplot(aes(x = A, y = B, fill = F)) + 
      geom_jitter(aes(color = F), 
                  position = position_jitterdodge(jitter.width = 0.2, seed = 123),
                  alpha = 0.3) + 
      geom_boxplot(outlier.shape = NA)

  • Change colors
    set.seed(123)
    data <- data.frame(
      Group = rep(c("A", "B", "C"), each = 20),
      Value = c(rnorm(20, mean = 5), rnorm(20, mean = 7), rnorm(20, mean = 6))
    )
    
    ggplot(data, aes(x=Group, y=Value)) +
      geom_boxplot(outlier.shape=NA) + #avoid plotting outliers twice
      geom_jitter(aes(color=Group), position=position_jitter(width=.2, height=0, seed=1)) +
      scale_color_manual(values = c("red", "blue", "green")) +
         # c("#F8767D", "#00BFC4")  (salmon, iris blue)
         # c("#F8766D", "#00BA38", "#619CFF") (Salmon, Dark Pastel Green, Cornflower Blue)
         # c("#F8766D", "#7CAE00", "#00BFC4", "#C77CFF") (Salmon, Christi, Iris Blue, Heliotrope)
      labs(title="", y = "", x = "Group")
  • Base plot approach Batch effects and confounders

Groups of boxplots

  • How to Make Grouped Boxplot with Jittered Data Points in ggplot2. Use the color parameter in ggplot(aes()).
  • Boxplot With Jittered Points in R
  • How To Make Grouped Boxplots with ggplot2?, A review of Longitudinal Data Analysis in R. Use the fill parameter such as
    mydata %>%
      ggplot(aes(x=Factor1, y=Response, fill=factor(Factor2))) +   
      geom_boxplot() 
    
  • Another method is to use ggpubr::ggboxplot(). Papers TumorPurity.
    ggboxplot(df, "dose", "len",
               fill = "dose", palette = c("#00AFBB", "#E7B800", "#FC4E07"), add.params=list(size=0.1),
               notch=T, add = "jitter", outlier.shape = NA, shape=16,
               size = 1/.pt, x.text.angle = 30, 
               ylab = "Silhouette Values", legend="right",
               ggtheme = theme_pubr(base_size = 8)) +
         theme(plot.title = element_text(size=8,hjust = 0.5), 
               text = element_text(size=8), 
               title = element_text(size=8),
               rect = element_rect(size = 0.75/.pt),
               line = element_line(size = 0.75/.pt),
               axis.text.x = element_text(size = 7),
               axis.line = element_line(colour = 'black', size = 0.75/.pt),
               legend.title = element_blank(),
               legend.position = c(0,1), 
               legend.justification = c(0,1),
               legend.key.size = unit(4,"mm"))
    

p-values on top of boxplots

Violin plot and sina plot

geom_density: Kernel density plot

A panel of density plots

  • Common xlim for all subplots
    ggplot(data = mpg, aes(x = hwy)) +
         geom_density() +
         facet_wrap(~ class)
    
  • Each subplot has its own xlim
    ggplot(data = mpg, aes(x = hwy)) +
         geom_density() +
         facet_wrap(~ class, scales = "free_x")
    

GGally::ggpairs

ggpairs(data, columns = c("log_totexp", "log_income", "age", "wtrans"), 
   title = "Bivariate analysis of revenue expenditure by the British household", 
   upper = list(continuous = wrap("cor", size = 3)),
   lower = list(continuous = wrap("smooth",
        alpha = 0.3, size = 0.1)),
        mapping = aes(color = children_fac))

barplot/bar plot

ggplot2 geom_col()/geom_bar() vs base R barplot()

  • geom_col(): This function is more closely aligned with barplot() in base R, as barplot() also directly uses the values provided to it for the heights of the bars.
  • geom_bar(): This function is more for counting occurrences and creating histograms, similar to using table() with barplot().
  • Example with Counts from a Categorical Variable
    # Sample data
    category <- c("A", "B", "A", "C", "B", "A")
    
    # base R
    # Create a table of counts
    counts <- table(category)
    barplot(counts,
            main = "Bar Plot of Counts",
            xlab = "Category",
            ylab = "Count",
            col = c("red", "blue", "green"))
    
    # ggplot2
    df <- as.data.frame(table(category)) 
    colnames(df) <- c("category", "count"); df
    #   category count
    # 1        A     3
    # 2        B     2
    # 3        C     1
    ggplot(df, aes(x = category, y = count, fill = category)) + 
      geom_col() + 
      scale_fill_manual(values = c("red", "blue", "green"))
    ggplot(df, aes(x = category, y = count, fill = category)) + 
      geom_bar(stat = "identity") + 
      scale_fill_manual(values = c("red", "blue", "green"))
    
    df2 <- data.frame(
      category = c("A", "B", "A", "C", "B", "A")
    )
    
    # Creating the bar plot
    ggplot(df2, aes(x = category)) +
      geom_bar() +
      labs(title = "Bar Plot Using geom_bar()",
           x = "Category",
           y = "Count") +
      theme_minimal()
    
    
  • Example with Precomputed Values and different colors for each bar
    # Sample data frame with precomputed values
    df2 <- data.frame(
      category = c("A", "B", "C"),
      count = c(3, 2, 1)
    )
    
    # ggplot2
    ggplot(df2, aes(x = category, y = count, fill = category)) + 
      geom_bar(stat = "identity") + 
      scale_fill_manual(values = c("red", "blue", "green"))
    # OR
    ggplot(df2, aes(x = category, y = count, fill = category)) + 
      geom_col() + 
      scale_fill_manual(values = c("red", "blue", "green"))
    
    # base R
    colors <- c("red", "blue", "green")
    barplot(count ~ category,
            data = df2, 
            main = "Bar Plot with Different Colors",
            xlab = "Category",
            ylab = "Count",
            col = colors)
    

Ordered barplot and facet

  • Simple example
    df <- data.frame(trt = c("a", "b", "c"), outcome = c(2.3, 1.9, 3.2))
    ggplot(df, aes(outcome, reorder(trt, outcome), fill = trt)) + 
      geom_col() + 
      scale_fill_brewer(palette = "Set2") +
      labs(x="Outcome", y="Treatment", title ="") + 
      theme_minimal()
    
  • Reorder a variable with ggplot2
  • ‘reorder()’ gets an argument ‘decreasing’ which it passes to ‘sort()’ for level creation. 2021-11-23
  • How to Reorder bars in barplot with ggplot2 in R. fct_reorder() and reorder().
  • ?reorder. This, as relevel(), is a special case of simply calling factor(x, levels = levels(x)[....]).
    R> bymedian <- with(InsectSprays, reorder(spray, count, median))
    # bymedian will replace spray (a factor) 
    # The data is not changed except the order of levels (a factor) 
    # In this case, the order is determined by the median of count from each spray level
    #   from small to large.
    
    R> InsectSprays[1:3, ]
      count spray
    1    10     A
    2     7     A
    3    20     A
    R> bymedian
     [1] A A A A A A A A A A A A B B B B B B B B B B B B C C C C C C C C C C C C D D D D D D D
    [44] D D D D D E E E E E E E E E E E E F F F F F F F F F F F F
    attr(,"scores")
       A    B    C    D    E    F 
    14.0 16.5  1.5  5.0  3.0 15.0 
    Levels: C E D A F B
    R> InsectSprays$spray
     [1] A A A A A A A A A A A A B B B B B B B B B B B B C C C C C C C C C C C C D D D D D D D
    [44] D D D D D E E E E E E E E E E E E F F F F F F F F F F F F
    Levels: A B C D E F
    R> boxplot(count ~ bymedian, data = InsectSprays,
             xlab = "Type of spray", ylab = "Insect count",
             main = "InsectSprays data", varwidth = TRUE,
             col = "lightgray")

    Scatterplot

    tibble(y=sample(6), x=letters[1:6]) %>% 
      ggplot(aes(reorder(x, -y), y)) + geom_point(size=4)
    
  • Sorting the x-axis in bargraphs using ggplot2 or this one from Deeply Trivial. reorder(fac, value) was used.
    ggplot(df, aes(x=reorder(x, -y), y=y)) + geom_bar(stat = 'identity')
    
    df$order <- 1:nrow(df)
    # Assume df$y is a continuous variable and df$fac is a character/factor variable
    #   and we want to show factor according to the way they appear in the data
    #   (not following R's order even the variable is of type "character" not "factor")
    # We like to plot df$fac on the y-axis and df$y on x-axis. Fortunately,
    #   ggplot2 will draw barplot vertically or horizontally depending the 2 variables' types
    # The reason of using "-order" is to make the 1st name appears on the top
    ggplot(df, aes(x=y, y=reorder(fac, -order))) + geom_col()
    
    ggplot(df, aes(x=reorder(x, desc(y)), y=y)), geom_col()
  • Predict #TidyTuesday giant pumpkin weights with workflowsets. fct_reorder()
  • Reordering and facetting for ggplot2. tidytext::reorder_within() was used.
  • Chapter2 of data.table cookbook. reorder(fac, value) was used.
  • PCA and UMAP with tidymodels
  • A simple example
    dat <- structure(list(gene = c("CAPN9", "CSF3R", "HPN", "KCNA5", "MTMR7", 
    "NRG3", "SMTNL2", "TMPRSS6"), coef = c(-1.238, -0.892, -0.224, 
    -0.057, 0.133, 0.377, 0.436, 0.804)), row.names = c("4976", "6467", 
    "12355", "13373", "18143", "19010", "23805", "25602"), class = "data.frame")
    
    # Base R plot
    par(mar=c(4,6,4,1))
    barplot(dat$coef, names = dat$gene, horiz = T, las=1,
            main='base R', xlab = "Coefficients")
    
    # GGplot2
    dat %>% ggplot(aes(y=gene, x=coef)) + geom_col(fill = 'gray') + 
        theme(axis.ticks.y = element_blank()) + 
        theme(panel.background = element_blank(), 
              axis.line.x = element_line(colour = 'black')) +
        labs(x="Coefficients", y = '', title = "ggplot2")
    

    ,

Proportion barplot

Back to back barplot

Pyramid Chart

ggcharts::pyramid_chart()

Flip x and y axes

coord_flip()

Rotate x-axis labels

ggplot(mydf) + geom_col(aes(x = model, y=value, fill = method), position="dodge")+
  theme(axis.text.x = element_text(angle = 45, hjust=1, size= 8))

Starts at zero

Starting bars and histograms at zero in ggplot2

scale_y_continuous(expand = c(0,0), limits = c(0, YourLimit))

Add patterns

Barplot with colors for a 2nd variable

How to basic: bar plots

By default, the barplots are stacked on top of each other. Use geom_col(position = "dodge") if we want the barplots to be side-by-side.

df <- data.frame(group = c("A", "A", "B", "B", "C", "C"), 
      count = c(3, 4, 5, 6, 7, 8), 
      fill = c("red", "blue", "red", "blue", "red", "blue"))
ggplot(df, aes(x = group, y = count, fill = fill)) + 
      geom_col(position = "dodge")

Base R approach.

Barplot with color gradient

Barplot with only horizontal gridlines

Barplot with text at the end

Polygon and map plot

geom_step: Step function

Connect observations: geom_path(), geom_step()

Example: KM curves (without legend)

library(survival)
sf <- survfit(Surv(time, status) ~ x, data = aml)
sf
str(sf) # the first 10 forms one strata and the rest 10 forms the other
ggplot() + 
  geom_step(aes(x=c(0, sf$time[1:10]), y=c(1, sf$surv[1:10])), 
            col='red') + 
  scale_x_continuous('Time', limits = c(0, 161)) + 
  scale_y_continuous('Survival probability', limits = c(0, 1)) +
  geom_step(aes(x=c(0, sf$time[11:20]), y=c(1, sf$surv[11:20])), 
            col='black') 
# cf:  plot(sf, col = c('red', 'black'), mark.time=FALSE)

Same example but with legend (see Construct a manual legend for a complicated plot)

cols <- c("NEW"="#f04546","STD"="#3591d1")
ggplot() + 
  geom_step(aes(x=c(0, sf$time[1:10]), y=c(1, sf$surv[1:10]), col='NEW')) +
  scale_x_continuous('Time', limits = c(0, 161)) + 
  scale_y_continuous('Survival probability', limits = c(0, 1)) +
  geom_step(aes(x=c(0, sf$time[11:20]), y=c(1, sf$surv[11:20]), col='STD')) + 
  scale_colour_manual(name="Treatment", values = cols)

To control the line width, use the size parameter; e.g. geom_step(aes(x, y), size=.5). The default size is .5 (where to find this info?).

To allow different line types, use the linetype parameter. The first level is solid line, the 2nd level is dashed, ... We can change the default line types by using the scale_linetype_manual() function. See Line Types in R: The Ultimate Guide for R Base Plot and GGPLOT.

Coefficients, intervals, errorbars

Comparing similarities / differences between groups

comparing similarities / differences between groups

Special plots

Dot plot & forest plot

Lollipop plot

geom_segment() + geom_point()

ggpubr:: ggdotchart()

Candlestick chart

How to draw a candlestick chart in R? – Both ggplot2 and plotly

Correlation Analysis Different

Bump plot: plot ranking over time

https://github.com/davidsjoberg/ggbump

Gauge plots

Sankey diagrams

Horizon chart

Circos plots

Aesthetics

  • We can create a new aesthetic name in aes(aesthetic = variable) function; for example, the "text2" below. In this case "text2" name will not be shown; only the original variable will be used.
    library(plotly)
    g <- ggplot(tail(iris), aes(Petal.Length, Sepal.Length, text2=Species)) + geom_point()
    ggplotly(g, tooltip = c("Petal.Length", "text2"))
    

Aesthetics finder

https://ggplot2tor.com/aesthetics/, video

aes_string()

group

https://ggplot2.tidyverse.org/reference/aes_group_order.html

GUI/Helper packages

ggedit & ggplotgui – interactive ggplot aesthetic and theme editor

esquisse (French, means 'sketch'): creating ggplot2 interactively

https://cran.rstudio.com/web/packages/esquisse/index.html

A 'shiny' gadget to create 'ggplot2' charts interactively with drag-and-drop to map your variables. You can quickly visualize your data accordingly to their type, export to 'PNG' or 'PowerPoint', and retrieve the code to reproduce the chart.

The interface introduces basic terms used in ggplot2:

  • x, y,
  • fill (useful for geom_bar, geom_rect, geom_boxplot, & geom_raster, not useful for scatterplot),
  • color (edges for geom_bar, geom_line, geom_point),
  • size,
  • facet, split up your data by one or more variables and plot the subsets of data together.

It does not include all features in ggplot2. At the bottom of the interface,

  • Labels & title & caption.
  • Plot options. Palette, theme, legend position.
  • Data. Remove subset of data.
  • Export & code. Copy/save the R code. Export file as PNG or PowerPoint.

ggcharts

https://cran.r-project.org/web/packages/ggcharts/index.html

ggeasy

ggx

https://github.com/brandmaier/ggx Create ggplot in natural language

Interactive

plotly

R web → plotly

ggiraph

ggiraph: Make 'ggplot2' Graphics Interactive

ggconf: Simpler Appearance Modification of 'ggplot2'

https://github.com/caprice-j/ggconf

Plotting individual observations and group means

https://drsimonj.svbtle.com/plotting-individual-observations-and-group-means-with-ggplot2

subplot

Adding/Inserting an image to ggplot2

Inserting an image to ggplot2: See annotation_custom.

See also ggbernie which uses a different way ggplot2::layer() and a self-defined geom (geometric object).

Easy way to mix/combine multiple graphs on the same page

annotation_custom

  • predcurvePlot.R from TreatmentSelection. One issue is the font size is large for the text & labels at the bottom. The 2nd issue is the bottom part of the graph/annotation (marker value scale) can be truncated if the window size is too large. If the window is too small, the bottom part can overlap with the top part.
    p <- p + theme(plot.margin = unit(c(1,1,4,1), "lines"))  # hard coding
    p <- p + annotation_custom() # axis for marker value scale
    p <- p + annotation_custom() # label only
    
    • Similar plot but without using base R graphic. One issue is the text is not below the scale (this can be fixed by par(mar) & mtext(text, side=1, line=4)) and the 2nd issue is the same as ggplot2's approach.
      axis(1,at= breaks, label = round(quantile(x1, prob = breaks/100), 1),pos=-0.26) # hard coding
      
    • Another common problem is the plot saved by pdf() or png() can be truncated too. I have a better luck with png() though.

grid

gridExtra

Force a regular plot object into a Grob for use in grid.arrange

gridGraphics package

make one panel blank/create a placeholder

# Method 1: Blank
ggplot() + theme_void()
# Method 2: Display N/A
ggplot() +
    theme_void() +
    geom_text(aes(0,0,label='N/A'))

Overall title

multiple ggplots overall title

Remove vertical/horizontal grids but keep ticks

removeGrid()

patchwork

Common legend

Add a common Legend for combined ggplots

library(ggplot2)
library(patchwork)

p1 <- ggplot(df1, aes(x = x, y = y, colour = group)) + 
  geom_point(position = position_jitter(w = 0.04, h = 0.02), size = 1.8)
p2 <- ggplot(df2, aes(x = x, y = y, colour = group)) + 
  geom_point(position = position_jitter(w = 0.04, h = 0.02), size = 1.8)

# Method 1:
p1 + p2 + plot_layout(guides = "collect") + theme(legend.position = "bottom") 
                                          # one legend on the bottom
# Method 2:
p1 + p2 + plot_layout(guides = "collect") # one legend on the RHS
# Method 2:
p1 + theme(legend.position="none") + p2  # legend (based on p2) is on the RHS
# Method 3:
p1 + p2 + theme(legend.position="none")  # legend (based on p1) is in the middle!!

Overall title

Common Main Title for Multiple Plots in Base R & ggplot2 (2 Examples)

egg

Common x or y labels

Base R plot vs ggplot2

  • My summary
base-R ggplot2
plot(x, y, col) geom_point(aes(x, y, color, shape))
xlim scale_x_continuous(limits)
log="x" scale_x_continuous(trans="log10")
xlab
mtext("Var", cex, line, adj, las, side)
scale_x_discrete(name="sample size")
labs(x)
xlab()
main labs(x, y, title, colour)
ggtitle()
axis(2, labels) scale_y_continuous(labels, breaks)
scale_x_discrete(labels)
? scale_color_discrete('new color title')
? scale_shape_discrete('new shape title')
col scale_color_manual(name,
values = NamedVector)
pch, cex geom_point(pch, size)
plot(mpg, disp, col=factor(cyl))
legend("topleft",
legend = sort(unique(cyl)),
col=1:3, pch=1)
# discrete case
ggplot(mtcars,
aes(mpg, disp, color = factor(cyl))) +
geom_point() +
labs(color = "Number of Cylinders")
text() geom_text()
? theme(title = element_text(size=8),
legend.title = element_blank(),
legend.position = "none",
legend.key = element_blank(),
plot.title = element_text(hjust = 0.5),
plot.sybtitle = element_text(size = 8))
las in plot(), barplot()
text(x, y, labs, srt=45)
theme(axis.text.x = element_text(angle = 90))
matplot() geom_line() + geom_point()
plot(type = 'l'), points() geom_line() + geom_point()
barplot() geom_bar()
par(mfrow) facet_grid()

labs for x and y axes

x and y labels

https://stackoverflow.com/questions/10438752/adding-x-and-y-axis-labels-in-ggplot2 or the Labels part of the cheatsheet

You can set the labels with xlab() and ylab(), or make it part of the scale_*.* call.

labs(x = "sample size", y = "ngenes (glmnet)")

scale_x_discrete(name="sample size")
scale_y_continuous(name="ngenes (glmnet)", limits=c(100, 500))

Change tick mark labels

ggplot2 axis ticks : A guide to customize tick marks and labels

name-value pairs

See several examples (color, fill, size, ...) from opioid prescribing habits in texas.

Footnote

Add Footnote to ggplot2

Prevent sorting of x labels

See Change the order of a discrete x scale.

The idea is to set the levels of x variable.

junk   # n x 2 table
colnames(junk) <- c("gset", "boot")
junk$gset <- factor(junk$gset, levels = as.character(junk$gset))
ggplot(data = junk, aes(x = gset, y = boot, group = 1)) + 
  geom_line() + 
  theme(axis.text.x=element_text(color = "black", angle=30, vjust=.8, hjust=0.8))

Legends

Legend title

  • labs() function
    p <- ggplot(df, aes(x, y)) + geom_point(aes(colour = z))
    p + labs(x = "X axis", y = "Y axis", colour = "Colour\nlegend")
           # Use color to represent the legend title
    
    p <- ggplot(df) + geom_col(aes(x=x, y=y, fill=cat), position = "dodge") 
    p + labs(x = "X", y = "Y", fill = "Category")
           # Use fill to represent the legend title
    
  • scale_colour_manual()
    scale_colour_manual("Treatment", values = c("black", "red"))
    
  • scale_color_discrete() and scale_shape_discrete(). See Combine colors and shapes in legend.
    df <- data.frame(x = 1:3, y = 1:3, z = c("a", "b", "c"))
    ggplot(df, aes(x, y)) + geom_point(aes(shape = z, colour = z), size=5) + 
      scale_color_discrete('new title') + scale_shape_discrete('new title')
    

Remove NA factor level from color legend

Use na.translate = F in scale_color_XXX(). See ggplot: remove NA factor level in legend

Layout: move the legend from right to top/bottom of the plot or inside the plot or hide it

gg + theme(legend.position = "top")

# Useful in the boxplot case
gg + theme(legend.position="none")

gg + theme(legend.position = c(0.87, 0.25)) +
     guides(colour = guide_legend(nrow = 1))

# Customize the edge color and background color
gapminder %>%
  ggplot(aes(gdpPercap,lifeExp, color=continent)) +
  geom_point() +
  scale_x_log10()+
  theme(legend.position = c(0.87, 0.25),
        legend.background = element_rect(fill = "white", color = "black"))

Guide functions for finer control (legend, axis, color scales)

  • https://ggplot2-book.org/scales.html#guide-functions The guide functions, guide_colourbar() and guide_legend(), offer additional control over the fine details of the legend.
  • guide_legend() allows the modification of legends for scales, including fill, color, and shape. This function can be used in scale_fill_manual(), scale_fill_continuous(), ... functions.
    scale_fill_manual(values=c("orange", "blue"), 
                      guide=guide_legend(title = "My Legend Title",
                                         nrow=1,  # multiple items in one row
                                         label.position = "top", # move the texts on top of the color key
                                         keywidth=2.5)) # increase the color key width
    

    The problem with the default setting is it leaves a lot of white space above and below the legend. To change the position of the entire legend to the bottom of the plot, we use theme().

    theme(legend.position = 'bottom')
    
  • guides()
    • Legend. For example, to remove the legend title:
    ggplot(mtcars, aes(x = mpg, y = disp, color = factor(cyl))) +
      geom_point() +
      guides(color = guide_legend(title = NULL))
    
    • Axis. For example, to change the angle of the x-axis labels:
    ggplot(mtcars, aes(x = mpg, y = disp)) +
      geom_point() +
      theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
      guides(x = guide_axis(angle = 45))
    
    • Color scales. For example, to change the number of color breaks:
    ggplot(mtcars, aes(x = mpg, y = disp, color = hp)) +
      geom_point() +
      guides(color = guide_colorbar(nbin = 10))
    

Legend symbol background

ggplot() + geom_point(aes(x, y, color, size)) +
           theme(legend.key = element_blank())
           # remove the symbol background in legend

Construct a manual legend for a complicated plot

https://stackoverflow.com/a/17149021

Legend size

How to Change Legend Size in ggplot2 (With Examples)

data <- data.frame(x = 1:5, y = 1:5, label = c("A", "B", "C", "D", "E"))
ggplot(data, aes(x, y, color = as.factor(label))) +
  geom_point() +
  labs(title = "Legend Size Example with Theme Modification",
       color = "Label") +
  theme(
    legend.text = element_text(size = 12), 
    legend.title = element_text(size = 14)
    )

ggtitle()

Centered title

See the Legends part of the cheatsheet.

ggtitle("MY TITLE") +
  theme(plot.title = element_text(hjust = 0.5))

Subtitle

ggtitle("My title",
        subtitle = "My subtitle")

margins

https://stackoverflow.com/a/10840417

Aspect ratio

?coord_fixed

p <- ggplot(mtcars, aes(mpg, wt)) + geom_point()
p + coord_fixed() # plot is compressed horizontally
p  # fill up plot region

Time series plot

Multiple lines plot https://stackoverflow.com/questions/14860078/plot-multiple-lines-data-series-each-with-unique-color-in-r

set.seed(45)
nc <- 9
df <- data.frame(x=rep(1:5, nc), val=sample(1:100, 5*nc), 
                   variable=rep(paste0("category", 1:nc), each=5))
# plot
# http://colorbrewer2.org/#type=qualitative&scheme=Paired&n=9
ggplot(data = df, aes(x=x, y=val)) + 
    geom_line(aes(colour=variable)) + 
    scale_colour_manual(values=c("#a6cee3", "#1f78b4", "#b2df8a", "#33a02c", "#fb9a99", "#e31a1c", "#fdbf6f", "#ff7f00", "#cab2d6"))

Versus old fashion

dat <- matrix(runif(40,1,20),ncol=4) # make data
matplot(dat, type = c("b"),pch=1,col = 1:4) #plot
legend("topleft", legend = 1:4, col=1:4, pch=1) # optional legend

calendR

Calendar plot in R using ggplot2

Github style calendar plot

geom_point()

See Scatterplot.

df <- data.frame(x=1:3, y=1:3, color=c("red", "green", "blue"))
# Use I() to set aes values to the identify of a value from your data table
ggplot(df, aes(x,y, color=I(color))) + geom_point(size=10) # no color legend
# VS
ggplot(df, aes(x,y, color=color)) + geom_point(size=10) # color is like a class label

geom_bar(), geom_col(), stat_count()

https://ggplot2.tidyverse.org/reference/geom_bar.html

  • geom_bar: Counts the number of cases at each x position and makes the height of the bar proportional to the count (or sum of weights if supplied)
  • geom_col: Leaves the data as is and makes the height of the bar proportional to the value in the data
Function Default Statistic Purpose
geom_bar() stat_count()
df2 <- data.frame(cat = c("A", "A", "A", "B", "B", 
   "B", "B", "B", "C", "C", "C", "C", "C", "C"))
ggplot(df2, aes(x = cat)) + geom_bar()
# Same as
# barplot(table(df2$cat))
geom_col() stat_identity()
df <- data.frame(group = c("A", "B", "C"), 
                 count = c(3, 5, 6))
ggplot(df, aes(x = group, y = count)) + geom_col()
# Same as
# barplot(df$count, names.arg = df$group)
geom_col(position = 'dodge')  # same as 
geom_bar(stat = 'identity', position = 'dodge')

geom_bar() can not specify the y-axis. To specify y-axis, use geom_col().

ggplot() + geom_col(mapping = aes(x, y))

Add colors to the plot

df <- data.frame(group = c("A", "B", "C"), 
                 count = c(3, 5, 6), 
                 fill = c("red", "green", "blue"))
ggplot(df, aes(x = group, y = count, fill = fill)) + 
  geom_col()

Add numbers to the plot

An example

Simple example

Original

fct_reorder() .

Ordered barplot and reorder()

Ordered barplot and facet

stat_function()

stat_summary()

https://ggplot2.tidyverse.org/reference/stat_summary.html

stat_smooth(), geom_smooth()

The 95% confidence interval for the estimated mean of y at each x-value CI = ŷ(x) ± t(0.975, df)*SE(ŷ(x)) can be created by geom_smooth(method = lm, se = TRUE). SE(ŷ(x)) represents the standard error of the estimated mean at x.

?geom_smooth, ?stat_smooth

ggplot(data = mtcars, aes(x = wt, y = mpg)) + 
  geom_point() +
  stat_smooth(method = "glm", formula = "y ~ x", 
              method.args = list(family = poisson(link = "log")), 
              se = FALSE, color = "red") +
  labs(x = "Weight", y = "Miles per gallon")

To control the smoothness, use the "span" parameter. To disable the confidence interval, use "se = F".

geom_smooth(method = 'loess', se = FALSE, span = 0.3)

How to recreate plots produced by geom_smooth() by using the geom_line() function. This is useful if we want a customized method that is unavailable in geom_smooth().

Default color and aesthetics

> print(ggplot2::GeomSmooth$default_aes)
Aesthetic mapping: 
* `colour`    -> "#3366FF"
* `fill`      -> "grey60"
* `linewidth` -> 1
* `linetype`  -> 1
* `weight`    -> 1
* `alpha`     -> 0.4
g1 <- ggplot(mpg, aes(displ, hwy)) +
     geom_smooth()
unique(ggplot_build(g1)$data[[1]]$colour)
# `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
# [1] "#3366FF"

geom_ribbon

set.seed(123)
df <- data.frame(
  X = seq(0, 100, by = 5),  # Pathologist estimate
  Y = seq(0, 100, by = 5) + rnorm(21, 0, 5)  # XXX prediction
)

# Choice 1: Calculate the lower and upper bounds of the confidence interval
df$lower_bound <- 0.863 * df$X  # 13.7% below X
df$upper_bound <- 1.137 * df$X  # 13.7% above X

# Choice 2: Constant width for the confidence band
c <- 13.7 
df$lower_bound <- df$X - c
df$upper_bound <- df$X + c

# Plotting
ggplot(df, aes(x = X, y = Y)) +
  geom_point() + 
  geom_ribbon(aes(ymin = lower_bound, ymax = upper_bound), fill = "blue", alpha = 0.2) + 
  geom_smooth(method = "lm", color = "red", se = FALSE) +
  labs(x = "Pathologist Estimate", y = "XXX Prediction") +
  theme_minimal()

geom_area()

The Pfizer-Biontech Vaccine May Be A Lot More Effective Than You Think

Square shaped plot

ggplot() + theme(aspect.ratio=1) # do not adjust xlim, ylim

xylim <- range(c(x, y))
ggplot() + coord_fixed(xlim=xylim, ylim=xylim) 

geom_line()

See also aes(..., group, ...).

Connect Paired Points with Lines in Scatterplot

Use geom_line() to create a square bracket to annotate the plot

Barchart with Significance Tests

Interaction plot

Randomized block design

geom_segment()

Line segments, arrows and curves. See an example in geom_errorbar section below.

Cf annotate("segment", ...)

geom_errorbar(): error bars

set.seed(301)
x <- rnorm(10)
SE <- rnorm(10)
y <- 1:10

par(mfrow=c(2,1))
par(mar=c(0,4,4,4))
xlim <- c(-4, 4)
plot(x[1:5], 1:5, xlim=xlim, ylim=c(0+.1,6-.1), yaxs="i", xaxt = "n", ylab = "", pch = 16, las=1)
mtext("group 1", 4, las = 1, adj = 0, line = 1) # las=text rotation, adj=alignment, line=spacing
par(mar=c(5,4,0,4))
plot(x[6:10], 6:10, xlim=xlim, ylim=c(5+.1,11-.1), yaxs="i", ylab ="", pch = 16, las=1, xlab="")
arrows(x[6:10]-SE[6:10], 6:10, x[6:10]+SE[6:10], 6:10, code=3, angle=90, length=0)
mtext("group 2", 4, las = 1, adj = 0, line = 1)

  • Forest plot example using geom_errorbarh()

geom_rect(), geom_bar()

Note that we can use scale_fill_manual() to change the 'fill' colors (scheme/palette). The 'fill' parameter in geom_rect() is only used to define the discrete variable.

ggplot(data=) +
  geom_bar(aes(x=, fill=)) +
  scale_fill_manual(values = c("orange", "blue"))

geom_raster() and geom_tile()

Waterfall plot

geom_linerange

Circle

Circle in ggplot2 ggplot(data.frame(x = 0, y = 0), aes(x, y)) + geom_point(size = 25, pch = 1)

Annotation

Add a horizontal/vertical line

geom_hline(), geom_vline()

geom_hline(yintercept=1000)
geom_vline(xintercept=99)

text annotations, annotate() and geom_text(): ggrepel package

  • ggrepel package, ?geom_text_repel. Found on Some datasets for teaching data science by Rafael Irizarry.
    p <- ggplot(dat, aes(wt, mpg, label = car)) +
      geom_point(color = "red")
    
    p1 <- p + geom_text() + labs(title = "geom_text()") # Bad
    
    p2 <- p + geom_text_repel(seed=1) + labs(title = "geom_text_repel()") # Good
                                              # Use 'seed' to fix the location of text
    

    Note that we may need to add show.legend = FALSE in geom_text_repel() to get rid of "a" character in the legend. See Remove 'a' from legend when using aesthetics and geom_text

  • Difference between geom_text_repel() and geom_label_repel()
    • geom_text_repel(): Similar to geom_text(), it places text labels near data points.
    • geom_label_repel(): Similar to geom_label(), it places text labels inside a rounded rectangle.
  • Annotations from the chapter Graphics for communication of R for Data Science by Grolemund & Hadley
  • ggplot2 texts : Add text annotations to a graph in R software. The functions geom_text() and annotate() can be used to add a text annotation at a particular coordinate/position.
  • https://ggplot2-book.org/annotations.html
    annotate("text", label="Toyota", x=3, y=100)
    annotate("segment", x = 2.5, xend = 4, y = 15, yend = 25, colour = "blue", size = 2)
    
    geom_text(aes(x, y, label), data, size, vjust, hjust, nudge_x)
    
  • Text annotations in ggplot2
    p + geom_text(aes(x = -115, y = 25,
                      label = "Map of the United States"),
                  stat = "unique")
    p + geom_label(aes(x = -115, y = 25,
                       label = "Map of the United States"),
                  stat = "unique") # include border around the text
  • Use the nudge_y parameter to avoid the overlap of the point and the text such as
    ggplot() + geom_point() +
               geom_text(aes(x, y, label), color='red', data, nudge_y=1)
    
  • What do hjust and vjust do when making a plot using ggplot? 0 means left-justified 1 means right-justified. This is necessary if we have multiples lines in text. By default, it will center-justified.
  • Volcano plots, EnhancedVolcano package
  • Visualization of Volcano Plots in R
  • AI
    library(ggplot2)
    library(ggrepel)
    
    set.seed(123)
    data <- data.frame(
        gene = paste("Gene", 1:1000, sep = "_"),
        log2FoldChange = rnorm(1000),
        pvalue = runif(1000)
    )
    data$pvalue[1:20] <- runif(20, 0, .001)
    data$padj <- p.adjust(data$pvalue, method = "BH") # Adjusted p-values
    
    significant_genes <- subset(data, padj < 0.05 & abs(log2FoldChange) > 1)
    
    ggplot(data, aes(x = log2FoldChange, y = -log10(padj))) +
        geom_point(aes(color = padj < 0.05 & abs(log2FoldChange) > 1), alpha = 0.5) +
        scale_color_manual(values = c("black", "red"), na.translate = F) +
        theme_minimal() +
        labs(title = "Volcano Plot", x = "Log2 Fold Change", y = "-Log10 Adjusted P-Value") +
        geom_label_repel(
            data = significant_genes,
            aes(label = gene),
            size=3,
            seed = 1,               # default is NA
            box.padding = 0.25,     # default
            point.padding = 1e-06,  # default
            max.overlaps = 10       # default
        )
    

Text wrap

ggplot2 is there an easy way to wrap annotation text?

p <- ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point()

# Solution 1: Not work with Chinese characters
wrapper <- function(x, ...) paste(strwrap(x, ...), collapse = "\n")
# The a label
my_label <- "Some arbitrarily larger text"
# and finally your plot with the label
p + annotate("text", x = 4, y = 25, label = wrapper(my_label, width = 5))

# Solution 2: Not work with Chinese characters
library(RGraphics)
library(ggplot2)
p <- ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point()
grob1 <-  splitTextGrob("Some arbitrarily larger text")
p + annotation_custom(grob = grob1,  xmin = 3, xmax = 4, ymin = 25, ymax = 25) 

# Solution 3: stringr::str_wrap()
my_label <- "太極者無極而生。陰陽之母也。動之則分。靜之則合。無過不及。隨曲就伸。人剛我柔謂之走。我順人背謂之黏。"
p <- ggplot() + geom_point() + xlim(0, 400) + ylim(0, 300) # 400x300 e-paper
p + annotate("text", x = 0, y = 200, hjust=0, size=5,
             label = stringr::str_wrap(my_label, width =30)) +
    theme_bw () + 
    theme(panel.grid.major = element_blank(), 
          panel.grid.minor = element_blank(), 
          panel.border = element_blank(),
          axis.title = element_blank(), 
          axis.text = element_blank(),
          axis.ticks = element_blank()) 

ggtext

ggtext: Improved text rendering support for ggplot2

ggforce - Annotate areas with ellipses

geom_mark_ellipse()

Other geoms

Exploring other {ggplot2} geoms

geomtextpath: Create curved text

geomtextpath- Create curved text in ggplot2

Build your own geom

Fonts, icons

Lines of best fit

Lines of best fit

Save the plots -- ggsave()

ggsave(). Note svglite package is required, see R Graphics Cookbook. The svglite package provides more standards-compliant output.

By default the units of width & height is inch no matter what output formats we choose.

(3/24/2022) If I save the plot in the svg format using RStudio GUI (Export -> As as Image...) or by the svg() function, the svg plot can't be converted to a png file by ImageMagick. But if I save the plot by using the ggsave() command, the svg plot can be converted to a png file.

$ convert -resize 100% Rerrorbar.svg tmp.png
convert-im6.q16: non-conforming drawing primitive definition `path' @ error/draw.c/RenderMVGContent/4300.
$ convert -resize 100% Rerrorbar2.svg tmp.png # Works

(1/31/2022) For some reason, the text in legend in svg files generated by ggsave() looks fine in browsers but when I insert it into ppt, the word "Sensitive" becomes "Sensitiv e". However, the svg files generated by svg() command looks fine in browsers AND in ppt.

ggsave() will save a plot with the width/height based on the current graphical device if we don't specify them. That's why after we issue ggsave() it will tell us the image size (inch). So in order to have a fixed width/height, we need to specify them explicitly. See

My experience is ggsave() is better than png() because ggsave() makes the text larger when we save a file with a higher resolution.

...
ggsave("filename.png", object, width=8, height=4)
# vs
png("filename.png", width=1200, height=600)
...
dev.off()

We can specify dpi to increase the resolution if we use the png format (svg is not affected); see Chapter 14.5 Outputting to Bitmap (PNG/TIFF) Files from R Graphics Cookbook.

g1 <- ggplot(data = mydf) 
g1
ggsave("myfile.png", g1, height = 7, width = 8, units = "in", dpi = 300)

I got an error - Error in loadNamespace(name) : there is no package called ‘svglite’. After I install the package, everything works fine.

ggsave("raw-output.bmp", p, width=4, height=3, dpi = 100)
# Will generate 4*100 x 3*100 pixel plot

Note:

  • For saving to "png" file, increasing dpi (from 72 to 300) will increase font & point size. dpi/ppi is not an inherent property of an image.
  • If we don't specify any parameters and without resizing the graphics device size, then "png" file created by ggsave() will contain much more pixels compared to "svg" file (e.g. 1200 vs 360).
  • How ggsave() decides width/height if a svg file was used in an Rmd file? A: 7x7 from my experiment. So the font/point size will be smaller compared to a 4x4 inch output.
  • When I created an svg file in Linux with 4x4 inch (width x height), the file is 360 x 360 pixels when I right click the file to get the properties of the file. But macOS cannot return this number nor am I able to find this number from the svg file??

Multiple pages in pdf

https://stackoverflow.com/a/53698682. The key is to save the plot in an object and use the print() function.

pdf("FileName", onefile = TRUE)
for(i in 1:I) {
  p <- ggplot()
  print(p)
}
dev.off()

graphics::smoothScatter: scatter plots with lots of points

Other tips/FAQs

Tips and tricks for working with images and figures in R Markdown documents

Ten Simple Rules for Better Figures

Ten Simple Rules for Better Figures

Five ways to improve your chart axes

Five ways to improve your chart axes

Beyond Bar and Line Graphs

Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm

Recreating the Storytelling with Data look with ggplot

Recreating the Storytelling with Data look with ggplot

flourish.studio

https://public.flourish.studio/visualisation/24778358/

ggplot2 does not appear to work when inside a function

https://stackoverflow.com/a/17126172. Use print() or ggsave(). When you use these functions interactively at the command line, the result is automatically printed, but in source() or inside your own functions you will need an explicit print() statement.

ggplot2 layer explorer

ggplot2 layer explorer

BBC

Add your brand to ggplot graph

You Need to Start Branding Your Graphs. Here's How, with ggplot!

Animation and gganimate

ggstatsplot

ggstatsplot: ggplot2 Based Plots with Statistical Details

Write your own ggplot2 function: rlang

Some packages depend on ggplot2

dittoSeq from Bicoonductor

Meme

Python