Statistics: Difference between revisions

From 太極
Jump to navigation Jump to search
Line 9: Line 9:
{| border="1" style="border-collapse:collapse; text-align:center;"
{| border="1" style="border-collapse:collapse; text-align:center;"
|-
|-
|      |  | Predict | Predict |  
|      ||| Predict || Predict ||  
|-
|-
| True | 1 | TP | FN | Sens=TP/(TP+FN)
| True || 1 || TP || FN || Sens=TP/(TP+FN)
|-  
|-  
| True | 0 | FP | TN | Spec=TN/(FP+TN)
| True || 0 ||FP || TN || Spec=TN/(FP+TN)
|-
|-
|      |  |    |   |  N = TP + FP + FN + TN
|      ||  |||    ||  N = TP + FP + FN + TN
|}
|}



Revision as of 11:59, 1 April 2013

Boxcox transformation

Finding transformation for normal distribution

Visualize the random effects

http://www.quantumforest.com/2012/11/more-sense-of-random-effects/

Sensitivity/Specificity/Accuracy

Predict Predict
True 1 TP FN Sens=TP/(TP+FN)
True 0 FP TN Spec=TN/(FP+TN)
N = TP + FP + FN + TN
  • Sensitivity = TP / (TP + FN)
  • Specificity = TN / (TN + FP)
  • Accuracy = (TP + TN) / N

ROC curve and Brier score

Elements of Statistical Learning

Bagging

Chapter 8 of the book.

  • Bootstrap mean is approximately a posterior average.
  • Bootstrap aggregation or bagging average: Average the prediction over a collection of bootstrap samples, thereby reducing its variance. The bagging estimate is defined by
[math]\displaystyle{ \hat{f}_{bag}(x) = \frac{1}{B}\sum_{b=1}^B \hat{f}^{*b}(x). }[/math]
  • ksjlfda