Bootstrap: Difference between revisions
Jump to navigation
Jump to search
Line 7: | Line 7: | ||
* [https://cran.r-project.org/web/packages/boot/ boot] package. Functions and datasets for bootstrapping from the book [https://books.google.com/books?id=_uKcAgAAQBAJ Bootstrap Methods and Their Application] by A. C. Davison and D. V. Hinkley (1997, CUP). A short course material can be found [https://www.researchgate.net/publication/37434447_Bootstrap_Methods_and_Their_Application here].The main functions are '''boot()''' and '''boot.ci()'''. | * [https://cran.r-project.org/web/packages/boot/ boot] package. Functions and datasets for bootstrapping from the book [https://books.google.com/books?id=_uKcAgAAQBAJ Bootstrap Methods and Their Application] by A. C. Davison and D. V. Hinkley (1997, CUP). A short course material can be found [https://www.researchgate.net/publication/37434447_Bootstrap_Methods_and_Their_Application here].The main functions are '''boot()''' and '''boot.ci()'''. | ||
** https://www.rdocumentation.org/packages/boot/versions/1.3-20 | ** https://www.rdocumentation.org/packages/boot/versions/1.3-20 | ||
** [https://www.r-project.org/doc/Rnews/Rnews_2002-3.pdf#page=2 Resampling Methods in R: The boot Package] by Canty | ** [https://www.r-project.org/doc/Rnews/Rnews_2002-3.pdf#page=2 Resampling Methods in R: The boot Package] by Canty | ||
** [https://pdfs.semanticscholar.org/0203/d0902185dd819bf38c8dacd077df0122b89d.pdf An introduction to bootstrap with applications with R] by Davison and Kuonen. | ** [https://pdfs.semanticscholar.org/0203/d0902185dd819bf38c8dacd077df0122b89d.pdf An introduction to bootstrap with applications with R] by Davison and Kuonen. |
Revision as of 15:48, 10 July 2023
General
- Bootstrap from Wikipedia.
- This contains an overview of different methods for computing bootstrap confidence intervals.
- boot.ci() from the 'boot' package provides a short explanation for different methods for computing bootstrap confidence intervals.
- Bootstrapping made easy and tidy with slipper
- bootstrap package. "An Introduction to the Bootstrap" by B. Efron and R. Tibshirani, 1993
- boot package. Functions and datasets for bootstrapping from the book Bootstrap Methods and Their Application by A. C. Davison and D. V. Hinkley (1997, CUP). A short course material can be found here.The main functions are boot() and boot.ci().
- https://www.rdocumentation.org/packages/boot/versions/1.3-20
- Resampling Methods in R: The boot Package by Canty
- An introduction to bootstrap with applications with R by Davison and Kuonen.
- http://people.tamu.edu/~alawing/materials/ESSM689/Btutorial.pdf
- http://statweb.stanford.edu/~tibs/sta305files/FoxOnBootingRegInR.pdf
- http://www.stat.wisc.edu/~larget/stat302/chap3.pdf
- https://www.stat.cmu.edu/~cshalizi/402/lectures/08-bootstrap/lecture-08.pdf. Variance, se, bias, confidence interval (basic, percentile), hypothesis testing, parametric & non-parametric bootstrap, bootstrapping regression models.
- Understanding Bootstrap Confidence Interval Output from the R boot Package which covers the nonparametric and parametric bootstrap.
- http://www.math.ntu.edu.tw/~hchen/teaching/LargeSample/references/R-bootstrap.pdf No package is used
- http://web.as.uky.edu/statistics/users/pbreheny/621/F10/notes/9-21.pdf Bootstrap confidence interval
- http://www-stat.wharton.upenn.edu/~stine/research/spida_2005.pdf
- Optimism corrected bootstrapping (Harrell et al 1996)
- Adjusting for optimism/overfitting in measures of predictive ability using bootstrapping
- Part 1: Optimism corrected bootstrapping: a problematic method
- Part 2: Optimism corrected bootstrapping is definitely bias, further evidence
- Part 3: Two more implementations of optimism corrected bootstrapping show shocking bias
- Part 4: Why does bias occur in optimism corrected bootstrapping?
- Part 5: Code corrections to optimism corrected bootstrapping series
- Bootstrapping Part 2: Calculating p-values!!! from StatQuest
- Using bootstrapped sampling to assess variability in score predictions. The rsample (General Resampling Infrastructure) package was used.
- Chapter 8 Bootstrapping and Confidence Intervals from the ebook "Statistical Inference via Data Science"
Nonparametric bootstrap
This is the most common bootstrap method
The upstrap Crainiceanu & Crainiceanu, Biostatistics 2018
Parametric bootstrap
- Parametric bootstraps resample a known distribution function, whose parameters are estimated from your sample
- http://www.math.ntu.edu.tw/~hchen/teaching/LargeSample/notes/notebootstrap.pdf#page=3 No package is used
- A parametric or non-parametric bootstrap?
- https://www.stat.cmu.edu/~cshalizi/402/lectures/08-bootstrap/lecture-08.pdf#page=11
- simulatorZ Bioc package
Examples
Standard error
- Standard error from a mean
foo <- function() mean(sample(x, replace = TRUE)) set.seed(1234) x <- rnorm(300) set.seed(1) sd(replicate(10000, foo())) # [1] 0.05717679 sd(x)/sqrt(length(x)) # The se of mean is s/sqrt(n) # [1] 0.05798401 set.seed(1234) x <- rpois(300, 2) set.seed(1) sd(replicate(10000, foo())) # [1] 0.08038607 sd(x)/sqrt(length(x)) # The se of mean is s/sqrt(n) # [1] 0.08183151
- Difference of means from two samples (cf 8.3 The two-sample problem from the book "An introduction to Bootstrap" by Efron & Tibshirani)
# Define the two samples sample1 <- 1:10 sample2 <- 11:20 # Define the number of bootstrap replicates nboot <- 100000 # Initialize a vector to store the bootstrap estimates boot_estimates <- numeric(nboot) # Run the bootstrap set.seed(123) for (i in seq_len(nboot)) { # Resample the data with replacement resample1 <- sample(sample1, replace = TRUE) resample2 <- sample(sample2, replace = TRUE) # Compute the difference of means boot_estimates[i] <- mean(resample1) - mean(resample2) } # Compute the standard error of the bootstrap estimates se_boot <- sd(boot_estimates) # Print the result cat("Bootstrap SE estimate of difference of means:", se_boot, "\n") # 1.283541 sd1 <- sd(sample1) sd2 <- sd(sample2) # Calculate the sample sizes n1 <- length(sample1) n2 <- length(sample2) # Calculate the true standard error of the difference of means se_true <- sqrt((sd1^2/n1) + (sd2^2/n2)) # Print the result cat("True SE of difference of means:", se_true, "\n") \ # 1.354006
Bootstrapping Extreme Value Estimators
Bootstrapping Extreme Value Estimators de Haan, 2022