Bootstrap: Difference between revisions

From 太極
Jump to navigation Jump to search
Line 57: Line 57:
* [https://youtu.be/N4ZQQqyIf6k Bootstrapping Part 2: Calculating p-values!!!] from StatQuest
* [https://youtu.be/N4ZQQqyIf6k Bootstrapping Part 2: Calculating p-values!!!] from StatQuest
* [https://rtichoke.netlify.app/post/assessing_score_reliability/ Using bootstrapped sampling to assess variability in score predictions]. The [https://cran.r-project.org/web/packages/rsample/index.html rsample] (General Resampling Infrastructure) package was used.  
* [https://rtichoke.netlify.app/post/assessing_score_reliability/ Using bootstrapped sampling to assess variability in score predictions]. The [https://cran.r-project.org/web/packages/rsample/index.html rsample] (General Resampling Infrastructure) package was used.  
* [https://moderndive.com/8-confidence-intervals.html Chapter 8 Bootstrapping and Confidence Intervals] from the ebook "Statistical Inference via Data Science"


== Nonparametric bootstrap ==
== Nonparametric bootstrap ==

Revision as of 12:53, 26 May 2023

General

Nonparametric bootstrap

This is the most common bootstrap method

The upstrap Crainiceanu & Crainiceanu, Biostatistics 2018

Parametric bootstrap

Examples

Standard error

Standard error

foo <- function() mean(sample(x, replace = TRUE))
set.seed(1234)
x <- rnorm(300)
set.seed(1)
sd(replicate(10000, foo()))
# [1] 0.05717679
sd(x)/sqrt(length(x)) # The se of mean is s/sqrt(n)
# [1] 0.05798401

set.seed(1234)
x <- rpois(300, 2)
set.seed(1)
sd(replicate(10000, foo()))
# [1] 0.08038607
sd(x)/sqrt(length(x)) # The se of mean is s/sqrt(n)
# [1] 0.08183151

Bootstrapping Extreme Value Estimators

Bootstrapping Extreme Value Estimators de Haan, 2022