Microarray: Difference between revisions
Jump to navigation
Jump to search
Line 44: | Line 44: | ||
fit2 <- eBayes(fit2) | fit2 <- eBayes(fit2) | ||
topTableF(fit2, adjust="BH") | topTableF(fit2, adjust="BH") | ||
# Output: | |||
wt.6hr.wt.0hr wt.24hr.wt.6hr AveExpr F P.Value adj.P.Val | |||
112 3.2749023 -4.5401508 0.23644620 7.192590 0.006274150 0.9079656 | |||
142 0.2028617 3.5727319 0.31292924 6.425034 0.009419387 0.9079656 | |||
151 -2.4795481 4.5473025 0.28953869 6.138177 0.011026934 0.9079656 | |||
830 0.9768946 2.7571045 0.55529723 5.982599 0.012027262 0.9079656 | |||
371 -2.5848778 4.4752189 -0.68087827 5.813166 0.013235184 0.9079656 | |||
861 -3.6229467 1.2348225 -0.19658086 5.810336 0.013256488 0.9079656 | |||
645 2.6729536 -4.3124373 0.09475226 5.789848 0.013411914 0.9079656 | |||
926 3.5387477 -0.9448989 0.15060787 5.484057 0.015994787 0.9079656 | |||
113 2.5057968 -4.0472781 0.12254199 5.372589 0.017072749 0.9079656 | |||
802 0.5210958 2.9178136 -0.54632441 5.140624 0.019589928 0.9079656 | |||
> cont.wt | |||
Contrasts | |||
Levels wt.6hr-wt.0hr wt.24hr-wt.6hr | |||
wt.0hr -1 0 | |||
wt.6hr 1 -1 | |||
wt.24hr 0 1 | |||
mu.0hr 0 0 | |||
mu.6hr 0 0 | |||
mu.24hr 0 0 | |||
# Step 3- Which genes respond (i.e., change over time) in the mutant? | # Step 3- Which genes respond (i.e., change over time) in the mutant? |
Revision as of 12:16, 3 November 2014
Time Course
Limma package
- http://master.bioconductor.org/help/course-materials/2005/BioC2005/labs/lab01/drosEmbryo/ or http://bioinf.wehi.edu.au/marray/jsm2005/lab5/lab5.html. Note the package drosEmbryo is not available on Bioc although it can be downloaded from bioinf.wehi.edu.au. It still cannot be used.
> data(drosEmbryoRMA) Warning message: 'drosEmbryoRMA' looks like a pre-2.4.0 S4 object: please recreate it
- Limma Guide Section 9.6 (no .Rd file nor R code!).
# Step 1 - Read the design and create eset. targets <- read.table(file='stdin', header=T) FileName Target File1 wt.0hr File2 wt.0hr File3 wt.6hr File4 wt.24hr File5 mu.0hr File6 mu.0hr File7 mu.6hr File8 mu.24hr # Hit Ctrl+D twice. # eset = rma(ReadAffy()) exprs <- matrix(rnorm(1000*8), nr=1000) eset <- ExpressionSet(assayData = exprs) colnames(exprs) <- targets[,1] lev <- c("wt.0hr","wt.6hr","wt.24hr","mu.0hr","mu.6hr","mu.24hr") f <- factor(targets$Target, levels=lev) design <- model.matrix(~0+f) colnames(design) <- lev fit <- lmFit(eset, design) # Step 2 - Which genes respond at either the 6 hour or 24 hour times in the wild-type? cont.wt <- makeContrasts( "wt.6hr-wt.0hr", "wt.24hr-wt.6hr", levels=design) fit2 <- contrasts.fit(fit, cont.wt) fit2 <- eBayes(fit2) topTableF(fit2, adjust="BH") # Output: wt.6hr.wt.0hr wt.24hr.wt.6hr AveExpr F P.Value adj.P.Val 112 3.2749023 -4.5401508 0.23644620 7.192590 0.006274150 0.9079656 142 0.2028617 3.5727319 0.31292924 6.425034 0.009419387 0.9079656 151 -2.4795481 4.5473025 0.28953869 6.138177 0.011026934 0.9079656 830 0.9768946 2.7571045 0.55529723 5.982599 0.012027262 0.9079656 371 -2.5848778 4.4752189 -0.68087827 5.813166 0.013235184 0.9079656 861 -3.6229467 1.2348225 -0.19658086 5.810336 0.013256488 0.9079656 645 2.6729536 -4.3124373 0.09475226 5.789848 0.013411914 0.9079656 926 3.5387477 -0.9448989 0.15060787 5.484057 0.015994787 0.9079656 113 2.5057968 -4.0472781 0.12254199 5.372589 0.017072749 0.9079656 802 0.5210958 2.9178136 -0.54632441 5.140624 0.019589928 0.9079656 > cont.wt Contrasts Levels wt.6hr-wt.0hr wt.24hr-wt.6hr wt.0hr -1 0 wt.6hr 1 -1 wt.24hr 0 1 mu.0hr 0 0 mu.6hr 0 0 mu.24hr 0 0 # Step 3- Which genes respond (i.e., change over time) in the mutant? cont.mu <- makeContrasts( "mu.6hr-mu.0hr", "mu.24hr-mu.6hr", levels=design) fit2 <- contrasts.fit(fit, cont.mu) fit2 <- eBayes(fit2) topTableF(fit2, adjust="BH") # Output: mu.6hr.mu.0hr mu.24hr.mu.6hr AveExpr F P.Value adj.P.Val 203 -4.70500261 4.3795233 -0.52285214 8.753341 0.002919147 0.8967851 797 -3.39270257 -0.5862948 -0.02746123 8.328550 0.003568277 0.8967851 828 -4.25071499 1.8429580 0.34257837 7.590078 0.005125338 0.8967851 764 0.02937019 3.7623514 0.32860517 6.991332 0.006965102 0.8967851 570 -2.14961101 -2.1415450 0.52207117 6.558165 0.008764670 0.8967851 457 2.28175860 -4.5011533 -0.25060779 6.522692 0.008933944 0.8967851 593 2.57911585 1.3339224 0.18262853 6.460369 0.009240381 0.8967851 693 -0.43909594 3.8805006 -0.30368945 6.117644 0.011153404 0.8967851 414 1.76240994 -4.3652464 0.12864332 5.887795 0.012686997 0.8967851 309 -3.57816645 3.4458003 -0.09221823 5.847096 0.012982697 0.8967851 # Step 4- Which genes respond differently over time in the mutant relative to the wild-type? cont.dif <- makeContrasts( Dif6hr =(mu.6hr-mu.0hr)-(wt.6hr-wt.0hr), Dif24hr=(mu.24hr-mu.6hr)-(wt.24hr-wt.6hr), levels=design) fit2 <- contrasts.fit(fit, cont.dif) fit2 <- eBayes(fit2) topTableF(fit2, adjust="BH") # Output: Dif6hr Dif24hr AveExpr F P.Value adj.P.Val 797 -6.0630607 1.468086 -0.02746123 8.922239 0.002699040 0.8685775 18 -1.7460726 7.130525 0.12631684 8.707761 0.002981974 0.8685775 764 -0.3370846 5.759971 0.32860517 7.512472 0.005329540 0.8685775 564 5.9827916 -4.071109 0.11052980 7.237032 0.006132233 0.8685775 24 -5.3124510 2.462141 -0.07153017 6.291352 0.010133010 0.8685775 113 -4.1366307 5.990927 0.12254199 6.138815 0.011023028 0.8685775 313 -2.0419712 6.157636 -0.12618538 5.979547 0.012047886 0.8685775 913 -4.4262959 6.195062 0.46998972 5.562351 0.015283627 0.8685775 926 -4.9695447 1.222076 0.15060787 5.496894 0.015875656 0.8685775 674 -0.9636603 -3.808384 0.13392844 5.020330 0.021058895 0.8685775
A case study using Limma package
http://www.biomedcentral.com/1756-0500/3/81