Microarray
Jump to navigation
Jump to search
Time Course
Limma package
- http://master.bioconductor.org/help/course-materials/2005/BioC2005/labs/lab01/drosEmbryo/ or http://bioinf.wehi.edu.au/marray/jsm2005/lab5/lab5.html. Note the package drosEmbryo is not available on Bioc although it can be downloaded from bioinf.wehi.edu.au. It still cannot be used.
> data(drosEmbryoRMA) Warning message: 'drosEmbryoRMA' looks like a pre-2.4.0 S4 object: please recreate it
- Limma Guide Section 9.6 (no .Rd file nor R code!).
# Step 1 - Read the design and create eset. targets <- read.table(file='stdin', header=T) FileName Target File1 wt.0hr File2 wt.0hr File3 wt.6hr File4 wt.24hr File5 mu.0hr File6 mu.0hr File7 mu.6hr File8 mu.24hr # Hit Ctrl+D twice. # eset = rma(ReadAffy()) exprs <- matrix(rnorm(1000*8), nr=1000) eset <- ExpressionSet(assayData = exprs) colnames(exprs) <- targets[,1] lev <- c("wt.0hr","wt.6hr","wt.24hr","mu.0hr","mu.6hr","mu.24hr") f <- factor(targets$Target, levels=lev) design <- model.matrix(~0+f) colnames(design) <- lev fit <- lmFit(eset, design) # Step 2 - Which genes respond at either the 6 hour or 24 hour times in the wild-type? cont.wt <- makeContrasts( "wt.6hr-wt.0hr", "wt.24hr-wt.6hr", levels=design) fit2 <- contrasts.fit(fit, cont.wt) fit2 <- eBayes(fit2) topTableF(fit2, adjust="BH") # Step 3- Which genes respond (i.e., change over time) in the mutant? cont.mu <- makeContrasts( "mu.6hr-mu.0hr", "mu.24hr-mu.6hr", levels=design) fit2 <- contrasts.fit(fit, cont.mu) fit2 <- eBayes(fit2) topTableF(fit2, adjust="BH") # Output: mu.6hr.mu.0hr mu.24hr.mu.6hr AveExpr F P.Value adj.P.Val 203 -4.70500261 4.3795233 -0.52285214 8.753341 0.002919147 0.8967851 797 -3.39270257 -0.5862948 -0.02746123 8.328550 0.003568277 0.8967851 828 -4.25071499 1.8429580 0.34257837 7.590078 0.005125338 0.8967851 764 0.02937019 3.7623514 0.32860517 6.991332 0.006965102 0.8967851 570 -2.14961101 -2.1415450 0.52207117 6.558165 0.008764670 0.8967851 457 2.28175860 -4.5011533 -0.25060779 6.522692 0.008933944 0.8967851 593 2.57911585 1.3339224 0.18262853 6.460369 0.009240381 0.8967851 693 -0.43909594 3.8805006 -0.30368945 6.117644 0.011153404 0.8967851 414 1.76240994 -4.3652464 0.12864332 5.887795 0.012686997 0.8967851 309 -3.57816645 3.4458003 -0.09221823 5.847096 0.012982697 0.8967851 # Step 4- Which genes respond differently over time in the mutant relative to the wild-type? cont.dif <- makeContrasts( Dif6hr =(mu.6hr-mu.0hr)-(wt.6hr-wt.0hr), Dif24hr=(mu.24hr-mu.6hr)-(wt.24hr-wt.6hr), levels=design) fit2 <- contrasts.fit(fit, cont.dif) fit2 <- eBayes(fit2) topTableF(fit2, adjust="BH") # Output: Dif6hr Dif24hr AveExpr F P.Value adj.P.Val 797 -6.0630607 1.468086 -0.02746123 8.922239 0.002699040 0.8685775 18 -1.7460726 7.130525 0.12631684 8.707761 0.002981974 0.8685775 764 -0.3370846 5.759971 0.32860517 7.512472 0.005329540 0.8685775 564 5.9827916 -4.071109 0.11052980 7.237032 0.006132233 0.8685775 24 -5.3124510 2.462141 -0.07153017 6.291352 0.010133010 0.8685775 113 -4.1366307 5.990927 0.12254199 6.138815 0.011023028 0.8685775 313 -2.0419712 6.157636 -0.12618538 5.979547 0.012047886 0.8685775 913 -4.4262959 6.195062 0.46998972 5.562351 0.015283627 0.8685775 926 -4.9695447 1.222076 0.15060787 5.496894 0.015875656 0.8685775 674 -0.9636603 -3.808384 0.13392844 5.020330 0.021058895 0.8685775
A case study using Limma package
http://www.biomedcentral.com/1756-0500/3/81