File:Filtered p.png

From 太極
Revision as of 20:35, 11 March 2024 by Brb (talk | contribs) (Note: # x-axis "p cutoff" should be "BH cutoff" or "FDR cutoff". # Each curve represents theta (filtering threshold). For example, theta=.1 means 10% of genes are filtered out before we do multiple testing (or BH adjustment). # It is seen the larger the theta, the more hypotheses are rejected at the same FDR cutoff. For example, #* if theta=0, 251 hypotheses are rejected at FDR=.1 #* if theta=.5, 355 hypotheses are rejected at FDR=.1. <syntaxhighlight lang='r'> BiocManager::install("ALL")...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Original file(1,020 × 1,096 pixels, file size: 171 KB, MIME type: image/png)

Summary

Note:

  1. x-axis "p cutoff" should be "BH cutoff" or "FDR cutoff".
  2. Each curve represents theta (filtering threshold). For example, theta=.1 means 10% of genes are filtered out before we do multiple testing (or BH adjustment).
  3. It is seen the larger the theta, the more hypotheses are rejected at the same FDR cutoff. For example,
    • if theta=0, 251 hypotheses are rejected at FDR=.1
    • if theta=.5, 355 hypotheses are rejected at FDR=.1.
BiocManager::install("ALL")
library("ALL")
library(genefilter)

data("ALL")
bcell <- grep("^B", as.character(ALL$BT))
moltyp <- which(as.character(ALL$mol.biol) %in%
                    +                     c("NEG", "BCR/ABL"))
ALL_bcrneg <- ALL[, intersect(bcell, moltyp)]
ALL_bcrneg$mol.biol <- factor(ALL_bcrneg$mol.biol)
table(ALL_bcrneg$mol.biol)

S2 <- rowVars(exprs(ALL_bcrneg))
p2 <- rowttests(ALL_bcrneg, "mol.biol")$p.value
theta <- seq(0, .5, .1)
# The filtered_p function permits easy simultaneous calculation of unadjusted 
#   or adjusted p-values over a range of filtering thresholds (θ).
p_bh <- filtered_p(S2, p2, theta, method="BH")
dim(p_bh)
# [1] 12625     6
head(p_bh) # adjusted p-values using the BH method
#             0%       10%       20%       30%       40%       50%
# [1,] 0.9185626 0.8943104 0.8624798 0.8278077        NA        NA
# [2,] 0.9585758 0.9460504 0.9304104 0.9059466 0.8874485 0.8709793
# [3,] 0.7022442        NA        NA        NA        NA        NA
# [4,] 0.9806216 0.9747555 0.9680574 0.9567131        NA        NA
# [5,] 0.9506087 0.9349386 0.9123998 0.8836386        NA        NA
# [6,] 0.6339004 0.5896890 0.5440851 0.4951371 0.4497915 0.4102711

range(p.adjust(p2, "BH") - p_bh[,1]) # 0 0

apply(p_bh, 2, function(x) mean(is.na(x))) |> round(2)
#   0% 10% 20% 30% 40% 50% 
#  0.0 0.1 0.2 0.3 0.4 0.5

i <- order(S2, decreasing = T)
i2 <- sort(i[1:round(12625*.9)])
# [1] 1 2 4 5 6  # sort the 3rd gene is filtered out
tmp <- rep(NA, 12625); tmp[i2] <- p.adjust(p2[i2], "BH")
range(tmp - p_bh[, 2], na.rm = TRUE) # 0 0

i3 <- sort(i[1:round(12625*.8)]); i3[1:5]
# [1] 1 2 4 5 6
tmp <- rep(NA, 12625); tmp[i3] <- p.adjust(p2[i3], "BH")
range(tmp - p_bh[, 3], na.rm = TRUE) # 0 0

i4 <- sort(i[1:round(12625*.7)]); i4[1:5]
# [1] 1 2 4 5 6
tmp <- rep(NA, 12625); tmp[i4] <- p.adjust(p2[i4], "BH")
range(tmp - p_bh[, 4], na.rm = TRUE) # [1] -6.533250e-05  9.570921e-05

i5 <- sort(i[1:round(12625*.6)]); i5[1:5]
# [1]  2  6  8  9 10
tmp <- rep(NA, 12625); tmp[i5] <- p.adjust(p2[i5], "BH")
range(tmp - p_bh[, 5], na.rm = TRUE) # 0 0

i6 <- sort(i[1:round(12625*.5)]); i6[1:5]
# [1]  2  6  8  9 10
tmp <- rep(NA, 12625); tmp[i6] <- p.adjust(p2[i6], "BH")
range(tmp - p_bh[, 6], na.rm = TRUE) # [1] -0.0000171919  0.0002731363

# input p_bh is already FDR adjusted p-values
rejection_plot(p_bh, at="sample",
               xlim=c(0,.3), ylim=c(0,1000),
               main="Benjamini & Hochberg adjustment")
sapply(c(.05, .1, .15, .2, .25, .3), function(x) sum(p_bh[,1] < x))
# 169 251 341 426 554 660
sapply(c(.05, .1, .15, .2, .25, .3), function(x) sum(p_bh[,2] < x, na.rm=T))
# 178 272 363 459 602 723
sapply(c(.05, .1, .15, .2, .25, .3), function(x) sum(p_bh[,3] < x, na.rm=T))
# 192 294 402 526 649 784
sapply(c(.05, .1, .15, .2, .25, .3), function(x) sum(p_bh[,4] < x, na.rm=T))
# 201 308 439 590 717 876
sapply(c(.05, .1, .15, .2, .25, .3), function(x) sum(p_bh[,5] < x, na.rm=T))
# 209 343 475 637 788 953
sapply(c(.05, .1, .15, .2, .25, .3), function(x) sum(p_bh[,6] < x, na.rm=T))
# 222 355 530 655 836 993

abline(h=200, lty=2); abline(v=.05, lty=2)
abline(h=300, lty=2); abline(v=.1, lty=2)
abline(h=400, lty=2); abline(v=.15, lty=2)
abline(h=500, lty=2); abline(v=.2, lty=2)
abline(h=600, lty=2); abline(v=.25, lty=2)
abline(h=800, lty=2); abline(v=.3, lty=2)

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current20:35, 11 March 2024Thumbnail for version as of 20:35, 11 March 20241,020 × 1,096 (171 KB)Brb (talk | contribs)Note: # x-axis "p cutoff" should be "BH cutoff" or "FDR cutoff". # Each curve represents theta (filtering threshold). For example, theta=.1 means 10% of genes are filtered out before we do multiple testing (or BH adjustment). # It is seen the larger the theta, the more hypotheses are rejected at the same FDR cutoff. For example, #* if theta=0, 251 hypotheses are rejected at FDR=.1 #* if theta=.5, 355 hypotheses are rejected at FDR=.1. <syntaxhighlight lang='r'> BiocManager::install("ALL")...

The following page uses this file: