Cancer

From 太極
Jump to navigation Jump to search

癌症 Cancer

避開身邊致癌物

一半以上癌症可預防 避開身邊6種致癌物

食物

植物油 vegetable oil

低溫烹調

100℃低溫烹調 少吃到致癌物質

另類療法

名醫自己如何抗癌 48 招. 用經絡儀 來測量12經絡能量平衡與提升。

走路

做1件事降13種癌症風險

Different stage of cancer

See http://seer.cancer.gov/cgi-bin/glossary/glossary.pl

  • In situ cancer is early cancer that is present only in the layer of cells in which it began.
  • Localized cancer is cancer that is limited to the organ in which it began, without evidence of spread.
  • Regional cancer is cancer that has spread beyond the original (primary) site to nearby lymph nodes or organs and tissues.
  • Distant cancer is cancer that has spread from the primary site to distant organs or distant lymph nodes.
  • Unstaged cancer is cancer for which there is not enough information to indicate a stage.

常見癌症

  • 肺腺癌 Lung adenocarcinoma
  • Breast Cancer
  • Colorectal Cancer
  • Endometrial 子宮內膜 Cancer
  • Liver Cancer
  • Pancreatic Cancer. Drug Trio Improves Odds Against Advanced Pancreatic Cancer
  • Multiple Myeloma 多發性骨髓瘤. 骨頭像被開洞!當心骨頭疼痛 健康2.0
  • Glioblastomas(GBM)膠質母細胞瘤. temozolomide (TMZ), Glioma 神經膠質瘤
    • GBM是最常见、最恶性的膠質瘤,通常生长得非常快速且侵犯性强,且常常会在治疗后复发。
    • 而神经膠質瘤是一类包括GBM在内的多种不同亚型的膠質瘤。与GBM相比,神经膠質瘤通常生长得更慢,但仍具有侵犯性和复发的趋势。
    • MGMT指的是酶 O-6-甲基鳥嘌呤-DNA-甲基轉移酶(O-6-methylguanine-DNA methyltransferase),是一种由MGMT基因编码的蛋白质。MGMT酶在维护DNA稳定性和细胞修复机制中发挥着重要的作用。具体而言,MGMT酶能够修复DNA中的甲基化损伤,这种损伤可能会导致基因突变和肿瘤的发生。 在脑部肿瘤治疗中,MGMT通常被认为是一种预后标志物。在某些治疗方案中,例如放射治疗和化学治疗中,MGMT的表达水平可能会影响治疗的疗效和预后。例如,MGMT高表达的患者通常对放疗和化疗的反应较差,因为MGMT酶可以修复这些治疗造成的DNA损伤,从而使肿瘤细胞更难被杀灭。因此,MGMT在脑部肿瘤治疗中是一个非常重要的分子标志物。
    • MGMT stands for O-6-methylguanine-DNA methyltransferase, which is an enzyme that is encoded by the MGMT gene. MGMT plays an important role in maintaining DNA stability and cellular repair mechanisms. Specifically, MGMT is able to repair methylated 癌細胞 DNA damage, which can otherwise lead to gene mutations and the development of cancer. In brain tumor treatment, MGMT is often considered a prognostic biomarker. The expression levels of MGMT can impact the effectiveness of certain treatment strategies, such as radiation therapy and chemotherapy. For example, patients with high MGMT expression levels tend to have poorer responses to radiation and chemotherapy, as MGMT can repair the DNA damage caused by these treatments, making it more difficult to kill tumor cells. Therefore, MGMT is a critically important molecular marker in brain tumor treatment.
    • MGMT methylation typically leads to lower gene expression. Methylation of the MGMT promoter region, which is a common epigenetic modification in some cancers, can lead to decreased expression of the MGMT gene and therefore lower levels of MGMT protein.
    • In brain tumor treatment, MGMT promoter methylation status is often used as a biomarker to predict treatment response. Tumors with methylated MGMT promoters tend to have lower levels of MGMT protein and are more sensitive to alkylating agents such as temozolomide, a chemotherapy drug used to treat brain tumors. This is because the DNA damage caused by temozolomide cannot be efficiently repaired in cells with low MGMT expression due to promoter methylation, resulting in increased sensitivity to the drug.
  • 大腸癌 & 十二指腸癌 健康2.0. 你知道有「這個基因突變」的人,有80%的機率得腸癌嗎

Tumor types

Cancer Classification

Carcinoma

  • Carcinomas are divided into two major subtypes:
    • adenocarcinoma, which develops in an organ or gland, and
    • squamous cell carcinoma, which originates in the squamous epithelium.
  • What is carcinoma?
  • Sarcoma vs. Carcinoma: Differences and Similarities.
    • Carcinomas are much more common, accounting for 85% to 90% of cancers. Sarcomas, in contrast, represent slightly less than 1% of cancer types. (The other types of cancer include leukemias, lymphomas, and myelomas, although some cancers may have characteristics of more than one type, for example, carcinosarcomas.)
    • Carcinomas arise out of epithelial cells that line the surface and organs of the body, whereas sarcomas arise from connective tissues such as bone, cartilage, fibrous tissue, blood vessels, and nerves.
    • Carcinomas tend to be more common in people over the age of 50, but can occur in young adults and children. Sarcomas may occur at any age, but are often diagnosed in children and young adults. Roughly 15% of cancers diagnosed in people less than 20 years of age are sarcomas.
  • 上皮細胞間質化(Epithelial to mesenchymal transition/EMT), 循環腫瘤細胞(Circulating tumor cells), 遠端轉移
    • 感覺晚上精神特別好?癌細胞也是——趁你熟睡時偷偷進行的「癌症轉移機制」 大部分的上皮細胞癌(譬如說大部分的乳癌、卵巢癌等等)都喜歡聚在一起,當細胞被打散反而生長得比較差,甚至無法生長。但是當這些細胞準備要遠端轉移時,他們會由表皮細胞轉換成間質細胞,脫離原本的基質,進入血液循環。因此很多癌症只要有遠端器官轉移,就屬於三期癌症以上,無法進行局部治療(譬如手術切除),而必須要進行系統性治療,譬如像是化學治療、賀爾蒙治療、標靶治療、免疫療法等等。
    • 上皮-間質轉化 (Epithelial-Mesenchymal Transition, EMT) 是一種細胞生物學現象,是指上皮細胞轉化成為間質細胞的過程。在此過程中,上皮細胞失去其上皮細胞的特徵,如細胞極性和細胞-細胞黏附能力,同時獲得了間質細胞的特徵,如增加細胞運動性和抗凋亡能力。EMT 通常發生在胚胎發育、創傷修復和癌症轉移等生理和病理狀態中。
    • 在癌症中,EMT 可能促進腫瘤細胞的轉移和侵犯,增加其生存能力和抵抗治療的能力。EMT 還可能促進癌症幹細胞的形成,這些幹細胞被認為是癌症治療失敗和復發的主要原因之一。
    • EMT 的調節是一個復雜的過程,涉及到許多調節分子和信號通路。例如,轉錄因子 Snail、Slug、Twist 和 ZEB1 等都被證明可以抑制上皮細胞標誌物的表達,並啟動間質標誌物的表達。此外,細胞外基質成分、細胞腔內環境、細胞間通訊等因素也可能參與調節 EMT。
    • 抑制上皮細胞標誌物的表達是 EMT 過程中的一個重要步驟,它會使得癌細胞失去上皮細胞的特徵,增加細胞的運動性和侵犯性,促進癌細胞轉移
    • EMT 過程中的轉錄因子(transcription factors) Snail、Slug、Twist 和 ZEB1 等被證明可以抑制 (repress) 上皮細胞 epithelial cell 標誌物 markers (CDH1) 的表達,啟動 (promote) 間質 mesenchymal 標誌物的表達,進而促進 EMT 的發生。這些轉錄因子在多種癌症中均被發現過度表達,並與癌症轉移和惡性程度有關。
    • 這些轉錄因子在多種癌症中都被發現過度表達,這可能是促進癌細胞轉移和侵犯的原因之一。例如,在乳腺癌、前列腺癌、膀胱癌、大腸癌等多種癌症中,Snail、Slug、Twist 和 ZEB1 的表達均被觀察到過度表達。

Sarcoma

Rare cancer

About Rare Cancers from cancer.gov

Differentiated tumor (grade), stage

  • What does differentiated mean? Most types of cancer are divided into three grades of differentiation – well differentiated, moderately differentiated, and poorly differentiated.
    • The grade is important because more differentiated cancers (well and moderately differentiated) tend to grow more slowly and spread less frequently than less differentiated cancers (poorly differentiated and undifferentiated).
    • Undifferentiated cells = cancer cells (look nothing like normal cells)
  • The Histologic Grading of Cancer 1995
  • Cancer Grade vs. Cancer Stage. Cancer cells that look and organize most like healthy cells and tissue are low grade tumors. Doctors describe these cancers as being well differentiated.
    • Grade 1: Tumor cells and tissue looks most like healthy cells and tissue. These are called well-differentiated tumors and are considered low grade.
    • Grade 4: These undifferentiated cancers have the most abnormal looking cells. These are the highest grade and typically grow and spread faster than lower grade tumors.
  • Differentiation is a way of describing how similar cancer cells are to normal cells, and it is used to classify cancer into different types.
    • Differentiated cancer cells are those that resemble normal cells of the tissue from which they originated. These cells tend to grow and spread in a more organized way, and they are often considered to be less aggressive than undifferentiated cancer cells. Differentiated cancer cells tend to be less likely to invade surrounding tissue and to spread to other parts of the body. They are also more likely to respond well to traditional treatments such as chemotherapy and radiation.
    • Undifferentiated cancer cells, on the other hand, do not resemble normal cells of the tissue from which they originated. These cells tend to grow and spread in a more chaotic and disorganized way, and they are often considered to be more aggressive than differentiated cancer cells. They tend to be more likely to invade surrounding tissue and to spread to other parts of the body. They are also less likely to respond well to traditional treatments such as chemotherapy and radiation.
    • It's worth noting that cancer histological type can be a combination of both differentiated and undifferentiated cells, and also the differentiation of cancer cells can change over time, for example, a well-differentiated cancer may progress to an undifferentiated form over time.
    • Histological classification of cancer is important for diagnosis, prognosis, and treatment decisions. Understanding the histological type of a cancer can provide important information about the cancer's behavior and potential response to treatment.
  • STAGING & GRADE for breast cancer
  • How histological differentiation is measured?
    • Histological differentiation is usually measured by analyzing tissue samples obtained through a biopsy. The samples are then examined under a microscope by a pathologist, who can assess the degree of differentiation of the cancer cells.
    • The pathologist will look at the size, shape, and organization of the cells, as well as their nuclei, cytoplasm, and other cellular components. They will also assess the presence and intensity of certain markers, such as proteins or enzymes, which are characteristic of normal or cancer cells.
    • Different histological techniques are used to measure the level of differentiation of cancer cells, such as Hematoxylin and Eosin (H&E) staining, which is the most widely used for general histological examination. Some other techniques used to analyze cancer cell differentiation are immunohistochemistry, in situ hybridization, electron microscopy, and special stains like Periodic acid-Schiff (PAS) and Alcian blue.
    • The pathologist will then compare the appearance of the cancer cells to normal cells of the same tissue type, and based on this comparison, assign the cancer a grade of differentiation. The grade of differentiation is usually divided into well-differentiated, moderately differentiated, and poorly differentiated, with well-differentiated cancer cells resembling normal cells most closely, and poorly differentiated cancer cells looking the most abnormal.
    • It's worth noting that the assessment of histological differentiation can be subjective, and it may vary among pathologists. Therefore, it's important for the pathologist to have a good understanding of the normal anatomy and histology of the tissue, as well as the criteria for differentiating cancer cells from normal cells.
  • In general, what are the proportions of differentiated and undifferentiated types in cancer patients?
    • The proportion of differentiated and undifferentiated cancer cells can vary depending on the type of cancer. In general, well-differentiated cancer cells tend to be less aggressive and have a better prognosis than poorly differentiated or undifferentiated cancer cells.
    • For example, in breast cancer, well-differentiated tumors, known as ductal carcinoma in situ (DCIS), are considered to have a relatively good prognosis and a low risk of metastasis, while poorly differentiated or undifferentiated tumors, known as triple-negative breast cancer, are considered to have a poorer prognosis and a higher risk of metastasis.
    • In lung cancer, well-differentiated tumors, known as adenocarcinomas, tend to have a better prognosis than undifferentiated tumors, such as squamous cell carcinomas or large cell carcinomas, which have a poorer prognosis.
    • In colon cancer, well-differentiated tumors, known as adenomas, are considered to be less aggressive than undifferentiated tumors, such as signet ring cell carcinomas which are considered to be more aggressive and have a poorer prognosis.
    • In general, it's worth noting that the proportion of differentiated and undifferentiated cells can vary depending on the type and stage of cancer, and that the proportion of undifferentiated cells is often associated with a poorer prognosis and a higher risk of recurrence and metastasis.

Cancer-Causing Cells, Mutation

You May Already Have Billions of Cancer-Causing Cells

檢查方法 tumor marker

治療方法

化療(chemotherapy)和放療(radiation therapy)

化疗和放疗为什么不能治愈癌症?

Neoadjuvant therapy 新輔助療法

(cancer.gov) Treatment given as a first step to shrink a tumor before the main treatment, which is usually surgery, is given. Examples of neoadjuvant therapy include chemotherapy, radiation therapy, and hormone therapy. It is a type of induction therapy.

Adjuvant therapy 輔助治療

(cancer.gov) Additional cancer treatment given after the primary treatment to lower the risk that the cancer will come back. Adjuvant therapy may include chemotherapy, radiation therapy, hormone therapy, targeted therapy (Balversa - FDA approves first targeted therapy for metastatic bladder cancer), or biological therapy.

Immunotherapy

Phase of clinical trials

https://en.wikipedia.org/wiki/Phases_of_clinical_research

What Are the Different Types of Clinical Research? fda.gov

What Happens in a Clinical Trial? Phase III of a clinical trial usually involves up to 3,000 participants who have the condition that the new medication is meant to treat.

Demystifying Clinical Trials for Patients by Dr. Elise Kohn, Clinical Trials: What You Need to Know

What Are the Phases of Clinical Trials? cancer.org

  • Phase I clinical trials: Is the treatment safe?
  • Phase II clinical trials: Does the treatment work?
    • Usually, a group of 25 to 100 patients with the same type of cancer get the new treatment in a phase II study.
    • No placebo (sham or inactive treatments) is used.
  • Most phase III clinical trials have a large number of patients, at least several hundred.
    • Placebos may be used in some phase III studies, but they’re never used alone if there’s a treatment available that works.
    • Phase III clinical trials: Is it better than what’s already available?

TILs/Tumor-infiltrating lymphocytes 腫瘤浸潤淋巴細胞

AYA/dolescent and young-adult

Cancer in Youth Means Heightened Odds for Another Cancer Later

COVID

Past History of Cancer Won't Make You More Vulnerable to Severe COVID

Genes

Related to cancer

Anticancer drug resistance

Anticancer drug resistance: an update and perspective 2021

Druggable genes

Overview of Targeted Therapies for Cancer

Most notable genes present in the human genome

https://en.wikipedia.org/wiki/List_of_human_genes

House-keeping genes

Tumor suppressor gene

Immune genes

快遠離這些飲食習慣!會改變細胞的基因表現. NLRP3 gene

Oncogene

Oncogenes are genes that promote cell growth and reproduction.

COSMIC/Catalogue of somatic mutations in cancer

TP53

The expression of TP53 is frequently altered in cancer. TP53 is commonly referred to as a tumor suppressor gene, meaning that its normal function is to help regulate cell division and prevent the formation of tumors. Mutations in TP53 are among the most common genetic changes in cancer, and are associated with a wide range of tumor types.

In some cancers, TP53 is altered through mutations that result in a loss of function, leading to increased cell growth and division, which can contribute to the development of a tumor. In these cases, the gene expression of TP53 may be decreased.

In other cancers, TP53 is overactive due to mutations that result in a gain of function, leading to increased cell death. In these cases, the gene expression of TP53 may be increased.

It's important to note that the specific expression patterns of TP53 can vary depending on the type of cancer and the stage of the disease, so it's not possible to make a blanket statement about the expression of TP53 in all cancer patients.

Genes in news

Breast cancer

  • https://en.wikipedia.org/wiki/Breast_cancer, https://en.wikipedia.org/wiki/Breast_cancer_classification#Receptor_status
    • estrogen receptors (ER+) and progesterone receptors (PR+)
    • Breast cancer cells have receptors on their surface and in their cytoplasm and nucleus. Chemical messengers such as hormones bind to receptors, and this causes changes in the cell.
    • Breast cancer cells may or may not have three important receptors: estrogen receptor (ER)雌激素受體, progesterone receptor (PR)孕酮受體, and HER2表皮生長因子受體-2.
    • ER+ cancer cells (that is, cancer cells that have estrogen receptors) depend on estrogen for their growth, so they can be treated with drugs to block estrogen effects (e.g. tamoxifen), and generally have a better prognosis.
    • 超過10%乳癌患者的TP53、PIK3CA和GATA3基因有突變。
  • Generally, after surgery, such patients receive endocrine therapy, such as tamoxifen, which is designed to block the cancer-spurring effects of hormones.
  • Take a closer look at biomarkers to better understand your patients’ disease
    • HR and HER2 are prognostic biomarkers
    • HR-positive disease is the most common subtype and results in the majority of breast cancer deaths
    • BRCA is another biomarker that can provide you with additional valuable information

健康2.0世紀論壇

Proteins

  • https://en.wikipedia.org/wiki/Protein
  • Types:
    • Enzymes: as we mentioned earlier, enzymes are proteins that catalyze chemical reactions in the body.
    • Structural proteins: these proteins provide support and structure to cells and tissues. Examples include collagen, elastin, and keratin.
    • Transport proteins: these proteins help to transport molecules and ions across membranes, such as hemoglobin, which transports oxygen in the blood.
    • Hormones: these proteins act as signaling molecules and help to regulate various bodily processes, such as insulin which regulates glucose metabolism.
    • Antibodies: these proteins play an important role in the immune system by recognizing and neutralizing foreign substances, such as viruses and bacteria.
    • Contractile proteins: these proteins enable muscles to contract, allowing for movement in the body. Examples include actin and myosin.
    • Storage proteins: these proteins store important molecules in the body, such as ferritin, which stores iron in the liver.