Uploads by Brb

Jump to navigation Jump to search

This special page shows all uploaded files.

File list
First pagePrevious pageNext pageLast page
Date Name Thumbnail Size Description Versions
20:06, 24 August 2024 R-squared.png (file) 14 KB   1
14:54, 13 August 2024 Geom bar reorder.png (file) 15 KB <syntaxhighlight lang='r'> library(ggplot2) library(forcats) data <- data.frame( category = c("A", "B", "C", "D"), value = c(3, 5, 2, 8) ) data$category <- fct_reorder(data$category, data$value) levels(data$category) # [1] "C" "A" "B" "D" ggplot(data, aes(x = category, y = value, fill = category)) + geom_bar(stat = "identity") + coord_flip() + labs(x = "Category", y = "Value") + theme_minimal() </syntaxhighlight> 1
14:47, 13 August 2024 Geom bar simple.png (file) 15 KB <syntaxhighlight lang='r'> library(ggplot2) data <- data.frame( category = c("A", "B", "C", "D"), value = c(3, 5, 2, 8) ) ggplot(data, aes(x = category, y = value, fill = category)) + geom_bar(stat = "identity") + coord_flip() + labs(x = "Category", y = "Value") + # scale_fill_manual(values = c("A" = "red", "B" = "blue", "C" = "green", "D" = "purple")) theme_minimal() </syntaxhighlight> 1
12:44, 12 August 2024 Nomogram.png (file) 145 KB   1
14:56, 15 July 2024 GfortranMac.png (file) 380 KB   1
07:24, 22 June 2024 Verizonont.jpg (file) 338 KB   1
12:38, 14 June 2024 CredoError.png (file) 92 KB   1
13:31, 8 June 2024 Add camera.png (file) 34 KB   1
14:12, 27 May 2024 Gganimation.gif (file) 750 KB <syntaxhighlight lang='r'> library(gganimate) library(ggplot2) library(tidyverse) library(ggimage) data_link <- "https://raw.githubusercontent.com/goodekat/presentations/master/2019-isugg-gganimate-spooky/bat-data/bats-subset.csv" bats <- read.csv(data_link) %>% mutate(id = factor(id)) bat_image_link <- "https://upload.wikimedia.org/wikipedia/en/a/a9/MarioNSMBUDeluxe.png" animation <- bats %>% mutate(image = bat_image_link) %>% filter(id == 1) %>% ggplot(aes(x = longitude, y = la... 1
08:58, 23 May 2024 Pca ggplot2.png (file) 136 KB <syntaxhighlight lang='r'> df <- iris[, 1:4] # exclude "Species" column pca_res <- prcomp(df, scale = TRUE) ggplot(iris, aes(x = pca_res$x[,1], y = pca_res$x[,2], color = Species)) + geom_point() + stat_ellipse() </syntaxhighlight> 1
14:18, 8 May 2024 Rtools44.png (file) 57 KB   1
16:31, 23 April 2024 Polygon.png (file) 30 KB <syntaxhighlight lang='r'> plot(c(1, 9), 1:2, type = "n") polygon(1:9, c(2,1,2,1,NA,2,1,2,1), col = c("red", "blue"), border = c("green", "yellow"), lwd = 3, lty = c("dashed", "solid")) </syntaxhighlight> 1
13:49, 23 April 2024 Venn4.png (file) 103 KB <syntaxhighlight lang='r'> library(venn) set.seed(12345) x <- list(First = 1:40, Second = 15:60, Third = sample(25:50, 25), Fourth=sample(15:65, 35)) venn(x, ilabels = "counts", zcolor = "style") </syntaxhighlight> 1
14:53, 17 April 2024 Tiv-demo.png (file) 100 KB   1
19:17, 12 March 2024 Filtered R mean.png (file) 68 KB Use sample mean instead of variance for each gene as the filter statistic. <syntaxhighlight lang='r'> # Follow the previous code chunks M2 <- rowMeans(exprs(ALL_bcrneg)) theta <- seq(0, .80, .01) R_BH <- filtered_R(alpha=.10, M2, p2, theta, method="BH") which.max(R_BH) # 10% <---- so theta=0.1 is the optimal; only 10% genes are removed # 11 max(R_BH) # [1] 270 plot(theta, R_BH, type="l", xlab=expression(theta), ylab="Rejections", main="BH cutoff = 0.1") abline(v=.1, lty=2) <... 1
07:54, 12 March 2024 Rainbow v05.png (file) 428 KB   1
07:53, 12 March 2024 Rainbow s05.png (file) 428 KB   1
07:52, 12 March 2024 Rainbow default.png (file) 426 KB <syntaxhighlight lang='r'> library(shiny) # Define the UI ui <- fluidPage( titlePanel("Rainbow Color Palette"), sidebarLayout( sidebarPanel( sliderInput("s_value", "Saturation (s):", min = 0, max = 1, value = 1, step = 0.01), sliderInput("v_value", "Value (v):", min = 0, max = 1, value = 1, step = 0.01) ), mainPanel( plotOutput("rainbow_plot") ) ) ) # Define the server server <- function(input, output) { output$rainbow_plot <- renderPlot({ s <-... 1
20:41, 11 March 2024 Filtered R.png (file) 77 KB <syntaxhighlight lang='r'> theta <- seq(0, .80, .01) R_BH <- filtered_R(alpha=.10, S2, p2, theta, method="BH") which.max(R_BH) # 60% <---- so theta=0.6 is the optimal filtering threshold # 61 max(R_BH) # [1] 380 plot(theta, R_BH, type="l", xlab=expression(theta), ylab="Rejections", main="BH cutoff = 0.1") abline(v=.6, lty=2) </syntaxhighlight> 1
20:35, 11 March 2024 Filtered p.png (file) 171 KB Note: # x-axis "p cutoff" should be "BH cutoff" or "FDR cutoff". # Each curve represents theta (filtering threshold). For example, theta=.1 means 10% of genes are filtered out before we do multiple testing (or BH adjustment). # It is seen the larger the theta, the more hypotheses are rejected at the same FDR cutoff. For example, #* if theta=0, 251 hypotheses are rejected at FDR=.1 #* if theta=.5, 355 hypotheses are rejected at FDR=.1. <syntaxhighlight lang='r'> BiocManager::install("ALL")... 1
15:49, 8 March 2024 DataOutliers2.png (file) 133 KB {{Pre}} puree <- read.csv("https://gist.githubusercontent.com/arraytools/e851ed88c7456779557fbf3ed67b157a/raw/9971c61fea1db99acbd9de17ea82679ba9811358/dataOutliers2.csv", header=F) plot(puree[,1], puree[, 2], xlab="X", ylab="Y") abline(lm(V2 ~ V1, data = puree)) # robust regression require(MASS) summary(rlm(V2 ~ V1, data = puree)) abline(rr.huber <- rlm(V2 ~ V1, data = puree), col = "blue") # quantile regression library(quantreg) abline(rq(V2 ~ V1, data=puree, tau = 0.5), col = "red") # theil... 1
14:27, 7 March 2024 DataOutliers.png (file) 172 KB {{Pre}} puree <- read.csv("https://gist.githubusercontent.com/arraytools/47d3a46ae1f9a9cd47db350ae2bd2338/raw/b5cccc8e566ff3bef81b1b371e8bfa174c98ef38/dataOutliers.csv", header = FALSE) plot(puree[,1], puree[, 2], xlim=c(0,1), ylim=c(0,1), xlab="X", ylab="Y") abline(0,1, lty=2) abline(lm(V2 ~ V1, data = puree)) # robust regression require(MASS) summary(rlm(V2 ~ V1, data = puree)) abline(rr.huber <- rlm(V2 ~ V1, data = puree), col = "blue") # almost overlapped with lm() # quantile regressio... 1
21:41, 10 February 2024 R162.png (file) 25 KB   1
21:53, 8 February 2024 Jitterbox.png (file) 50 KB <syntaxhighlight lang='r'> nc <- 5 assy <- LETTERS[1:nc] pal <- ggpubr::get_palette("default", nc) set.seed(1) nr <- 5 mat <- matrix(runif(nr*length(assy)), nrow = nr, ncol = length(assy)) set.seed(1) cutoffs <- runif(nc) colnames(mat) <- assy par(mar=c(5,4,1,1)+.1) plot(1, 1, xlim = c(0.5, nc + .5), ylim = c(0,1), type = "n", xlab = "Assay", ylab = "Score", xaxt = 'n') for (i in 1:nc) { rect(i - 0.25, 0, i + 0.25, 1, col = pal[i]) lines(x = c(i - 0.25, i + 0.25), y = c(cutof... 1
10:25, 19 January 2024 RStudioAbort.png (file) 38 KB   1
19:38, 15 October 2023 Geomerrorbarh.png (file) 17 KB <syntaxhighlight lang='rsplus'> df <- data.frame( trt = factor(c("Treatment 1", "Treatment 2", "Treatment 3", "Treatment 4", "Treatment 5")), # treatment resp = c(1, 5, 3, 4, 2), # response se = c(0.1, 0.3, 0.3, 0.2, 0.2) # standard error ) # make 'Treatment 1' shown at the top df$trt <- factor(df$trt, levels = c("Treatment 5", "Treatment 4", "Treatment 3", "Treatment 2", "Treatment 1")) p <- ggplot(df, aes(resp, trt)) + geom_point() p + geom_errorbarh(aes(xmax=resp + se, xmin=resp-se),... 1
16:32, 9 October 2023 Calibre.png (file) 128 KB   1
11:18, 24 August 2023 Wheel f400.png (file) 200 KB   1
11:17, 24 August 2023 Wheel f8.png (file) 224 KB   1
14:59, 22 August 2023 Roc asah.png (file) 38 KB <pre> par(mfrow=c(1,2)) roc(aSAH$outcome, aSAH$s100b, plot = T) roc(aSAH$outcome2, aSAH$s100b, plot = T) par(mfrow=c(1,1)) </pre> 1
13:44, 13 August 2023 Rotateheatmap.png (file) 52 KB <syntaxhighlight lang="rsplus"> library(circlize) set.seed(123) mat = matrix(rnorm(80), 8, 10) rownames(mat) = paste0("R", 1:8) colnames(mat) = paste0("C", 1:10) col_anno = HeatmapAnnotation( df = data.frame(anno1 = 1:10, anno2 = rep(letters[1:3], c(4,3,3))), col = list(anno2 = c("a" = "red", "b" = "blue", "c" = "green"))) row_anno = rowAnnotation( df = data.frame(anno3 = 1:8, anno4 = rep(l... 1
15:21, 12 August 2023 Rotatedend.png (file) 17 KB   1
15:17, 12 August 2023 Dend12.png (file) 11 KB {{Pre}} set.seed(123) dat <- matrix(rnorm(20), ncol=2) # perform hierarchical clustering hc <- hclust(dist(dat)) # plot dendrogram plot(hc) # get ordering of leaves ord <- order.dendrogram(as.dendrogram(hc)) ord # [1] 8 3 6 5 10 1 9 7 2 4 # Same as seen on the dendrogram nodes # Rotate the branches (1,9) & (7,2,4) plot(rotate(hc, c("8", "3", "6", "5", "10", "7", "2", "4", "1", "9")), main="Rotated") </pre> 1
15:39, 6 August 2023 Plotly3d.png (file) 90 KB   1
14:39, 31 July 2023 Filter single.png (file) 15 KB   1
11:47, 27 May 2023 Vibrant ink rstheme.png (file) 115 KB https://github.com/captaincaed/rstudio/blob/main/vibrant_ink_SB_2.rstheme 1
12:46, 21 May 2023 R2.png (file) 15 KB <syntaxhighlight lang='rsplus'> x <- seq(0, 2.5, length=20) y <- sin(x) plot(x, y) abline(lsfit(x, y, intercept = F), col = 'red') summary(fit)$r.squared # [1] 0.8554949 </syntaxhighlight> 1
15:02, 11 May 2023 Paletteggplot2.png (file) 25 KB   1
11:12, 10 May 2023 Paletteshowcol.png (file) 24 KB   1
10:15, 10 May 2023 Palettebarplot.png (file) 9 KB <syntaxhighlight lang='rsplus'> pal <- c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00") # pal <- sample(colors(), 10) # randomly pick 10 colors barplot(rep(1, length(pal)), col = pal, space = 0, axes = FALSE, border = NA) </syntaxhighlight> 1
10:14, 10 May 2023 Paletteheatmap.png (file) 12 KB <syntaxhighlight lang='rsplus'> pal <- c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00") pal <- matrix(pal, nr=2) # acknowledge a nice warning message pal_matrix <- matrix(seq_along(pal), nr=nrow(pal), nc=ncol(pal)) heatmap(pal_matrix, col = pal, Rowv = NA, Colv = NA, scale = "none", ylab = "", xlab = "", main = "", margins = c(5, 5)) # 2 rows, 3 columns with labeling on two axes </syntaxhighlight> 1
10:08, 10 May 2023 Rpalette.png (file) 28 KB <syntaxhighlight lang='rsplus'> pal <- palette() # [1] "black" "#DF536B" "#61D04F" "#2297E6" "#28E2E5" "#CD0BBC" "#F5C710" # [8] "gray62" pal_matrix <- matrix(seq_along(pal), nr=1) image(pal_matrix, col = pal, axes = FALSE) # 8 rows, 1 column, but no labeling # Starting from bottom, left. par()$usr # change with the data dim text(0, (par()$usr[4]-par()$usr[3])/8*c(0:7), labels = pal) </syntaxhighlight> 1
12:52, 9 May 2023 Ggplotbarplot.png (file) 23 KB   1
10:40, 9 May 2023 Cbioportal cptac.png (file) 120 KB   1
20:07, 25 April 2023 Losslesscut.png (file) 323 KB   1
16:47, 23 April 2023 Sleepstudy.png (file) 59 KB <syntaxhighlight lang='rsplus'> sleepstudy %>% ggplot(aes(x=Days, y = Reaction)) + geom_point() + geom_smooth(method = "lm", se = FALSE) + facet_wrap(~Subject) </syntaxhighlight> 1
15:58, 17 March 2023 Svg4.svg (file) 33 KB <pre> svg("svg4.svg", width=4, height=4) plot(1:10, main="width=4, height=4") dev.off() </pre> 1
09:44, 11 March 2023 RStudioVisualMode.png (file) 10 KB   1
15:01, 8 March 2023 Pca directly2.png (file) 35 KB   1
10:11, 11 February 2023 MultipleProbes.PNG (file) 28 KB   1
First pagePrevious pageNext pageLast page