File list
Jump to navigation
Jump to search
This special page shows all uploaded files.
Date | Name | Thumbnail | Size | User | Description | Versions |
---|---|---|---|---|---|---|
20:06, 24 August 2024 | R-squared.png (file) | 14 KB | Brb | 1 | ||
14:54, 13 August 2024 | Geom bar reorder.png (file) | 15 KB | Brb | <syntaxhighlight lang='r'> library(ggplot2) library(forcats) data <- data.frame( category = c("A", "B", "C", "D"), value = c(3, 5, 2, 8) ) data$category <- fct_reorder(data$category, data$value) levels(data$category) # [1] "C" "A" "B" "D" ggplot(data, aes(x = category, y = value, fill = category)) + geom_bar(stat = "identity") + coord_flip() + labs(x = "Category", y = "Value") + theme_minimal() </syntaxhighlight> | 1 | |
14:47, 13 August 2024 | Geom bar simple.png (file) | 15 KB | Brb | <syntaxhighlight lang='r'> library(ggplot2) data <- data.frame( category = c("A", "B", "C", "D"), value = c(3, 5, 2, 8) ) ggplot(data, aes(x = category, y = value, fill = category)) + geom_bar(stat = "identity") + coord_flip() + labs(x = "Category", y = "Value") + # scale_fill_manual(values = c("A" = "red", "B" = "blue", "C" = "green", "D" = "purple")) theme_minimal() </syntaxhighlight> | 1 | |
12:44, 12 August 2024 | Nomogram.png (file) | 145 KB | Brb | 1 | ||
14:56, 15 July 2024 | GfortranMac.png (file) | 380 KB | Brb | 1 | ||
07:24, 22 June 2024 | Verizonont.jpg (file) | 338 KB | Brb | 1 | ||
12:38, 14 June 2024 | CredoError.png (file) | 92 KB | Brb | 1 | ||
13:31, 8 June 2024 | Add camera.png (file) | 34 KB | Brb | 1 | ||
14:12, 27 May 2024 | Gganimation.gif (file) | 750 KB | Brb | <syntaxhighlight lang='r'> library(gganimate) library(ggplot2) library(tidyverse) library(ggimage) data_link <- "https://raw.githubusercontent.com/goodekat/presentations/master/2019-isugg-gganimate-spooky/bat-data/bats-subset.csv" bats <- read.csv(data_link) %>% mutate(id = factor(id)) bat_image_link <- "https://upload.wikimedia.org/wikipedia/en/a/a9/MarioNSMBUDeluxe.png" animation <- bats %>% mutate(image = bat_image_link) %>% filter(id == 1) %>% ggplot(aes(x = longitude, y = la... | 1 | |
08:58, 23 May 2024 | Pca ggplot2.png (file) | 136 KB | Brb | <syntaxhighlight lang='r'> df <- iris[, 1:4] # exclude "Species" column pca_res <- prcomp(df, scale = TRUE) ggplot(iris, aes(x = pca_res$x[,1], y = pca_res$x[,2], color = Species)) + geom_point() + stat_ellipse() </syntaxhighlight> | 1 | |
14:18, 8 May 2024 | Rtools44.png (file) | 57 KB | Brb | 1 | ||
16:31, 23 April 2024 | Polygon.png (file) | 30 KB | Brb | <syntaxhighlight lang='r'> plot(c(1, 9), 1:2, type = "n") polygon(1:9, c(2,1,2,1,NA,2,1,2,1), col = c("red", "blue"), border = c("green", "yellow"), lwd = 3, lty = c("dashed", "solid")) </syntaxhighlight> | 1 | |
13:49, 23 April 2024 | Venn4.png (file) | 103 KB | Brb | <syntaxhighlight lang='r'> library(venn) set.seed(12345) x <- list(First = 1:40, Second = 15:60, Third = sample(25:50, 25), Fourth=sample(15:65, 35)) venn(x, ilabels = "counts", zcolor = "style") </syntaxhighlight> | 1 | |
14:53, 17 April 2024 | Tiv-demo.png (file) | 100 KB | Brb | 1 | ||
19:17, 12 March 2024 | Filtered R mean.png (file) | 68 KB | Brb | Use sample mean instead of variance for each gene as the filter statistic. <syntaxhighlight lang='r'> # Follow the previous code chunks M2 <- rowMeans(exprs(ALL_bcrneg)) theta <- seq(0, .80, .01) R_BH <- filtered_R(alpha=.10, M2, p2, theta, method="BH") which.max(R_BH) # 10% <---- so theta=0.1 is the optimal; only 10% genes are removed # 11 max(R_BH) # [1] 270 plot(theta, R_BH, type="l", xlab=expression(theta), ylab="Rejections", main="BH cutoff = 0.1") abline(v=.1, lty=2) <... | 1 | |
07:54, 12 March 2024 | Rainbow v05.png (file) | 428 KB | Brb | 1 | ||
07:53, 12 March 2024 | Rainbow s05.png (file) | 428 KB | Brb | 1 | ||
07:52, 12 March 2024 | Rainbow default.png (file) | 426 KB | Brb | <syntaxhighlight lang='r'> library(shiny) # Define the UI ui <- fluidPage( titlePanel("Rainbow Color Palette"), sidebarLayout( sidebarPanel( sliderInput("s_value", "Saturation (s):", min = 0, max = 1, value = 1, step = 0.01), sliderInput("v_value", "Value (v):", min = 0, max = 1, value = 1, step = 0.01) ), mainPanel( plotOutput("rainbow_plot") ) ) ) # Define the server server <- function(input, output) { output$rainbow_plot <- renderPlot({ s <-... | 1 | |
20:41, 11 March 2024 | Filtered R.png (file) | 77 KB | Brb | <syntaxhighlight lang='r'> theta <- seq(0, .80, .01) R_BH <- filtered_R(alpha=.10, S2, p2, theta, method="BH") which.max(R_BH) # 60% <---- so theta=0.6 is the optimal filtering threshold # 61 max(R_BH) # [1] 380 plot(theta, R_BH, type="l", xlab=expression(theta), ylab="Rejections", main="BH cutoff = 0.1") abline(v=.6, lty=2) </syntaxhighlight> | 1 | |
20:35, 11 March 2024 | Filtered p.png (file) | 171 KB | Brb | Note: # x-axis "p cutoff" should be "BH cutoff" or "FDR cutoff". # Each curve represents theta (filtering threshold). For example, theta=.1 means 10% of genes are filtered out before we do multiple testing (or BH adjustment). # It is seen the larger the theta, the more hypotheses are rejected at the same FDR cutoff. For example, #* if theta=0, 251 hypotheses are rejected at FDR=.1 #* if theta=.5, 355 hypotheses are rejected at FDR=.1. <syntaxhighlight lang='r'> BiocManager::install("ALL")... | 1 | |
15:49, 8 March 2024 | DataOutliers2.png (file) | 133 KB | Brb | {{Pre}} puree <- read.csv("https://gist.githubusercontent.com/arraytools/e851ed88c7456779557fbf3ed67b157a/raw/9971c61fea1db99acbd9de17ea82679ba9811358/dataOutliers2.csv", header=F) plot(puree[,1], puree[, 2], xlab="X", ylab="Y") abline(lm(V2 ~ V1, data = puree)) # robust regression require(MASS) summary(rlm(V2 ~ V1, data = puree)) abline(rr.huber <- rlm(V2 ~ V1, data = puree), col = "blue") # quantile regression library(quantreg) abline(rq(V2 ~ V1, data=puree, tau = 0.5), col = "red") # theil... | 1 | |
14:27, 7 March 2024 | DataOutliers.png (file) | 172 KB | Brb | {{Pre}} puree <- read.csv("https://gist.githubusercontent.com/arraytools/47d3a46ae1f9a9cd47db350ae2bd2338/raw/b5cccc8e566ff3bef81b1b371e8bfa174c98ef38/dataOutliers.csv", header = FALSE) plot(puree[,1], puree[, 2], xlim=c(0,1), ylim=c(0,1), xlab="X", ylab="Y") abline(0,1, lty=2) abline(lm(V2 ~ V1, data = puree)) # robust regression require(MASS) summary(rlm(V2 ~ V1, data = puree)) abline(rr.huber <- rlm(V2 ~ V1, data = puree), col = "blue") # almost overlapped with lm() # quantile regressio... | 1 | |
21:41, 10 February 2024 | R162.png (file) | 25 KB | Brb | 1 | ||
21:53, 8 February 2024 | Jitterbox.png (file) | 50 KB | Brb | <syntaxhighlight lang='r'> nc <- 5 assy <- LETTERS[1:nc] pal <- ggpubr::get_palette("default", nc) set.seed(1) nr <- 5 mat <- matrix(runif(nr*length(assy)), nrow = nr, ncol = length(assy)) set.seed(1) cutoffs <- runif(nc) colnames(mat) <- assy par(mar=c(5,4,1,1)+.1) plot(1, 1, xlim = c(0.5, nc + .5), ylim = c(0,1), type = "n", xlab = "Assay", ylab = "Score", xaxt = 'n') for (i in 1:nc) { rect(i - 0.25, 0, i + 0.25, 1, col = pal[i]) lines(x = c(i - 0.25, i + 0.25), y = c(cutof... | 1 | |
10:25, 19 January 2024 | RStudioAbort.png (file) | 38 KB | Brb | 1 | ||
19:38, 15 October 2023 | Geomerrorbarh.png (file) | 17 KB | Brb | <syntaxhighlight lang='rsplus'> df <- data.frame( trt = factor(c("Treatment 1", "Treatment 2", "Treatment 3", "Treatment 4", "Treatment 5")), # treatment resp = c(1, 5, 3, 4, 2), # response se = c(0.1, 0.3, 0.3, 0.2, 0.2) # standard error ) # make 'Treatment 1' shown at the top df$trt <- factor(df$trt, levels = c("Treatment 5", "Treatment 4", "Treatment 3", "Treatment 2", "Treatment 1")) p <- ggplot(df, aes(resp, trt)) + geom_point() p + geom_errorbarh(aes(xmax=resp + se, xmin=resp-se),... | 1 | |
16:32, 9 October 2023 | Calibre.png (file) | 128 KB | Brb | 1 | ||
11:18, 24 August 2023 | Wheel f400.png (file) | 200 KB | Brb | 1 | ||
11:17, 24 August 2023 | Wheel f8.png (file) | 224 KB | Brb | 1 | ||
14:59, 22 August 2023 | Roc asah.png (file) | 38 KB | Brb | <pre> par(mfrow=c(1,2)) roc(aSAH$outcome, aSAH$s100b, plot = T) roc(aSAH$outcome2, aSAH$s100b, plot = T) par(mfrow=c(1,1)) </pre> | 1 | |
13:44, 13 August 2023 | Rotateheatmap.png (file) | 52 KB | Brb | <syntaxhighlight lang="rsplus"> library(circlize) set.seed(123) mat = matrix(rnorm(80), 8, 10) rownames(mat) = paste0("R", 1:8) colnames(mat) = paste0("C", 1:10) col_anno = HeatmapAnnotation( df = data.frame(anno1 = 1:10, anno2 = rep(letters[1:3], c(4,3,3))), col = list(anno2 = c("a" = "red", "b" = "blue", "c" = "green"))) row_anno = rowAnnotation( df = data.frame(anno3 = 1:8, anno4 = rep(l... | 1 | |
15:21, 12 August 2023 | Rotatedend.png (file) | 17 KB | Brb | 1 | ||
15:17, 12 August 2023 | Dend12.png (file) | 11 KB | Brb | {{Pre}} set.seed(123) dat <- matrix(rnorm(20), ncol=2) # perform hierarchical clustering hc <- hclust(dist(dat)) # plot dendrogram plot(hc) # get ordering of leaves ord <- order.dendrogram(as.dendrogram(hc)) ord # [1] 8 3 6 5 10 1 9 7 2 4 # Same as seen on the dendrogram nodes # Rotate the branches (1,9) & (7,2,4) plot(rotate(hc, c("8", "3", "6", "5", "10", "7", "2", "4", "1", "9")), main="Rotated") </pre> | 1 | |
15:39, 6 August 2023 | Plotly3d.png (file) | 90 KB | Brb | 1 | ||
14:39, 31 July 2023 | Filter single.png (file) | 15 KB | Brb | 1 | ||
11:47, 27 May 2023 | Vibrant ink rstheme.png (file) | 115 KB | Brb | https://github.com/captaincaed/rstudio/blob/main/vibrant_ink_SB_2.rstheme | 1 | |
12:46, 21 May 2023 | R2.png (file) | 15 KB | Brb | <syntaxhighlight lang='rsplus'> x <- seq(0, 2.5, length=20) y <- sin(x) plot(x, y) abline(lsfit(x, y, intercept = F), col = 'red') summary(fit)$r.squared # [1] 0.8554949 </syntaxhighlight> | 1 | |
15:02, 11 May 2023 | Paletteggplot2.png (file) | 25 KB | Brb | 1 | ||
11:12, 10 May 2023 | Paletteshowcol.png (file) | 24 KB | Brb | 1 | ||
10:15, 10 May 2023 | Palettebarplot.png (file) | 9 KB | Brb | <syntaxhighlight lang='rsplus'> pal <- c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00") # pal <- sample(colors(), 10) # randomly pick 10 colors barplot(rep(1, length(pal)), col = pal, space = 0, axes = FALSE, border = NA) </syntaxhighlight> | 1 | |
10:14, 10 May 2023 | Paletteheatmap.png (file) | 12 KB | Brb | <syntaxhighlight lang='rsplus'> pal <- c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00") pal <- matrix(pal, nr=2) # acknowledge a nice warning message pal_matrix <- matrix(seq_along(pal), nr=nrow(pal), nc=ncol(pal)) heatmap(pal_matrix, col = pal, Rowv = NA, Colv = NA, scale = "none", ylab = "", xlab = "", main = "", margins = c(5, 5)) # 2 rows, 3 columns with labeling on two axes </syntaxhighlight> | 1 | |
10:08, 10 May 2023 | Rpalette.png (file) | 28 KB | Brb | <syntaxhighlight lang='rsplus'> pal <- palette() # [1] "black" "#DF536B" "#61D04F" "#2297E6" "#28E2E5" "#CD0BBC" "#F5C710" # [8] "gray62" pal_matrix <- matrix(seq_along(pal), nr=1) image(pal_matrix, col = pal, axes = FALSE) # 8 rows, 1 column, but no labeling # Starting from bottom, left. par()$usr # change with the data dim text(0, (par()$usr[4]-par()$usr[3])/8*c(0:7), labels = pal) </syntaxhighlight> | 1 | |
12:52, 9 May 2023 | Ggplotbarplot.png (file) | 23 KB | Brb | 1 | ||
10:40, 9 May 2023 | Cbioportal cptac.png (file) | 120 KB | Brb | 1 | ||
20:07, 25 April 2023 | Losslesscut.png (file) | 323 KB | Brb | 1 | ||
16:47, 23 April 2023 | Sleepstudy.png (file) | 59 KB | Brb | <syntaxhighlight lang='rsplus'> sleepstudy %>% ggplot(aes(x=Days, y = Reaction)) + geom_point() + geom_smooth(method = "lm", se = FALSE) + facet_wrap(~Subject) </syntaxhighlight> | 1 | |
15:58, 17 March 2023 | Svg4.svg (file) | 33 KB | Brb | <pre> svg("svg4.svg", width=4, height=4) plot(1:10, main="width=4, height=4") dev.off() </pre> | 1 | |
09:44, 11 March 2023 | RStudioVisualMode.png (file) | 10 KB | Brb | 1 | ||
15:01, 8 March 2023 | Pca directly2.png (file) | 35 KB | Brb | 1 | ||
10:11, 11 February 2023 | MultipleProbes.PNG (file) | 28 KB | Brb | 1 |