NGS: Difference between revisions
Line 2,725: | Line 2,725: | ||
</syntaxhighlight> | </syntaxhighlight> | ||
* Youtube [https://youtu.be/jtJGZ8vFsGw ANNOVAR How to annotate genetic variants] | * Youtube [https://youtu.be/jtJGZ8vFsGw ANNOVAR How to annotate genetic variants] | ||
* Compare the INFO column before and after running the annotation | |||
{{Pre}} | |||
> x <- read.delim("reduced.vcf", skip=190, header=F) | |||
> y <- read.delim("K01621_295-R_M205M321M592M940M987_v2.0.1.51.0_WES_annotated.vcf", skip=231, header=F) | |||
> x[1, 8] | |||
[1] "AC=2;AF=1;AN=2;DB;DP=8;ExcessHet=3.0103;FS=0;MLEAC=2;MLEAF=1;MQ=60;QD=23.1;SOR=0.693;set=HC;GENE=SAMD11" | |||
> y[1, 8] | |||
[1] "AC=2;AF=1;AN=2;DB;DP=8;ExcessHet=3.0103;FS=0;MLEAC=2;MLEAF=1;MQ=60;QD=23.1;SOR=0.693;set=HC;GENE=SAMD11;ANNOVAR_DATE=2017-07-17;Func.refGene=exonic;Gene.refGene=SAMD11;GeneDetail.refGene=.;ExonicFunc.refGene=nonsynonymous_SNV;AAChange.refGene=SAMD11:NM_152486:exon10:c.T1027C:p.W343R;SIFT_score=1.0;SIFT_pred=T;Polyphen2_HDIV_score=0.0;Polyphen2_HDIV_pred=B;Polyphen2_HVAR_score=0.0;Polyphen2_HVAR_pred=B;LRT_score=0.003;LRT_pred=N;MutationTaster_score=1.000;MutationTaster_pred=P;MutationAssessor_score=-2.085;MutationAssessor_pred=N;FATHMM_score=.;FATHMM_pred=.;PROVEAN_score=5.06;PROVEAN_pred=N;VEST3_score=0.421;CADD_raw=-0.287;CADD_phred=0.712;DANN_score=0.606;fathmm-MKL_coding_score=0.100;fathmm-MKL_coding_pred=N;MetaSVM_score=-0.980;MetaSVM_pred=T;MetaLR_score=0.000;MetaLR_pred=T;integrated_fitCons_score=0.598;integrated_confidence_value=0;GERP++_RS=2.51;phyloP7way_vertebrate=-0.448;phyloP20way_mammalian=-0.090;phastCons7way_vertebrate=0.013;phastCons20way_mammalian=0.866;SiPhy_29way_logOdds=7.519;ALLELE_END" | |||
</pre> | |||
== [http://snpeff.sourceforge.net/ SnpEff & SnpSift] == | == [http://snpeff.sourceforge.net/ SnpEff & SnpSift] == |
Revision as of 15:28, 8 May 2020
File:CentralDogmaMolecular.png
Introduction to Sequence Data Analysis
- Review of RNA-Seq Data Analysis Tools
- Modeling and analysis of RNA-seq data: a review from a statistical perspective Li et al 2018
- Introduction to RNA Sequencing Malachi Griffith from the Genome Institute at Washington University
- RNA-Seq workshop from NYU
- Modern RNA-seq differential expression analyses: transcript-level or gene-level
- http://www.pasteur.fr/~tekaia/BCGA2014/TALKS/Pabinger_Tools4VariantAnalysisOfNGS_EMBO2014.pdf (QC, duplicates, SAM, BAM, picard, variant calling, somatic variant, structural variants, CNV, variant filter, variant annotation, tools for vcf, visualization, pipeline). The source code is available on github.
- https://en.wiki2.org/wiki/List_of_RNA-Seq_bioinformatics_tools
- http://www.rnaseq.wiki/ or https://github.com/griffithlab/rnaseq_tutorial/wiki from The Griffith Lab. It has a paper too at PLOS.
- http://bioinformatics.ca/workshops/2015/high-throughput-biology-sequence-networks-2015#material
- http://www.cbcb.umd.edu/~hcorrada/CMSC858B/
- http://watson.nci.nih.gov/~sdavis/tutorials/biowulf-2011/
- http://cbsu.tc.cornell.edu/ngw2010/Day3_lecture1.pdf
- http://static.msi.umn.edu/tutorial/lifescience/RNA-Seq-Module-1.pdf
- http://www.rna-seqblog.com/introduction-to-rna-seq-analysis/ (focus on statistical part)
- BroadE: GATK/Mapping and processing RNAseq from youtube.
- Low-count transcripts in RNA-Seq analysis pipeline
- RNA-seq analysis of human breast cancer data from QIAGEN. Biomedical Genomics Workbench 3.0.1 is used.
- RNA-seq Chipster tutorials
- Discovering the Genome
NIH only
- Some training material from NIH:
- Biowulf seminar by Steven Fellini & Susan Chacko.
- Bash Scripting and Linux commands
- VIPER RNA-seq analysis pipeline powered by Snakemake
RNA-seq: Basics, Applications and Protocol
- An Overview of RNA Assays
- https://www.technologynetworks.com/genomics/articles/rna-seq-basics-applications-and-protocol-299461
Why Do You Need To Use Cdna For Rna-Seq?
https://www.biostars.org/p/54969/
RNA-Seq vs DNA-Seq
- With DNA, you'd be randomly sequencing the entire genome
- DNA-Seq cannot be used for measuring gene expression.
Total RNA-Seq
- Total RNA-Seq vs. mRNA sequencing from gatc-biotech.com
- A comprehensive picture of the transcriptome from illumina.com
- https://en.wikipedia.org/wiki/RNA-Seq RNA-Seq is used to analyze the continuously changing cellular transcriptome.
How to know that your RNA-seq is stranded or not?
https://www.biostars.org/p/98756/
Workshops
- UC Davis Bioinformatics Core.
- CSAMA 2017: Statistical Data Analysis for Genome-Scale Biology
Blogs
RNA-Seq analysis interface
- Systematically evaluating interfaces for RNA-seq analysis from a life scientist perspective
- iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data
- DEvis: an R package for aggregation and visualization of differential expression data
Automation/interactive
- Implementation of an Open Source Software solution for Laboratory Information Management and automated RNA-seq data analysis
- TRAPLINE – a standardized and automated pipeline for RNA sequencing data analysis, evaluation and annotation
- BISR-RNAseq: an efficient and scalable RNAseq analysis workflow with interactive report generation. 2019.
- ideal – an R/Bioconductor package for Interactive Differential Expression Analysis.
- RaNA-seq
reproducibility
Current RNA-seq methodology reporting limits reproducibility
Quality control
For base quality score, the quality value, Q(sanger) = - 10log10(prob) where prob = probability that the call at base b is correct. Sanger (Phred quality scores) is between 0 and 93. In practice the maximum quality score is ~40. Quality values below 20 are typically considered low.
Phred quality score and scales
- http://blog.nextgenetics.net/?e=33
- https://en.wikipedia.org/wiki/FASTQ_format#Encoding
- http://wiki.bits.vib.be/index.php/Identify_the_Phred_scale_of_quality_scores_used_in_fastQ contains a link to a python script to guess the encoding format
The original Phred scaling of 33-126 (representing scores 0-93) is also called the Sanger scale. There are also 2 other scales used by Illumina that shifts the range up:
- Illumina 1.0 format uses ASCII 59 - 126 representing scores -5 - 62.
- Illumina 1.3+ format uses ASCII 64 - 126 representing scores 0 - 62.
- Illumina 1.8, the quality scores have basically returned to the use of the Sanger format (Phred+33).
FastQC (java based)
One problem is the reads in trimmed fastq files from one end may not appear in other end for paired data. So consider Trimmomatic.
Qualimap (java based)
Qualimap examines sequencing alignment data in SAM/BAM files according to the features of the mapped reads and provides an overall view of the data that helps to the detect biases in the sequencing and/or mapping of the data and eases decision-making for further analysis.
The first time when we launch Qualimap we may get a message: The following R packages are missing: optparse, NOISeq, Repitools. Features dependent on these packages are disabled. See user manual for details. OK.
Trimmomatic
https://hpc.nih.gov/apps/trimmomatic.html
Trim Galore!
https://hpc.nih.gov/apps/trimgalore.html
QoRTs
A comprehensive toolset for quality control and data processing of RNA-Seq experiments.
SeqKit
A cross-platform and ultrafast toolkit for FASTA/Q file manipulation
FastqCleaner
An interactive Bioconductor application for quality-control, filtering and trimming of FASTQ files and BMC Bioinformatics
Alignment and Indexing
- https://en.wikipedia.org/wiki/Sequence_alignment
- https://en.wikibooks.org/wiki/Next_Generation_Sequencing_(NGS)/Alignment
- Simulation-based comprehensive benchmarking of RNA-seq aligners
- Systematic evaluation of spliced alignment programs for RNA-seq data
- (Video) http://bioinformatics.ca//files/public/RNA-seq_2014_Montreal_Module2.mp4, http://www.rna-seqblog.com/rna-seq-alignment-and-visualization/
- (Video) https://youtu.be/n77EAk8C1es RNA-SEQ: Mapping to a Reference Genome
- RNA-Seq alignment methods emphasize gene count while DNA-Seq alignment methods (no junctions) emphasize variant detection. The read length in RNA-Seq alignment does not have be long but it has to be long in DNA-Seq since DNA-Seq cares about a good coverage of the whole exome/genome.
SAM file format
Here are some important fields
- Col 1: Read name
- Col 2: FLAG [0,2^16-1]
- Col 3: RNAME/Chrom
- Col 4: Pos [0,2^31-1]
- Col 5: MAPQ [0,2^8-1]
- Col 6: CIGAR
- Col 7: RNEXT (se as "=" if RNEXT is equal to RNAME)
- Col 8: PNEXT - Mate position [0,2^31-1]
- Col 9: Insert size [-2^31+1, 2^31-1]
- Col 10: SEQ
- Col 11: QUAL
- Col 14 (not fixed): AS
Note pair-end data,
1. Fastq files A_1.fastq A_2.fastq read1 read1 read2 read2 ... ... 2. SAM files (sorted by read name) read1 read1 read2 read2 ...
For example, consider paired-end reads SRR925751.192 that was extracted from so called inproper paired reads in samtools. If we extract the paired reads by grep -w SRR925751.192 bt20/bwa.sam we will get
SRR925751.192 97 chr1 13205 60 101M = 13429 325 ..... SRR925751.192 145 chr1 13429 60 101M = 13205 -325 .....
By entering the flag values 97 & 145 into the SAM flag entry on http://broadinstitute.github.io/picard/explain-flags.html, we see
- FLAG value 97 means read paired, mate reverse strand, first in pair.
- FLAG value 145 means read paired, read reverse strand, second in pair.
The two reads have positions. As we can see the insert size (it's the name shown on samtools help page and IGV program) is defined by start positions instead of end positions)
13205 13305 13429 13529 |-------------> <----------|
Consider a properly paired reads SRR925751.1. If we extract the paired reads, we will get
SRR925751.1 99 chr1 10010 0 90M11S = 10016 95 ..... SRR925751.1 147 chr1 10016 0 12S89M = 10010 -95 .....
Again by entering the flag values 99 and 147 into the Decoding SAM flags website, we see
- FLAG value 99 means read paired, read mapped in proper pair, mate reverse strand, first in pair.
- FLAG value 147 means read paired, read mapped in proper pair, read reverse strand, second in pair.
10010 10099 |------------> 10016 10104 <-------------|
The insert size here is 10104-10010+1=95. Running the following command,
cat foo.bam | awk '{ if ($9 >0) {S+=$9; T+=1}} END {print "Mean: "S/T}'
I get 133.242 for the average insert size from properly paired reads on my data (GSE48215subset, read length=101).
If I run the same command on in-properly paired reads, I got 1.9e07 for the average insert size.
Bowtie2 (RNA/DNA)
Extremely fast, general purpose short read aligner.
Create index files
bowtie needs to have an index of the genome in order to perform its alignment functionality. For example, to build a bowtie index against UCSC hg19 (See Getting started with Bowtie 2 -> Indexing a reference genome)
bowtie2-build /data/ngs/public/sequences/hg19/genome.fa hg19
Even the index file can be directly downloaded without going through Bowtie program, Bowtie program is still needed by Tophat program where Tophat's job is to align the RNA-seq data to reference genome.
Mapping
To run alignment,
bowtie2 -p 4 -x /data/ngs/public/sequences/hg19 XXX.fastq -S XXX.bt2.sam
At the end of alignment, it will show how many (and percent) of reads are aligned 0 times, exactly 1 time, and >1 times.
We can transform them into a bam format ('-@' means threads and '-T' means the reference file, it is optional)
samtools view -@ 16 -T XXX.fa XXX.bt2.sam > XXX.bt2.bam
and view the bam file
samtools view XXX.bt2.bam
Note that it is faster to use pipe to directly output the file in a bam format (reducing files I/O) if the aligner does not provide an option to output a binary bam format.
BWA (DNA)
- BWA MEM Algorithm https://www.biostars.org/p/140502/
- https://www.broadinstitute.org/files/shared/mpg/nextgen2010/nextgen_li.pdf By Heng Li
- http://schatzlab.cshl.edu/teaching/2010/Lecture%202%20-%20Sequence%20Alignment.pdf
- https://bioinformatics.cancer.gov/sites/default/files/course_material/Data%20Analysis%20for%20Exome%20Sequencing%20Data_0318.ppt
Used by whole-exome sequencing. For example, http://bib.oxfordjournals.org/content/15/2/256.full and http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3865592/. Whole Exome Analysis.
Creating index file
Without creating index files, we will get an error [E::bwa_idx_load_from_disk] fail to locate the index files when we run the 'bwa mem' command (though the command only requires fa file in its arguments).
Prepare a reference for use with BWA and GATK
bwa index genome.fa # generate 4 new files amb, ann, pac and bwt (not enough for running 'bwa mem') bwa index -a bwtsw genome.fa # generate 5 new files amb, ann, pac, bwt and sa (right thing to do)
where -a bwtsw specifies that we want to use the indexing algorithm that is capable of handling the whole human genome.
It takes 3 hours to create the index files on the combined human+mouse genomes. Though there is no multhreads optionin bwa index, we can use the -b option to increase the block size in order to speed up the time. See https://github.com/lh3/bwa/issues/104. The default value is 10000000 (1.0e8). See the following output from bwa index:
[bwa_index] Pack FASTA... 46.43 sec [bwa_index] Construct BWT for the packed sequence... [BWTIncCreate] textLength=11650920420, availableWord=831801828 [BWTIncConstructFromPacked] 10 iterations done. 99999988 characters processed. [BWTIncConstructFromPacked] 20 iterations done. 199999988 characters processed. ... [BWTIncConstructFromPacked] 1230 iterations done. 11647338276 characters processed. [bwt_gen] Finished constructing BWT in 1232 iterations. [bwa_index] 4769.18 seconds elapse. [bwa_index] Update BWT... 45.78 sec [bwa_index] Pack forward-only FASTA... 32.66 sec [bwa_index] Construct SA from BWT and Occ... 2054.29 sec [main] Version: 0.7.15-r1140 [main] CMD: bwa index -a bwtsw genomecb.fa [main] Real time: 7027.396 sec; CPU: 6948.342 sec
Note that another index file fai is created by samtools
samtools faidx genome.fa
For example, the BWAIndex folder contains the following files
$ ls -l ~/igenomes/Homo_sapiens/UCSC/hg19/Sequence/BWAIndex/ total 12 lrwxrwxrwx 1 brb brb 22 Mar 10 03:40 genome.fa -> version0.6.0/genome.fa lrwxrwxrwx 1 brb brb 26 Mar 10 03:37 genome.fa.amb -> version0.6.0/genome.fa.amb lrwxrwxrwx 1 brb brb 26 Mar 10 03:40 genome.fa.ann -> version0.6.0/genome.fa.ann lrwxrwxrwx 1 brb brb 26 Mar 10 03:40 genome.fa.bwt -> version0.6.0/genome.fa.bwt -rw-r--r-- 1 brb brb 783 Apr 12 14:46 genome.fa.fai lrwxrwxrwx 1 brb brb 26 Mar 10 03:40 genome.fa.pac -> version0.6.0/genome.fa.pac lrwxrwxrwx 1 brb brb 25 Mar 10 03:37 genome.fa.sa -> version0.6.0/genome.fa.sa drwxrwxr-x 2 brb brb 4096 Mar 15 2012 version0.5.x drwxrwxr-x 2 brb brb 4096 Mar 15 2012 version0.6.0
Mapping
bwa mem # display the help bwa mem -t 4 XXX.fa XXX.fastq > XXX.sam more XXX.sam samtools view -dT XXX.fa XXX.sam > XXX.bam # transform to bam format samtools view XXX.bam | more
and output directly to a binary format
bwa mem -t 4 XXX.fa XXX.fastq | samtools view -bS - > XXX.bam # transform to bam format directly
where '-S' means Ignoring for compatibility with previous samtools versions. Previously this option was required if input was in SAM format, but now the correct format is automatically detected by examining the first few characters of input. See http://www.htslib.org/doc/samtools.html.
And this is a tutorial to use bwa and freebayes to do variant calling by Freebayes's author.
This tutorial is using a whole genome data SRR030257 from SRP001369
Best pipeline for human whole exome sequencing
Summary report of a BAM file: samtools flagstat
Unlike Tophat and STAR, BWA mem does not provide a summary report of percentage of mapped reads. To get the percentage of mapped reads, use samtoolss flagstat command
$ export PATH=$PATH:/opt/SeqTools/bin/samtools-1.3 # fastq files from ExomeLungCancer/test.SRR2923335_*.fastq # 'bwa mem' and 'samtools fixmate' have been run to generate <accepted_hits.bam> $ wc -l ../test.SRR2923335_1.fastq # 5000 reads in each of PAIRED end fastq files 20000 ../test.SRR2923335_1.fastq $ samtools flagstat accepted_hits.bam 10006 + 0 in total (QC-passed reads + QC-failed reads) 6 + 0 secondary 0 + 0 supplementary 0 + 0 duplicates 9971 + 0 mapped (99.65% : N/A) 10000 + 0 paired in sequencing 5000 + 0 read1 5000 + 0 read2 8502 + 0 properly paired (85.02% : N/A) 9934 + 0 with itself and mate mapped 31 + 0 singletons (0.31% : N/A) 1302 + 0 with mate mapped to a different chr 1231 + 0 with mate mapped to a different chr (mapQ>=5)
See also https://wikis.utexas.edu/display/CoreNGSTools/Alignment#Alignment-Exercise#4:BWA-MEM-HumanmRNA-seq for alignment (including BWA mem and samtools flagstat).
- Properly mapped (inward oriented & same chromosome & good insert size): samtools view -f 3 -F 2 foo.bam. But the result is not the same as flagstat??
- Itself and mate mapped: samtools view -f 1 -F 12 foo.bam. But the result is not the same as flagstat??
- Singleton: samtools view -F 4 -f 8 foo.bam. The flags indicate that the current read is mapped but its mate isn't. On GSE48215subset data, the return number of reads does not match with flagstat result but samtools view -f 4 -F 8 foo.bam (current read is unmapped and mate is mapped) gives the same result as the flagstat command.
Stringent criterion
- https://sourceforge.net/p/bio-bwa/mailman/message/31968535/
- http://seqanswers.com/forums/showthread.php?p=186581
Applied to RNA-Seq data?
https://www.biostars.org/p/130451/. BWA isn't going to handle spliced alignment terribly well, so it's not normally recommended for RNAseq datasets.
Minimap2
- BWA replacement. Fast and almost identical mapping
- https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/bty191/4994778
- https://arxiv.org/abs/1708.01492
- Latex source
- IMOS: improved Meta-aligner and Minimap2 On Spark
Tophat (RNA)
Aligns RNA-Seq reads to the genome using Bowtie/Discovers splice sites. It does so by splitting longer reads into small sections and aligning those to the genome. It then looks for potential splice sites between pairs of sections to construct a final alignment.
Linux part.
$ type -a tophat # Find out which command the shell executes: tophat is /home/mli/binary/tophat $ ls -l ~/binary
Quick test of Tophat program
$ wget http://tophat.cbcb.umd.edu/downloads/test_data.tar.gz $ tar xzvf test_data.tar.gz $ cd ~/tophat_test_data/test_data $ PATH=$PATH:/home/mli/bowtie-0.12.8 $ export PATH $ ls reads_1.fq test_ref.1.ebwt test_ref.3.bt2 test_ref.rev.1.bt2 test_ref.rev.2.ebwt reads_2.fq test_ref.2.bt2 test_ref.4.bt2 test_ref.rev.1.ebwt test_ref.1.bt2 test_ref.2.ebwt test_ref.fa test_ref.rev.2.bt2 $ tophat -r 20 test_ref reads_1.fq reads_2.fq $ # This will generate a new folder <tophat_out> $ ls tophat_out accepted_hits.bam deletions.bed insertions.bed junctions.bed logs prep_reads.info unmapped.bam
TopHat accepts FASTQ and FASTA files of sequencing reads as input. Alignments are reported in BAM files. BAM is the compressed, binary version of SAM43, a flexible and general purpose read alignment format. SAM and BAM files are produced by most next-generation sequence alignment tools as output, and many downstream analysis tools accept SAM and BAM as input. There are also numerous utilities for viewing and manipulating SAM and BAM files. Perhaps most popular among these are the SAM tools (http://samtools.sourceforge.net/) and the Picard tools (http://picard.sourceforge.net/).
Note that if the data is DNA-Seq, we can merely use Bowtie2 or BWA tools since we don't have to worry about splicing.
An example of using Tophat2 (paired end in this case, 5 threads) is
tophat2 --no-coverage-search -p 5 \ -o "Sample1" \ -G ~/iGenomes/Homo_sapiens/UCSC/hg19/Annotation/Genes/genes.gtf \ --transcriptome-index=transcriptome_data/known \ ~/iGenomes/Homo_sapiens/UCSC/hg19/Sequence/Bowtie2Index/genome \ myfastq_R1.fastq.gz myfastq_R2.fastq.gz
To find out the alignment rate for ALL bam files (eg we have ctrl1, ctrl2, test1, test2 directories and each of them have align_summary.txt file),
grep "overall read mapping rate" */align_summary.txt
Novel transcripts
How does TopHat find junctions?
https://sites.google.com/a/brown.edu/bioinformatics-in-biomed/cufflinks-and-tophat
Can Tophat Be Used For Mapping Dna-Seq
https://www.biostars.org/p/63878/
- In contrast to DNA-sequence alignment, RNA-seq mapping algorithms have two additional challenges. First, because genes in eukaryotic genomes contain introns, and because reads sequenced from mature mRNA transcripts do not include these introns, any RNA-seq alignment program must be able to handle gapped (or spliced) alignment with very large gaps.
- TopHat is designed to map reads to a reference allowing splicing. In your case, the reads are not spliced because are genomic, so don't waste your time and resources and use Bowtie/BWA directly.
Hisat (RNA/DNA)
- https://bioinformatics.ca/workshops/2017/informatics-rna-seq-analysis-2017
- Hisat on Biowulf
- The comparison between HISAT2 and Tophat2
STAR (Spliced Transcripts Alignment to a Reference, RNA)
Optimizing RNA-Seq Mapping with STAR by Alexander Dobin and Thomas R. Gingeras
Its manual is on github. The 2015 paper includes scripts to run STAR.
Note that the readme file says HARDWARE/SOFTWARE REQUIREMENTS:
- x86-64 compatible processors
- 64 bit Linux or Mac OS X
- 30GB of RAM for human genome. In fact, it requires 34GB (tested on UCSC/hg38). See the following jobhist output from running indexing on Biowulf.
Submission Command : sbatch --cpus-per-task=2 --mem=64g --time=4:00:00 createStarIndex Jobid Partition State Nodes CPUs Walltime Runtime MemReq MemUsed Nodelist 44714895 norm COMPLETED 1 2 04:00:00 02:54:21 64.0GB/node 33.6GB cn3144
See the blog on gettinggeneticsdone.com for a comparison of speed and memory requirement.
In short, the notable increase in speed comes at the price of a larger memory requirement.
To build STAR on Ubuntu (14.04)
wget https://github.com/alexdobin/STAR/archive/STAR_2.4.2a.tar.gz sudo tar -xzf STAR_2.4.2a.tar.gz -C /opt/RNA-Seq/bin cd /opt/RNA-Seq/bin/STAR-STAR_2.4.2a cd source sudo make STAR
Create index folder
STAR --runMode genomeGenerate --runThreadN 11 \ --genomeDir STARindex \ --genomeFastaFiles genome.fa \ --sjdbGTFfile genes.gtf \ --sjdbOverhang 100
where 100 = read length (one side) -1 = 101 - 100.
STARindex folder
brb@T3600 ~/SRP050992 $ ls ~/SRP012607/STARindex/ chrLength.txt chrStart.txt geneInfo.tab SA sjdbList.fromGTF.out.tab chrNameLength.txt exonGeTrInfo.tab Genome SAindex sjdbList.out.tab chrName.txt exonInfo.tab genomeParameters.txt sjdbInfo.txt transcriptInfo.tab brb@T3600 ~/SRP050992 $ cat ~/SRP012607/STARindex/genomeParameters.txt ### STAR --runMode genomeGenerate --runThreadN 11 --genomeDir STARindex --genomeFastaFiles /home/brb/igenomes/Homo_sapiens/UCSC/hg38/Sequence/WholeGenomeFasta/genome.fa --sjdbGTFfile /home/brb/igenomes/Homo_sapiens/UCSC/hg38/Annotation/Genes/genes.gtf --sjdbOverhang 100 versionGenome 20201 genomeFastaFiles /home/brb/igenomes/Homo_sapiens/UCSC/hg38/Sequence/WholeGenomeFasta/genome.fa genomeSAindexNbases 14 genomeChrBinNbits 18 genomeSAsparseD 1 sjdbOverhang 100 sjdbFileChrStartEnd - sjdbGTFfile /home/brb/igenomes/Homo_sapiens/UCSC/hg38/Annotation/Genes/genes.gtf sjdbGTFchrPrefix - sjdbGTFfeatureExon exon sjdbGTFtagExonParentTranscript transcript_id sjdbGTFtagExonParentGene gene_id sjdbInsertSave Basic
Splice junction
- Manual. Search 'sjdbOverhang' (length of the donor/acceptor sequence on each side of the junctions). The --sjdbOverhang is used only at the genome generation step, and tells STAR how many bases to concatenate from donor and acceptor sides of the junctions. If you have 100b reads, the ideal value of --sjdbOverhang is 99, which allows the 100b read to map 99b on one side, 1b on the other side. One can think of --sjdbOverhang as the maximum possible overhang for your reads. See A post.
- For the <SJ.out.tab> format see section 4.4 of STAR manual. The first few lines of the file looks like (It is strange that the values in column 7, 8 are so large)
$ head SJ.out.tab chrM 711 764 1 1 1 2 1 44 chrM 717 1968 1 1 1 1 0 43 chrM 759 1189 0 0 1 11 3 30 chrM 795 830 2 2 1 335 344 30 chrM 822 874 1 1 1 1 1 17 chrM 831 917 2 2 1 733 81 38 chrM 831 3135 2 2 1 1 0 30 chrM 846 1126 0 0 1 4 0 50 chrM 876 922 1 1 1 26 9 31 chrM 962 1052 2 2 1 3 0 30 ^ ^ ^ ^ ^ ^ ^ ^ ^ | | | | | | | | | chrom start end strand intron annotated | # of | 0=undef motif # of multi mapped| 1=+ uniquely mapped max spliced alignment overhang 2=- reads
- Tophat. Search overhang, donor/acceptor keywords. Check out <junctions.bed>. Tophat suggest users use this second option (--coverage-search) for short reads (< 45bp) and with a small number of reads (<= 10 million).
- HiSAT comes with a python script that can extract splice sites from a GTF file. See this post.
$ cd /tmp $ /opt/SeqTools/bin/hisat2-2.0.4/hisat2_extract_splice_sites.py \ ~/igenomes/Homo_sapiens/UCSC/hg19/Annotation/Genes/genes.gtf > splicesites.txt $ head splicesites.txt chr1 12226 12612 + chr1 12720 13220 + chr1 14828 14969 - chr1 15037 15795 - chr1 15946 16606 - chr1 16764 16857 - chr1 17054 17232 - chr1 17367 17605 - chr1 17741 17914 - chr1 18060 18267 -
Screen output
Oct 07 19:25:19 ..... started STAR run Oct 07 19:25:19 ... starting to generate Genome files Oct 07 19:27:08 ... starting to sort Suffix Array. This may take a long time... Oct 07 19:27:38 ... sorting Suffix Array chunks and saving them to disk... Oct 07 20:07:07 ... loading chunks from disk, packing SA... Oct 07 20:22:52 ... finished generating suffix array Oct 07 20:22:52 ... generating Suffix Array index Oct 07 20:26:32 ... completed Suffix Array index Oct 07 20:26:32 ..... processing annotations GTF Oct 07 20:26:38 ..... inserting junctions into the genome indices Oct 07 20:30:15 ... writing Genome to disk ... Oct 07 20:31:00 ... writing Suffix Array to disk ... Oct 07 20:37:24 ... writing SAindex to disk Oct 07 20:37:39 ..... finished successfully
Log.final.out
An example of the Log.final.out file
$ cat Log.final.out Started job on | Jul 21 13:12:11 Started mapping on | Jul 21 13:35:06 Finished on | Jul 21 13:57:42 Mapping speed, Million of reads per hour | 248.01 Number of input reads | 93418927 Average input read length | 202 UNIQUE READS: Uniquely mapped reads number | 61537064 Uniquely mapped reads % | 65.87% Average mapped length | 192.62 Number of splices: Total | 15658546 Number of splices: Annotated (sjdb) | 15590438 Number of splices: GT/AG | 15400163 Number of splices: GC/AG | 178602 Number of splices: AT/AC | 14658 Number of splices: Non-canonical | 65123 Mismatch rate per base, % | 0.86% Deletion rate per base | 0.02% Deletion average length | 1.61 Insertion rate per base | 0.03% Insertion average length | 1.40 MULTI-MAPPING READS: Number of reads mapped to multiple loci | 4962849 % of reads mapped to multiple loci | 5.31% Number of reads mapped to too many loci | 62555 % of reads mapped to too many loci | 0.07% UNMAPPED READS: % of reads unmapped: too many mismatches | 0.00% % of reads unmapped: too short | 28.70% % of reads unmapped: other | 0.05% CHIMERIC READS: Number of chimeric reads | 0 % of chimeric reads | 0.00%
Note that 65.87 (uniquely mapped) + 5.31 (mapped to multiple loci) + 0.07 (mapped too many loci) + 28.70 (unmapped too short) + 0.05 (unmapped other) = 100
By default, STAR only outputs reads that map to <=10 loci, others are considered "mapped to too many loci". You can increase this threshold by increasing --outFilterMultimapNmax. See here.
Subread (RNA/DNA)
- http://bioinf.wehi.edu.au/subread-package/SubreadUsersGuide.pdf
- HISAT vs STAR vs TopHat2 vs Olego vs SubJunc by Mark Ziemann
- Get a 'Segmentation fault' error on GSE46876 (SRR902884.fastq, single-end) rna-seq data
In practice,
- For DNA-Seq data, the subread aligner is used.
- For RNA-Seq data,
- the subread aligner is used when selecting gene counting analysis only.
- the subjunc aligner is used when variant calling analysis is selected.
RNASequel
RNASequel: accurate and repeat tolerant realignment of RNA-seq reads
snap
Scalable Nucleotide Alignment Program -- a fast and accurate read aligner for high-throughput sequencing data
snap is the best choice so far. star/hisat2 are as fast but not as good for genomic reads. accurate mappers need to do alignment anyway
Keep in mind SNAP's index is 10-15x bigger than input. 4Gbp->50GB index. SNAP loads index into memory. HISAT2 index is similar size as input
Lessons
- Tophat and STAR needs index files. So if we want to run the alignment using multiple nodes, we want to first run the alignment on a single sample first. Then we can run alignment on others samples using multiple nodes.
- The index files of Tophat only depends on the reference genome. However the index files of STAR depends on both the reference genome and the read length of the data.
Alignment Algorithms
- What is the difference between local and global sequence alignments?
- Sequence alignment
- CMSC 858s: Computational Genomics
- Substitution matrix
Alignment free
SAMtools
SAMtools bundle include samtools, bcftools, bgzip, tabix, wgsim and htslib. samtools and bcftools are based on htslib.
- https://en.wikipedia.org/wiki/SAMtools
- http://www.htslib.org/doc/samtools.html
- http://www.htslib.org/doc/samtools-1.2.html (it is strange bam2fq appears in v1.2 but not in v1.3 documentation)
- SAMtools: Primer / Tutorial by Ethan Cerami. It covers installing samtools, bcftools, generating simulated reads, align reads, convert sam to bam, sorting & indexing, identifying genomic variants, understand vcf format, visualize reads on a command line.
- http://davetang.org/wiki/tiki-index.php?page=SAMTools contains many recipes like counting number of mapped reads
$ /opt/SeqTools/bin/samtools-1.3/samtools Program: samtools (Tools for alignments in the SAM format) Version: 1.3 (using htslib 1.3) Usage: samtools <command> [options] Commands: -- Indexing dict create a sequence dictionary file faidx index/extract FASTA index index alignment -- Editing calmd recalculate MD/NM tags and '=' bases fixmate fix mate information reheader replace BAM header rmdup remove PCR duplicates targetcut cut fosmid regions (for fosmid pool only) addreplacerg adds or replaces RG tags -- File operations collate shuffle and group alignments by name cat concatenate BAMs merge merge sorted alignments mpileup multi-way pileup sort sort alignment file split splits a file by read group quickcheck quickly check if SAM/BAM/CRAM file appears intact fastq converts a BAM to a FASTQ fasta converts a BAM to a FASTA -- Statistics bedcov read depth per BED region depth compute the depth flagstat simple stats idxstats BAM index stats phase phase heterozygotes stats generate stats (former bamcheck) -- Viewing flags explain BAM flags tview text alignment viewer view SAM<->BAM<->CRAM conversion depad convert padded BAM to unpadded BAM
To compile the new version (v1.x) of samtools,
git clone https://github.com/samtools/samtools.git git clone https://github.com/samtools/htslib.git cd samtools make
Multi-thread option
Only view and sort have multi-thread (-@) option.
samtools sort
A lot of temporary files will be created.
For example, if my output file is called <bwa_homo2_sort.bam>, there are 80 <bwa_homo2_sort.bam.tmp.XXXX.bam> files (each is about 210 MB) generated.
samtools sort -@ $SLURM_CPUS_PER_TASK -O bam -n bwa_homo2.sam -o bwa_homo2_sort.bam
Decoding SAM flags
http://broadinstitute.github.io/picard/explain-flags.html
samtools flagstat: Know how many alignment a bam file contains
brb@brb-T3500:~/GSE11209$ /opt/RNA-Seq/bin/samtools-0.1.19/samtools flagstat dT_bio_s.bam 1393561 + 0 in total (QC-passed reads + QC-failed reads) 0 + 0 duplicates 1393561 + 0 mapped (100.00%:-nan%) 0 + 0 paired in sequencing 0 + 0 read1 0 + 0 read2 0 + 0 properly paired (-nan%:-nan%) 0 + 0 with itself and mate mapped 0 + 0 singletons (-nan%:-nan%) 0 + 0 with mate mapped to a different chr 0 + 0 with mate mapped to a different chr (mapQ>=5)
We can see how many reads have multiple alignments by comparing the number of reads and the number of alignments output from samtools flagstat.
brb@brb-T3500:~/GSE11209$ wc -l SRR002062.fastq 13778616 SRR002062.fastq
Note: there is no multithread option in samtools flagstat.
samtools flagstat source code
samtools view
See also Anders2013-sam/bam and http://genome.sph.umich.edu/wiki/SAM
Note that we can use both -f and -F flags together.
$ /opt/SeqTools/bin/samtools-1.3/samtools view -h Usage: samtools view [options] <in.bam>|<in.sam>|<in.cram> [region ...] Options: -b output BAM -C output CRAM (requires -T) -1 use fast BAM compression (implies -b) -u uncompressed BAM output (implies -b) -h include header in SAM output -H print SAM header only (no alignments) -c print only the count of matching records -o FILE output file name [stdout] -U FILE output reads not selected by filters to FILE [null] -t FILE FILE listing reference names and lengths (see long help) [null] -L FILE only include reads overlapping this BED FILE [null] -r STR only include reads in read group STR [null] -R FILE only include reads with read group listed in FILE [null] -q INT only include reads with mapping quality >= INT [0] -l STR only include reads in library STR [null] -m INT only include reads with number of CIGAR operations consuming query sequence >= INT [0] -f INT only include reads with all bits set in INT set in FLAG [0] -F INT only include reads with none of the bits set in INT set in FLAG [0] -x STR read tag to strip (repeatable) [null] -B collapse the backward CIGAR operation -s FLOAT integer part sets seed of random number generator [0]; rest sets fraction of templates to subsample [no subsampling] -@, --threads INT number of BAM/CRAM compression threads [0] -? print long help, including note about region specification -S ignored (input format is auto-detected) --input-fmt-option OPT[=VAL] Specify a single input file format option in the form of OPTION or OPTION=VALUE -O, --output-fmt FORMAT[,OPT[=VAL]]... Specify output format (SAM, BAM, CRAM) --output-fmt-option OPT[=VAL] Specify a single output file format option in the form of OPTION or OPTION=VALUE -T, --reference FILE Reference sequence FASTA FILE [null]
View bam files:
samtools view XXX.bam # No header samtools view -@ 16 -h XXX.bam # include header in SAM output samtools view -@ 16 -H xxx.bam # See the header only. The header may contains the reference genome fasta information.
Note that according to SAM pdf, the header is optional.
Sam and bam files conversion:
/opt/RNA-Seq/bin/samtools-0.1.19/samtools view --help # sam -> bam (need reference genome file) samtools view -@ 16 -b XXX.fa XXX.bt2.sam > XXX.bt2.bam # bam -> sam samtools view -@ 16 -h -o out.sam in.bam
Subset:
# assuming bam file is sorted & indexed samtools view -@ 16 XXX.bam "chr22:24000000-25000000" | more
Remove unpaired reads
According to the samtools manual, the 7th column represents the chromosome name of the mate/next read. If the field is set as '*' when the information is unavailable and set as '=' if RNEXT is identical RNAME.
When we use samtools view command to manually removed certain reads from a pair-end sam/bam file, the bam file will has a problem when it is used in picard MarkDuplicates. A solution is to run the following line to remove these unpaired reads (so we don't need to the VALIDATION_STRINGENCY parameter)
samtools view -h accepted_hits_bwa.bam | awk -F "\t" '$7!="*" { print $0 }' > accepted_hits_bwa2.sam
less bam files
http://martinghunt.github.io/2016/01/25/less-foo.bam.html
Convert SAM to BAM
samtools view -b input.sam > output.bam # OR samtools view -b input.sam -o output.bam
There is no need to add "-S". The header will be kept in the bam file.
Convert BAM to SAM
samtools view -h input.bam -o output.sam
where '-h' is to ensure the converted SAM file contains the header information. Generally, it is useful to store only sorted BAM files as they use much less disk space and are faster to process.
Convert BAM to FASTQ
- http://www.metagenomics.wiki/tools/samtools/converting-bam-to-fastq
- http://seqanswers.com/forums/showthread.php?t=7061
# Method 1: samtools samtools bam2fq SAMPLE.bam > SAMPLE.fastq cat SAMPLE.fastq | grep '^@.*/1$' -A 3 --no-group-separator > SAMPLE_r1.fastq cat SAMPLE.fastq | grep '^@.*/2$' -A 3 --no-group-separator > SAMPLE_r2.fastq # Method 2: picard java -Xmx2g -jar Picard/SamToFastq.jar I=SAMPLE.bam F=SAMPLE_r1.fastq F2=SAMPLE_r2.fastq # Method 3: bam2fastx # http://manpages.ubuntu.com/manpages/quantal/man1/bam2fastx.1.html # Method 4: Bedtools - bamtofastq # http://bedtools.readthedocs.io/en/latest/content/tools/bamtofastq.html # Single fastq bedtools bamtofastq -i input.bam -fq output.fastq # BAM should be sorted by query name (samtools sort -n aln.bam aln.qsort) if creating paired FASTQ samtools sort -n input.bam -o input_sorted.bam # sort by read namem (-n) bedtools bamtofastq -i input_sorted.bam -fq output_r1.fastq -fq2 output_r2.fastq # Method 5: Bamtools # http://github.com/pezmaster31/bamtools
Consider the ExomeLungCancer example
# ExomeLungCancer/test.SRR2923335_*.fastq $ # Method 1 $ samtools bam2fq bwa.sam > SAMPLE.fastq $ cat SAMPLE.fastq | grep '^@.*/1$' -A 3 --no-group-separator > SAMPLE_r1.fastq $ cat SAMPLE.fastq | grep '^@.*/2$' -A 3 --no-group-separator > SAMPLE_r2.fastq $ head -n 4 SAMPLE_r1.fastq @SRR2923335.1/1 NGCAAGTAGAGGGGCGCACACCTACCCGCAGTTGTTCACAGCCATGAGGTCGCCAACTAGCAGGAAGGGGTAGGTCAGCATGCTCACTGCAATCTGAAAC + #1=DDFDFHHHHHJIJJJJIJJJJJJJJIJJJJJIJIHHHHHFFFFFEECEDDDDDDDDDDDDDDDDDDD>BDDACCDDDDDDDDDDDDDDCCDDEDDDC $ head -n 4 output_r2.fastq @SRR2923335.1/2 AACCCTGGTAATGGCTGGAGGCAGNNCTTGGTACAGNGTGTNNGCGTGGTGTGTCNNTGCTNNCTGGGCCGGGGTGGGTCACTGGCACTCAGGCCTCTCT + CCCFFFFFFHHGHJJJJJEHJIJI##11CCG?DFGI#0)88##0/77CF=@FDDG##--;?##,,5=BABBDDD)9@D59ADCDDBDDDDDDDCDDDDC> $ # Method 4 $ samtools sort -n accepted_hits.bam -o accepted_sortbyname.bam $ /opt/SeqTools/bin/bedtools2/bin/bedtools bamtofastq -i accepted_sortbyname.bam -fq output_r1.fastq -fq2 output_r2.fastq # Compare the first read # Original fastq file $ head -n 4 ../test.SRR2923335_1.fastq @SRR2923335.1 1 length=100 NGCAAGTAGAGGGGCGCACACCTACCCGCAGTTGTTCACAGCCATGAGGTCGCCAACTAGCAGGAAGGGGTAGGTCAGCATGCTCACTGCAATCTGAAAC +SRR2923335.1 1 length=100 #1=DDFDFHHHHHJIJJJJIJJJJJJJJIJJJJJIJIHHHHHFFFFFEECEDDDDDDDDDDDDDDDDDDD>BDDACCDDDDDDDDDDDDDDCCDDEDDDC $ head -n 4 ../test.SRR2923335_2.fastq @SRR2923335.1 1 length=100 AACCCTGGTAATGGCTGGAGGCAGNNCTTGGTACAGNGTGTNNGCGTGGTGTGTCNNTGCTNNCTGGGCCGGGGTGGGTCACTGGCACTCAGGCCTCTCT +SRR2923335.1 1 length=100 CCCFFFFFFHHGHJJJJJEHJIJI##11CCG?DFGI#0)88##0/77CF=@FDDG##--;?##,,5=BABBDDD)9@D59ADCDDBDDDDDDDCDDDDC> $ ################################################################################################## $ head -n 4 output_r1.fastq @SRR2923335.1/1 NGCAAGTAGAGGGGCGCACACCTACCCGCAGTTGTTCACAGCCATGAGGTCGCCAACTAGCAGGAAGGGGTAGGTCAGCATGCTCACTGCAATCTGAAAC + #1=DDFDFHHHHHJIJJJJIJJJJJJJJIJJJJJIJIHHHHHFFFFFEECEDDDDDDDDDDDDDDDDDDD>BDDACCDDDDDDDDDDDDDDCCDDEDDDC $ head -n 4 output_r2.fastq @SRR2923335.1/2 AACCCTGGTAATGGCTGGAGGCAGNNCTTGGTACAGNGTGTNNGCGTGGTGTGTCNNTGCTNNCTGGGCCGGGGTGGGTCACTGGCACTCAGGCCTCTCT + CCCFFFFFFHHGHJJJJJEHJIJI##11CCG?DFGI#0)88##0/77CF=@FDDG##--;?##,,5=BABBDDD)9@D59ADCDDBDDDDDDDCDDDDC>
Using CRAM files
- CRAM files are more dense than BAM files. CRAM files are smaller than BAM by taking advantage of an additional external "reference sequence" file.
- http://www.htslib.org/workflow/#mapping_to_cram
- CRAM format
- The CRAM format was used (to replace the BAM format) in 1000genome
Extract single chromosome
https://www.biostars.org/p/46327/
samtools sort accepted_hits.bam -o accepted_hits_sorted.bam samtools index accepted_hits_sorted.bam samtools view -h accepted_hits_sorted.bam chr22 > accepted_hits_sub.sam
Primary, secondary, supplementary alignment
- Multiple mapping and primary from SAM format specification
- https://www.biostars.org/p/138116/
- supplementary alignment = chimeric alignments = non-linear alignments. It's often the case that the sample we're sequencing has structural variations when compared to the reference sequence. Imagine a 100bp read. Let us suppose that the first 50bp align to chr1 and the last 50bp to chr6.
- How to extract unique mapped results from Bowtie2 bam results? If you don't extract primary or unique reads from the sam/bam, the reads that maps equally well to multiple sequences will cause a serious bias in quantification of repeated elements.
To exact primary alignment reads (here), use
samtools view -F 260 input.bam
Extract reads based on read IDs
https://www.biostars.org/p/68358/#68362
samtools view Input.bam chrA:x-y | cut -f1 > idFile.txt LC_ALL=C grep -w -F -f idFile.txt < in.sam > subset.sam
Extract mapped/unmapped reads from BAM
http://www.htslib.org/doc/samtools.html
0x1 PAIRED paired-end (or multiple-segment) sequencing technology 0x2 PROPER_PAIR each segment properly aligned according to the aligner 0x4 UNMAP segment unmapped 0x8 MUNMAP next segment in the template unmapped 0x10 REVERSE SEQ is reverse complemented 0x20 MREVERSE SEQ of the next segment in the template is reverse complemented 0x40 READ1 the first segment in the template 0x80 READ2 the last segment in the template 0x100 SECONDARY secondary alignment 0x200 QCFAIL not passing quality controls 0x400 DUP PCR or optical duplicate 0x800 SUPPLEMENTARY supplementary alignment
# get the unmapped reads from a bam file use : samtools view -f 4 file.bam > unmapped.sam # get the output in bam use : samtools view -b -f 4 file.bam > unmapped.bam # get only the mapped reads, the parameter 'F', which works like -v of grep samtools view -b -F 4 file.bam > mapped.bam # get only properly aligned/properly paired reads (https://www.biostars.org/p/111481/) # # Q: What Does The "Proper Pair" Bitwise Flag? # A1: https://www.biostars.org/p/8318/ # Properly paired means the read itself as well as its mate are both mapped and # they were mapped within a reasonable distance given the expected distance # A2: https://www.biostars.org/p/12475/ # It means means both mates of a read pair map to the same chromosome, oriented towards each other, # and with a sensible insert size. samtools view -b -f 0x2 accepted_hits.bam > mappedPairs.bam
- https://www.biostars.org/p/14518/ So for all pair-end reads where one end is mapped and the other end isn't mapped, this should output all the mapped end entries:
samtools view -u -f 8 -F 260 map.bam > oneEndMapped.bam
and this will output all the unmapped end entries:
samtools view -u -f 4 -F 264 map.bam > oneEndUnmapped.bam
Count number of mapped/unmapped reads from BAM - samtools idxstats
# count the number of mapped reads samtools view -c -F0x4 accepted_hits.bam 9971 # count the number of unmapped reads samtools view -c -f0x4 accepted_hits.bam 35
The result can be checked with samtools idxstats command. See https://pepebioinformatics.wordpress.com/2014/05/29/samtools-count-mapped-and-unmapped-reads-in-bam-file/
$ samtools sort accepted_hits.bam -o accepted_hits_sorted.bam $ samtools index accepted_hits_sorted.bam accepted_hits_sorted.bai # BAI file is binary $ ls -t accepted_hits_sorted.bai accepted_hits_sorted.bam accepted_hits.bam $ samtools idxstats accepted_hits_sorted.bam 1 249250621 949 1 2 243199373 807 0 3 198022430 764 0 4 191154276 371 1 5 180915260 527 0 6 171115067 411 3 7 159138663 888 5 8 146364022 434 0 9 141213431 409 2 10 135534747 408 1 11 135006516 490 2 12 133851895 326 1 13 115169878 149 1 14 107349540 399 3 15 102531392 249 1 16 90354753 401 4 17 81195210 466 1 18 78077248 99 0 19 59128983 503 1 20 63025520 275 1 21 48129895 87 0 22 51304566 228 2 X 155270560 315 1 Y 59373566 6 0 MT 16569 10 0 * 0 0 4 $ samtools idxstats accepted_hits_sorted.bam | awk '{s+=$3+$4} END {print s}' 10006 $ samtools idxstats accepted_hits_sorted.bam | awk '{s+=$3} END {print s}' 9971
Find unmapped reads
Find multi-mapped reads
http://seqanswers.com/forums/showthread.php?t=16427
samtools view -F 4 file.bam | awk '{printf $1"\n"}' | sort | uniq -d | wc -l # uniq -d will only print duplicate lines
Realignment and recalibration
https://www.biostars.org/p/141784/
- Realignment and recalibration won't change these metrics output from samtools flagstat.
- Recalibration is typically not needed anymore (the same goes for realignment if you're using something like GATK's haplotype caller).
- Realignment just locally realigns things and typically the assigned MAPQ values don't change (unmapped mates etc. also won't change).
- Recalibration typically affects only base qualities.
htslib
Suppose we download a vcf.gz from NCBI ftp site. We want to subset chromosome 1 and index the new file.
- tabix - subset a vcf.gz file or index a vcf.gz file
tabix -h common_all_20160601.vcf.gz 1: > common_all_20160601_1.vcf $ tabix -h Version: 1.3 Usage: tabix [OPTIONS] [FILE] [REGION [...]] Indexing Options: -0, --zero-based coordinates are zero-based -b, --begin INT column number for region start [4] -c, --comment CHAR skip comment lines starting with CHAR [null] -C, --csi generate CSI index for VCF (default is TBI) -e, --end INT column number for region end (if no end, set INT to -b) [5] -f, --force overwrite existing index without asking -m, --min-shift INT set minimal interval size for CSI indices to 2^INT [14] -p, --preset STR gff, bed, sam, vcf -s, --sequence INT column number for sequence names (suppressed by -p) [1] -S, --skip-lines INT skip first INT lines [0] Querying and other options: -h, --print-header print also the header lines -H, --only-header print only the header lines -l, --list-chroms list chromosome names -r, --reheader FILE replace the header with the content of FILE -R, --regions FILE restrict to regions listed in the file -T, --targets FILE similar to -R but streams rather than index-jumps
- bgzip - create a vcf.gz file from a vcf file
bgzip -c common_all_20160601_1.vcf > common_all_20160601_1.vcf.gz # Indexing. Output is <common_all_20160601_1.vcf.gz.tbi> tabix -f -p vcf common_all_20160601_1.vcf.gz $ bgzip -h Version: 1.3 Usage: bgzip [OPTIONS] [FILE] ... Options: -b, --offset INT decompress at virtual file pointer (0-based uncompressed offset) -c, --stdout write on standard output, keep original files unchanged -d, --decompress decompress -f, --force overwrite files without asking -h, --help give this help -i, --index compress and create BGZF index -I, --index-name FILE name of BGZF index file [file.gz.gzi] -r, --reindex (re)index compressed file -s, --size INT decompress INT bytes (uncompressed size) -@, --threads INT number of compression threads to use [1]
hts-nlim
hts-nim: scripting high-performance genomic analyses and source in github.
Examples include bam filtering (bam files), read counts in regions (bam & bed files) and quality control variant call files (vcf files). https://github.com/brentp/hts-nim-tools
SAMStat
Displaying sequence statistics for next generation sequencing. SAMStat reports nucleotide composition, length distribution, base quality distribution, mapping statistics, mismatch, insertion and deletion error profiles, di-nucleotide and 10-mer over-representation. The output is a single html5 page which can be interpreted by a non-specialist.
Usage
samstat <file.sam> <file.bam> <file.fa> <file.fq> ....
For each input file SAMStat will create a single html page named after the input file name plus a dot html suffix.
Picard
A set of tools (in Java) for working with next generation sequencing data in the BAM (http://samtools.sourceforge.net) format.
https://github.com/broadinstitute/picard
Note that As of version 2.0.1 (Nov. 2015) Picard requires Java 1.8 (jdk8u66). The last version to support Java 1.7 was release 1.141. Use the following to check your Java version
brb@T3600 ~/github/picard $ java -version java version "1.7.0_101" OpenJDK Runtime Environment (IcedTea 2.6.6) (7u101-2.6.6-0ubuntu0.14.04.1) OpenJDK 64-Bit Server VM (build 24.95-b01, mixed mode)
See my Linux -> JRE and JDK page.
Some people reported errors or complain about memory usage. See this post from seqanswers.com. And HTSeq python program is another option.
sudo apt-get install ant git clone https://github.com/broadinstitute/picard.git cd picard git clone https://github.com/samtools/htsjdk.git ant -lib lib/ant package-commands # We will see 'BUILD SUCCESSFUL' # It will create <dist/picard.jar>
SamToFastq
java jvm-args -jar picard.jar PicardCommandName OPTION1=value1 OPTION2=value2... # For example cd ~/github/freebayes/test/tiny java -Xmx2g -jar ~/github/picard/dist/picard.jar SamToFastq \ INPUT=NA12878.chr22.tiny.bam \ FASTQ=tmp_1.fq \ SECOND_END_FASTQ=tmp_2.fq \ INCLUDE_NON_PF_READS=True \ VALIDATION_STRINGENCY=SILENT wc -l tmp_1.fq # 6532 tmp_1.fq wc -l tmp_2.fq # 6532 tmp_2.fq
SAM validation error; Mate Alignment start should be 0 because reference name = *
Errors in SAM/BAM files can be diagnosed with ValidateSamFile
When I run picard with MarkDuplicates, AddOrReplaceReadGroups or ReorderSam parameter, I will get an error on the bam file aligned to human+mouse genomes but excluding mouse mappings:
Ignoring SAM validation error: ERROR: Record 3953, Read name D00748:53:C8KPMANXX:7:1109:11369:5479, Mate Alignment start should be 0 because reference name = *.'
https://www.biostars.org/p/9876/ & https://www.biostars.org/p/108148/. Many of the validation errors reported by Picard are "technically" errors, but do not have any impact for the vast majority of downstream processing.
For example,
java -Xmx10g -jar picard.jar MarkDuplicates VALIDATION_STRINGENCY=LENIENT METRICS_FILE=MarkDudup.metrics INPUT=input.bam OUTPUT=output.bam # OR to avoid messages java -Xmx10g -jar picard.jar MarkDuplicates VALIDATION_STRINGENCY=SILENT METRICS_FILE=MarkDudup.metrics INPUT=input.bam OUTPUT=output.bam
Another (different) error message is:
SAM validation error: ERROR: Record 16642, Read name SRR925751.3835, First of pair flag should not be set for unpaired read.
BEDtools
The bed format is similar to gtf format but with more compact representation. We can use the apt-get method to install it on Linux environment.
bedtools intersect bedtools bamtobed bedtools bedtobam bedtools getfasta bedtools bamtofastq [OPTIONS] -i <BAM> -fq <FASTQ>
For example,
bedtools intersect -wo -a RefSeq.gtf -b XXX.bed | wc -l # in this case every line is one exon bedtools intersect -wo -a RefSeq.gtf -b XXX.bed | cut -f9 | cut -d ' ' -f2 | more bedtools intersect -wo -a RefSeq.gtf -b XXX.bed | cut -f9 | cut -d ' ' -f2 | sort -u | wc -l bedtools intersect -wo -a RefSeq.bed -b XXX.bed | more # one gene is one line with multiple intervals
One good use of bedtools is to find the intersection of bam and bed files (to double check the insertion/deletion/junction reads in bed files are in accepted_hits.bam). See this page
$ bedtools --version bedtools v2.17.0 $ bedtools intersect -abam accepted_hits.bam -b junctions.bed | samtools view - | head -n 3
We can use bedtool to reverse bam files to fastq files. See https://www.biostars.org/p/152956/
Installation
git clone https://github.com/arq5x/bedtools2.git cd bedtools2 make
bamtofastq
cd ~/github/freebayes/test/tiny # Working directory ~/github/samtools/samtools sort -n NA12878.chr22.tiny.bam NA12878.chr22.tiny.qsort ~/github/bedtools2/bin/bamToFastq -i NA12878.chr22.tiny.qsort.bam \ -fq aln.end1.fq \ -fq2 aln.end2.fq 2> bamToFastq.warning.out ## 60 warnings; see <bamToFastq.warning.out> *****WARNING: Query ST-E00118:53:H02GVALXX:1:1102:1487:23724 is marked as paired, but its mate does not occur next to it in your BAM file. Skipping. wc -l tmp.out # 60 wc -l aln.end1.fq # 6548 wc -l aln.end2.fq # 6548 # recall tmp_1.fq is 6532
Cufflinks package
Transcriptome assembly and differential expression analysis for RNA-Seq.
Both Cufflinks and Cuffdiff accept SAM and BAM files as input. It is not uncommon for a single lane of Illumina HiSeq sequencing to produce FASTQ and BAM files with a combined size of 20 GB or larger. Laboratories planning to perform more than a small number of RNA-seq experiments should consider investing in robust storage infrastructure, either by purchasing their own hardware or through cloud storage services.
Tuxedo protocol
- Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks by Trapnell, et al 2012.
- https://speakerdeck.com/stephenturner/rna-seq-qc-and-data-analysis-using-the-tuxedo-suite
- bowtie2 - fast alignment
- tophat2 - splice alignment (rna-seq reads, rna are spliced, introns are removed, some reads may span over 2 exons)
- cufflinks - transcript assembly & quantitation
- cuffdiff2 - differential expression
Cufflinks - assemble reads into transcript
Installation
# about 47MB on ver 2.2.1 for Linux binary version wget http://cole-trapnell-lab.github.io/cufflinks/assets/downloads/cufflinks-2.2.1.Linux_x86_64.tar.gz sudo tar xzvf ~/Downloads/cufflinks-2.2.1.Linux_x86_64.tar.gz -C /opt/RNA-Seq/bin/ export PATH=$PATH:/opt/RNA-Seq/bin/cufflinks-2.2.1.Linux_x86_64/ # test cufflinks -h
Cufflinks uses this map (done from Tophat) against the genome to assemble the reads into transcripts.
# Quantifying Known Transcripts using Cufflinks cufflinks -o OutputDirectory/ -G refseq.gtf mappedReads.bam # De novo Transcript Discovery using Cufflinks cufflinks -o OutputDirectory/ mappedReads.bam
The output files are genes.fpkm_tracking, isoforms.fpkm_tracking, skipped.gtf and transcripts.gtf.
It can be used to calculate FPKM.
- https://www.biostars.org/p/11378/
- http://www.partek.com/Tutorials/microarray/User_Guides/UnderstandingReads.pdf
Cuffcompare - compares transcript assemblies to annotation
Cuffmerge - merges two or more transcript assemblies
First create a text file <assemblies.txt>
./dT_bio/transcripts.gtf ./dT_ori/transcripts.gtf ./dT_tech/transcripts.gtf ./RH_bio/transcripts.gtf ./RH_ori/transcripts.gtf ./RH_tech/transcripts.gtf
Then run
cd GSE11209 cuffmerge -g genes.gtf -s genome.fa assemblies.txt
Cuffdiff
Finds differentially expressed genes and transcripts/Detect differential splicing and promoter use.
Cuffdiff takes the aligned reads from two or more conditions and reports genes and transcripts that are differentially expressed using a rigorous statistical analysis.
Follow the tutorial, we can quickly test the cuffdiff program.
$ wget http://cufflinks.cbcb.umd.edu/downloads/test_data.sam $ cufflinks ./test_data.sam $ ls -l total 56 -rw-rw-r-- 1 mli mli 221 2013-03-05 15:51 genes.fpkm_tracking -rw-rw-r-- 1 mli mli 231 2013-03-05 15:51 isoforms.fpkm_tracking -rw-rw-r-- 1 mli mli 0 2013-03-05 15:51 skipped.gtf -rw-rw-r-- 1 mli mli 41526 2009-09-26 19:15 test_data.sam -rw-rw-r-- 1 mli mli 887 2013-03-05 15:51 transcripts.gtf
In real data,
cd GSE11209 cuffdiff -p 5 -o cuffdiff_out -b genome.fa -L dT,RH \ -u merged_asm/merged.gtf \ ./dT_bio/accepted_hits.bam,./dT_ori/accepted_hits.bam,./dT_tech/accepted_hits.bam \ ./RH_bio/accepted_hits.bam,./RH_ori/accepted_hits.bam,./RH_tech/accepted_hits.bam
N.B.: the FPKM value (<genes.fpkm_tracking>) is generated per condition not per sample. If we want FPKM per sample, we want to specify one condition for each sample.
The method of constructing test statistics can be found online.
Pipeline
CummeRbund
Plots abundance and differential expression results from Cuffdiff. CummeRbund also handles the details of parsing Cufflinks output file formats to connect Cufflinks and the R statistical computing environment. CummeRbund transforms Cufflinks output files into R objects suitable for analysis with a wide variety of other packages available within the R environment and can also now be accessed through the Bioconductor website
The tool appears on the paper Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks by Trapnell, et al 2012.
Finding differentially expressed genes
Big pictures
BWA/Bowtie samtools fa ---------> sam ------> sam/bam (sorted indexed, short reads), vcf or tophat Rsamtools GenomeFeatures edgeR (normalization) ---------> --------------> table of counts --------->
Readings
- Introduction to RNA Sequencing and Analysis Kukurba KR, Montgomery SB. (2015) RNA Sequencing and Analysis. Cold Spring Harb Protoc
- RNA-Seq: a revolutionary tool for transcriptomics
- Alignment and visualization from bioinformatics.ca.
- The RNA-seqlopedia from the Cresko Lab of the University of Oregon.
- RNA-Seq Analysis by Simon Andrews.
- Benchmarking differential expression analysis tools for RNA-Seq: normalization-based vs. log-ratio transformation-based methods by Thomas P. Quinn 2018. Analysis scripts (R) are included.
Technical replicate vs biological replicate
We sequence more DNA from the same DNA "library", which is called a "technical replicate". If we perform a new experiment with a new organism/tissue/population of cells, which is called a "biological replicate".
Youtube videos
- Analyze public dataset by using Galaxy and IGV David Coil from UC Davis Genoem Center
Download the raw fastq data GSE19602 from GEO and uncompress fastq.bz2 to fastq (~700MB) file. NOTE: the data downloaded from ncbi is actually sra file format. We can use fastq_dump program in SRA_toolkit to convert sra to fastq. http://www.ncbi.nlm.nih.gov/Traces/sra/?view=software
~/Downloads/sratoolkit.2.3.2-ubuntu64/bin/fastq-dump ~/Downloads/SRR034580.sra
If we want to run Galaxy locally, we can install it simply by 2 command lines
hg clone https://bitbucket.org/galaxy/galaxy-dist/ cd galaxy-dist hg update stable
To run Galaxy locally, we do
cd galaxy-dist sh run.sh --reload
The command line will show Starting server in PID XXXX. serving on http://127.0.0.1:8080. We can use Ctrl + C to stop the Galaxy process.
Note: One problem with this simple instruction is we have not created a user yet.
- Upload one fastq data. Click 'refresh' icon on the history panel to ensure the data is uploaded. Don't use 'refresh' button on the browser; it will cause an error for the current process.
- FASTQ Groomer. Convert the data to Galaxy needs. NGS: QC and manipulation => Illumina FASTQ. FASTQ quality scores type: Sanger. (~10 minutes). This part uses CPU not memory.
- Open a new browser tab and go to ftp://ftp.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/annotation_dbs/pseudomolecules/version_6.1/all.dir/. Right click the file all.cDNA and copy link location. In Galaxy click 'Upload File from your computer' paste URL to URL/Text entry.
- Scroll down Galaxy and select NGS:Mapping -> Map with BWA. PS. for some reason, BWA is not available. So I use Bowtie2 instead. The output of Bowtie2 is bam file.
- For reference genome, choose 'Use one from the history'. Galaxy automatically find the reference file 'ftp://ftp.plantbiology....' from history.
- Library mate-paired => Single-end.
- FASTQ file => 2: FASTQ Groomer on data 1.
- BWA settings to use => Commonly Used.
- Execute (~ 15 minutes)
- We can view the alignment file (sam format) created from BWA by using UCSV or IGV (input is bam or bai format). We now use NGS: SAM Tools to convert sam file to bam file. Click 'SAM-to-BAM converts SAM format to BAM format' tool.
- Choose the source for the reference list => History
- Converts SAM file => 4: Map with BWA on data 2 and data 3.
- Using reference file => 3:ftp://ftp.plantbiology.....
- Execute (~5 minutes)
- We want to create bai file which is a shortcut to IGV. It breaks the data into smaller accessible chunks. So when you pull up a certain cDNA, it goes straight to the subset. Go to the history, click the pencil icon (Edit Attributes) on the file SAM-to-BAM on data 3 and data 4.
- Look at 'Convert to new format' section. Go ahead and click 'Convert'. (< 1 minute). This will create another file.
- Use browser and go to ftp website to download all.cDNA file to desktop. The desktop should contain 3 files - all.cDNA, rice.bam and rice.bai files for IGV.
- Goto http://www.broadinstitute.org/software/igv/download to download IGV which is a java-based application. I need to install java machine first by install openjdk-7-jdk. IGV by default will launch 'Human hg18' genome. Launch IGV by cd IGV_2.2.13;java -Xmx750m -jar igv.jar. I found the IGV input requires sam+bai OR bam+bai. So we need to click the pencil icon to create bai file first before we want to upload sam or bam file to IGV.
- Goto File => Import Genome. Call it 'rice' and select 'all.cDNA' sequence file. Click 'Save' button.
- Goto File => Upload from File => rice.bam.
- Top right panel is cDNA
- Middle right panel has a lot of 'boxes' which is a read. If we zoom in, we can see some read points to left (backward) while some points to right (forward). On the top is a histogram. For example, a base may be covered by a lot of reads then the histogram will show the high frequence.
- If we keep zoom in, we can see color at the Bottom right panel. Keeping zoom in, we can see the base G, C, T, A themselves.
- Using IGV, we can 1. examine coverage.
- We can 2. check 'alternative splicing'. (not for this cDNA)
- We can 3. examine SNPs for base change. If we see gray color (dark gray is hight quality read, light gray means low quality read), it means they are perfect match. If we see color, it means there is a change. For example, a read is 'C' but in fact it should be 'A'. If a case has many high quality reads, and half of them are 'G' but the reference genome shows 'A'. This is most likely a SNP. This is heterogeisity.
- Tophat - align RNA seq data to genomic DNA
- Suppose we have use Galaxy to upload 2 data. One is SRR034580 and we have run FASTQ Groomer on data 1. The second data is SRR034584 and we also have run FASTQ Groomer on data 2. We also have uploaded reference genome sequence.
- Goto Galaxy and find NGS: RNA Analysis => Tophat.
- reference genome => Use one from the history
- RNA-Seq FASTQ file => 2; FASTQ Groomer on data 1.
- Execute. This will create 2 files. One is splice junctions and the other is accepted_hits. We queue the job and run another Tophat with the 2nd 'groomer'ed data file. We are going to work on accepted_hits file.
- While the queue are running, we can click on 'pencil' icon on 'accepted_hits' job and run the utlity 'Convert to new format' (Bam to Bai). We should do this for both 'accepted_hits' files.
- For some reason, the execution failed: An error occurred with this dataset: TopHat v2.0.7 TopHat v2.0.7 Error indexing reference sequence /bin/sh: 1: bowtie-build: not found.
- Cufflinks. We will estimate transcript abundance by using FPKM (RPKM).
- SAM or BAM file of alignmed RNA-Seq reads => tophat on data 2.. accepted_hits
- Use Reference Annotation - No (choose Yes if we want annotation. This requires GTF format. See http://genome.ucsc.edu/FAQ/FAQformat.html#format4. We don't have it for rice.)
- Execute. This will create 3 files. Gene expression, transcript expression and assembled transcripts.
- We also run Cufflinks for 2nd accepted_hits file. (~ 25 minutes)
- Cuffcompare. Compare one to each other.
- GTF file produced by Cufflinks => assembled transcript from the 1st data
- Use another GTF file produced by Cufflinks => Yes. It automatically find the other one.
- Execute. (< 10 minutes). This will create 7 files. Transcript accuracy, tmap file & refmap flie from each assembled transcripts, combined transcripts and transcript tracking.
- We are interested in combined transcripts file (to use in Cuffdiff).
- Cuffdiff.
- Transcripts => combined transcripts.
- SAM or BAM file of aligned RNA-Seq reads => 1st accepted_hits
- SAM or BAM file or aligned RNA-Seq reads => 2nd accepted_hits
- Execute. This will generate 11 files. Isoform expression, gene expression, TSS groups expression, CDS Expression FPKM Tracking, isoform FPKM tracking, gene FPKM tracking, TSS groups FPKM tracking, CDS FPKM tracking, splicing diff, promoters diff, CDS diff. We are interested in 'gene expression' file. We can save it and open it in Excel.
- IGV - 2 RNA-Seq datasets aligned to genomic DNA using Tophat
- Load the reference genome rice (see above)
- Upload from file => rice4.bam. Upload from file => rice5.bam.
- Alternative RNA splicing.
edX course
PH525.5x Case Study: RNA-seq data analysis. The course notes are forming a book. Check out https://github.com/genomicsclass/labs and http://genomicsclass.github.io/book/.
Variant calling
- Variants include (See p21 on Broad Presentation -> Pipeline Talks -> MPG_Primer_2016-Seq_and_Variant_Discovery)
- Germline SNPs & indels
- Somatic SNVs & indels
- Somatic CNVs
Overview/papers
- Systematic comparison of variant calling pipelines using gold standard personal exome variants by Hwang 2015.
- A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data by Heng Li.
- http://www.slideshare.net/AustralianBioinformatics/introduction-to-nextgeneration
- http://www.slideshare.net/thomaskeane/overview-of-methods-for-variant-calling-from-nextgeneration-sequence-data-9608507
- http://www.slideshare.net/jandot/nextgeneration-sequencing-variation-discovery
- Strelka2: Fast and accurate variant calling for clinical sequencing applications Sep 2017
Workflow
- Sequence reads -> Quality control -> Mapping -> Mark Duplicates -> Local realignment around INDELS -> Base quality score recalibration -> Variant calling -> Filtering & Annotation -> Querying.
- Data Wrangling and Processing for Genomics from Data Carpentry's Genomics Workshop.
- http://www.ngscourse.org/Course_Materials/variant_calling/presentation/2015-Cambridge_variant_calling.pdf Lots of pictures to explain the concepts!!
- Introduction to RNA-Seq on Galaxy Analysis for differential expression Tracy Chew
- http://seqanswers.com/wiki/How-to/exome_analysis
- Alignment step includes
- mark PCR duplicates some reads will be exact copies of each other. These reads are called PCR duplicates due to amplification biases in PCR. They share the same sequence and the same alignment position and could cause trouble during SNP calling as possibly some allele is overrepresented due to amplification biases. See Conceptual overview of duplicate flagging and Call variants with samtools 1.0
- local alignment around indels Indels within reads often lead to false positive SNPs at the end of sequence reads. To prevent this artifact, local realignment around indels is done using local realignment tools from the Genome Analysis Tool Kit.
- quality recalibration
- SNP calling step includes producing raw SNP calls and filter SNPs
- Annotation
- Alignment step includes
- WGS/WES Mapping to Variant Calls http://www.htslib.org/workflow/
Step 1: Mapping
bwa index <ref.fa> bwa mem -R '@RG\tID:foo\tSM:bar\tLB:library1' <ref.fa> <read1.fa> <read1.fa> > lane.sam samtools fixmate -O bam <lane.sam> <lane_fixmate.bam> samtools sort -O bam -o <lane_sorted.bam> -T </tmp/lane_temp> <lane_fixmate.sam>
Step 2: Improvement
java -Xmx2g -jar GenomeAnalysisTK.jar -T RealignerTargetCreator -R <ref.fa> -I <lane.bam> \ -o <lane.intervals> --known <bundle/b38/Mills1000G.b38.vcf> java -Xmx4g -jar GenomeAnalysisTK.jar -T IndelRealigner -R <ref.fa> -I <lane.bam> \ -targetIntervals <lane.intervals> --known <bundle/b38/Mills1000G.b38.vcf> -o <lane_realigned.bam> java -Xmx4g -jar GenomeAnalysisTK.jar -T BaseRecalibrator -R <ref.fa> \ -knownSites >bundle/b38/dbsnp_142.b38.vcf> -I <lane.bam> -o <lane_recal.table> java -Xmx2g -jar GenomeAnalysisTK.jar -T PrintReads -R <ref.fa> -I <lane.bam> \ --BSQR <lane_recal.table> -o <lane_recal.bam> java -Xmx2g -jar MarkDuplicates.jar VALIDATION_STRINGENCY=LENIENT \ INPUT=<lane_1.bam> INPUT=<lane_2.bam> INPUT=<lane_3.bam> OUTPUT=<library.bam> samtools merge <sample.bam> <library1.bam> <library2.bam> <library3.bam> samtools index <sample.bam>
Step 3: Variant calling
samtools mpileup -ugf <ref.fa> <sample1.bam> <sample2.bam> <sample3.bam> | \ bcftools call -vmO z -o <study.vcf.gz>
Non-R Software
Variant detector/discovery, genotyping
- Evaluation of variant detection software for pooled next-generation sequence data
- A survey of tools for variant analysis of next-generation genome sequencing data
- Evaluation of variant detection software for pooled next-generation sequence data
- Reliable Identification of Genomic Variants from RNA-Seq Data
- Bioinformatics at COMAV
Variant Identification
- Samtools
- https://wikis.utexas.edu/display/bioiteam/Variant+calling+using+SAMtools
- http://petridishtalk.com/2013/02/01/variant-discovery-annotation-filtering-with-samtools-the-gatk/
- http://lab.loman.net/2012/10/31/a-simple-guide-to-variant-calling-with-bwa-samtools-varscan2/
- Samtools and GATK
- Difference Between Samtools And Gatk Algorithms
- GATK by BROAD Institute.
- varscan2
- bcbio - Validated, scalable, community developed variant calling and RNA-seq analysis. Validated variant calling with human genome build 38.
- freebayes and a complete tutorial from alignment to variant calling.
GUI software
Variant Annotation
Biocoductor and R packages
- Bioconductor VariantTools package can export to VCF and VariantAnnotation package can read VCF format files. See also the Annotating Variants workflow in Bioconductor. See also SIFT.Hsapiens.dbSNP137, COSMIC.67, and PolyPhen.Hsapiens.dbSNP131 packages.
- R packages seqminer
fundamental - VariantAnnotation
readVcf() can be used to read a *.vcf or *.vcf.gz file.
dbSNP - SNPlocs.Hsapiens.dbSNP.20101109
Compare the rs numbers of the data and dbSNP.
variant wrt genes - TxDb.Hsapiens.UCSC.hg19.knownGene
Look for the column LOCATION which has values coding, fiveUTR, threeUTR, intron, intergenic, spliceSite, and promoter.
amino acid change for the non-synonymous variants - BSgenome.Hsapiens.UCSC.hg19
Look for the column CONSEQUENCE which has values synonymous or nonsynonymous.
SIFT & Polyphen for predict the impact of amino acid substitution on a human protein - PolyPhen.Hsapiens.dbSNP131
Look for the column PREDICTION which has values possibly damaging or benign.
rentrez tutorial
https://ropensci.org/tutorials/rentrez_tutorial.html
Accessing and Manipulating Biological Databases Exercises
http://www.r-exercises.com/2017/05/04/accessing-and-manipulating-biological-databases-exercises-part-2/? utm_source=rss&utm_medium=rss&utm_campaign=accessing-and-manipulating-biological-databases-exercises-part-2
vcf
vcf format
- One row is one variant or one position/nucleotide in genome.
- Mapping quality is called MQ on the INFO column of a vcf file. It is on the 5th column (no header) or the MQ field on the last column of a sam file.
- MQ denotes RMS mapping quality in vcf.
- MapQ = -10 log10(P) where P = probability that this mapping is NOT the correct one.
- https://en.wikipedia.org/wiki/Phred_quality_score. If Phred assigns a quality score of 30 to a base, the chances that this base is called incorrectly are 1 in 1000 (1/10^(MAPQ/10)=1/10^3)
- When MAPQ=0, it means that the read maps to two or more places with equal score. See here.
- When MAPQ=255, it means the mapping quality is not available. See https://biostar.usegalaxy.org/p/4077/
- http://davetang.org/muse/2011/09/14/mapping-qualities/
- Fastq file
- variant category (snp, insertion, deletion, mixed) http://www.1000genomes.org/node/101
- What is a VCF and how should I interpret it? from broad.
- See also SAM/BAM format.
Below is an example of each record/row
1 | #CHROM | 2 |
2 | POS | 14370 |
3 | ID | rs6054257 or . |
4 | REF | G |
5 | ALT | A |
6 | QUAL | 29 |
7 | FILTER | PASS or . |
8 | INFO | NS=3;DP=14;AF=0.5;DB;H2 |
opt | FORMAT | GT:AD:DP:GQ:PL |
opt | NA00001 | 0/1:3,2:5:34:34,0,65 |
where the meanings of GT(genotype), AD(Allelic depths for the ref and alt alleles in the order listed), HQ (haplotype quality), GQ (genotype quality)... can be found in the header of the VCF file.
Examples
See the samtools and GATK output from GSE48215subset data included in BRB-SeqTools.
Count number of rows
grep -cv "#" vcffile
Filtering
- Filtering A Sam File For Quality Scores. For example, to filter out reads with MAQP < 30 in SAM/BAM files
samtools view -b -q 30 input.bam > filtered.bam
- To filter vcf based on MQ, use for example,
bcftools filter -i"QUAL >= 20 && DP >= 5 && MQ >= 30" INPUTVCF > OUTPUTVCF
Open with LibreOffice Calc
Use delimiter 'Tab' only and uncheck the others.
It will then get the correct header #CHROM, POS, ID, REF, ALT, QUAL, FILTER, INFO (separated by ;), FORMAT (separated by :), SampleID (separated by :) where INFO field contains site-level annotations and FORMAT&SampleID fields contain sample-level annotations.
Count number of records, snps and indels
- vcftools.
- https://www.biostars.org/p/49386/, https://www.biostars.org/p/109086/, https://www.biostars.org/p/50923/, https://wikis.utexas.edu/display/bioiteam/Variant+calling+using+SAMtools.
- Summary statistics
bcftools stats XXX.vcf # SN, Summary numbers: # SN [2]id [3]key [4]value SN 0 number of samples: 0 SN 0 number of records: 71712 SN 0 number of no-ALTs: 0 SN 0 number of SNPs: 65950 SN 0 number of MNPs: 0 SN 0 number of indels: 5762 SN 0 number of others: 0 SN 0 number of multiallelic sites: 0 SN 0 number of multiallelic SNP sites: 0
- Remove the header
grep -v "^#" input.vcf > output.vcf
- Count number of records
grep -c -v "^#" XXX.vcf # -c means count, -v is invert search
VariantsToTable tool from Broad GATK
VariantAnnotation package
- readVcf(), ScanVcfParam() and readInfo() functions.
- scanVcfHeader() and scanVcfParam() functions.
To install the R package, first we need to install required software in Linux
sudo apt-get update sudo apt-get install libxml2-dev sudo apt-get install libcurl4-openssl-dev
and then
source("http://bioconductor.org/biocLite.R") biocLite("VariantAnnotation") library(VariantAnnotation) vcf <- readVcf("filename.vcf", "hg19") # Header header(vcf) # Sample names samples(header(vcf)) # Geno geno(header(vcf)) # Genomic positions head(rowRanges(vcf), 3) ref(vcf)[1:5] # Variant quality qual(vcf)[1:5] alt(vcf)[1:5] # INFO info(vcf)[1:3, ] # Get the Depth (DP) hist(info(vcf)$DP, xlab="DP") summary(info(vcf)$DP, xlab="DP") # Get the Mapping quality (MQ/MapQ) hist(info(vcf)$MQ, xlab="MQ")
Example:
We first show how to use linux command line to explore the VCF file. Then we show how to use the VariantAnnotation package.
# The vcf file is created from running samtools on SRR1656687.fastq nskip=$(grep "^#" ~/Downloads/BMBC2_liver3_IMPACT_raw.vcf | wc -l) echo $nskip # 53 awk 'NR==53, NR==53' ~/Downloads/BMBC2_liver3_IMPACT_raw.vcf #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT dedup.bam nall=$(cat ~/Downloads/BMBC2_liver3_IMPACT_raw.vcf | wc -l) echo $nall # 302174 # Generate <variantsOnly.vcf> which contains only the variant body awk 'NR==54, NR==302174' ~/Downloads/BMBC2_liver3_IMPACT_raw.vcf > variantsOnly.vcf # Generate <infoField.txt> which contains only the INFO field cut -f 8 variantsOnly.vcf > infoField.txt # Generate the final product head -n 1 infoField.txt DP=4;VDB=0.64;SGB=-0.453602;RPB=1;MQB=1;BQB=1;MQ0F=0;AC=2;AN=2;DP4=0,1,0,2;MQ=22 head -n 1 infoField.txt | cut -f1- -d ";" --output-delimiter " " ## Method 1: use cut ### Problem: the result is not a table since not all fields appear in all variants. cut -f1- -d ";" --output-delimiter=$'\t' infoField.txt > infoFieldTable.txt ## Method 2: use sed ### Problem: same as Method 1. sed 's/;/\t/g' infoField.txt > infoFieldTable2.txt ### OR if we want to replace the original file sed -i 's/;/\t/g' infoField.txt $ head -n 3 infoField.txt DP=4;VDB=0.64;SGB=-0.453602;RPB=1;MQB=1;BQB=1;MQ0F=0;AC=2;AN=2;DP4=0,1,0,2;MQ=22 DP=6;VDB=0.325692;SGB=-0.556411;MQ0F=0.333333;AC=2;AN=2;DP4=0,0,0,4;MQ=11 DP=5;VDB=0.0481133;SGB=-0.511536;RPB=1;MQB=1;MQSB=1;BQB=1;MQ0F=0;ICB=1;HOB=0.5;AC=1;AN=2;DP4=1,0,2,1;MQ=26 $ grep "^##INFO=<ID=" BMBC2_liver3_IMPACT_raw.vcf ##INFO=<ID=INDEL,Number=0,Type=Flag,Description="Indicates that the variant is an INDEL."> ##INFO=<ID=IDV,Number=1,Type=Integer,Description="Maximum number of reads supporting an indel"> ##INFO=<ID=IMF,Number=1,Type=Float,Description="Maximum fraction of reads supporting an indel"> ##INFO=<ID=DP,Number=1,Type=Integer,Description="Raw read depth"> ##INFO=<ID=VDB,Number=1,Type=Float,Description="Variant Distance Bias for filtering splice-site artefacts in RNA-seq data (bigger is better)",Version="3"> ##INFO=<ID=RPB,Number=1,Type=Float,Description="Mann-Whitney U test of Read Position Bias (bigger is better)"> ##INFO=<ID=MQB,Number=1,Type=Float,Description="Mann-Whitney U test of Mapping Quality Bias (bigger is better)"> ##INFO=<ID=BQB,Number=1,Type=Float,Description="Mann-Whitney U test of Base Quality Bias (bigger is better)"> ##INFO=<ID=MQSB,Number=1,Type=Float,Description="Mann-Whitney U test of Mapping Quality vs Strand Bias (bigger is better)"> ##INFO=<ID=SGB,Number=1,Type=Float,Description="Segregation based metric."> ##INFO=<ID=MQ0F,Number=1,Type=Float,Description="Fraction of MQ0 reads (smaller is better)"> ##INFO=<ID=ICB,Number=1,Type=Float,Description="Inbreeding Coefficient Binomial test (bigger is better)"> ##INFO=<ID=HOB,Number=1,Type=Float,Description="Bias in the number of HOMs number (smaller is better)"> ##INFO=<ID=AC,Number=A,Type=Integer,Description="Allele count in genotypes for each ALT allele, in the same order as listed"> ##INFO=<ID=AN,Number=1,Type=Integer,Description="Total number of alleles in called genotypes"> ##INFO=<ID=DP4,Number=4,Type=Integer,Description="Number of high-quality ref-forward , ref-reverse, alt-forward and alt-reverse bases"> ##INFO=<ID=MQ,Number=1,Type=Integer,Description="Average mapping quality"> odroid@odroid:~/Downloads$ $ head -n2 variantsOnly.vcf 1 10285 . T C 19.3175 . DP=4;VDB=0.64;SGB=-0.453602;RPB=1;MQB=1;BQB=1;MQ0F=0;AC=2;AN=2;DP4=0,1,0,2;MQ=22 GT:PL 1/1:46,2,0 1 10333 . C T 14.9851 . DP=6;VDB=0.325692;SGB=-0.556411;MQ0F=0.333333;AC=2;AN=2;DP4=0,0,0,4;MQ=11 GT:PL 1/1:42,12,0 $ awk 'NR==53, NR==58' ~/Downloads/BMBC2_liver3_IMPACT_raw.vcf #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT dedup.bam 1 10285 . T C 19.3175 . DP=4;VDB=0.64;SGB=-0.453602;RPB=1;MQB=1;BQB=1;MQ0F=0;AC=2;AN=2;DP4=0,1,0,2;MQ=22 GT:PL 1/1:46,2,0 1 10333 . C T 14.9851 . DP=6;VDB=0.325692;SGB=-0.556411;MQ0F=0.333333;AC=2;AN=2;DP4=0,0,0,4;MQ=11 GT:PL 1/1:42,12,0 1 16257 . G C 24.566 . DP=5;VDB=0.0481133;SGB=-0.511536;RPB=1;MQB=1;MQSB=1;BQB=1;MQ0F=0;ICB=1;HOB=0.5;AC=1;AN=2;DP4=1,0,2,1;MQ=26 GT:PL 0/1:57,0,10 1 16534 . C T 13.9287 . DP=5;VDB=0.87268;SGB=-0.556411;MQ0F=0.4;AC=2;AN=2;DP4=0,0,4,0;MQ=11 GT:PL 1/1:41,12,0 1 16571 . G A 12.4197 . DP=7;VDB=0.560696;SGB=-0.556411;RPB=1;MQB=1;MQSB=0;BQB=1;MQ0F=0.714286;AC=2;AN=2;DP4=1,0,2,2;MQ=8 GT:PL 1/1:39,8,0 odroid@odroid:~/Downloads$
As you can see it is not easy to create a table from the INFO field.
Now we use the VariantAnnotation package.
> library("VariantAnnotation") > v=readVcf("BMBC2_liver3_IMPACT_raw.vcf", "hg19") > v class: CollapsedVCF dim: 302121 1 rowRanges(vcf): GRanges with 5 metadata columns: paramRangeID, REF, ALT, QUAL, FILTER info(vcf): DataFrame with 17 columns: INDEL, IDV, IMF, DP, VDB, RPB, MQB, BQB, MQSB, ... info(header(vcf)): Number Type Description INDEL 0 Flag Indicates that the variant is an INDEL. IDV 1 Integer Maximum number of reads supporting an indel IMF 1 Float Maximum fraction of reads supporting an indel DP 1 Integer Raw read depth VDB 1 Float Variant Distance Bias for filtering splice-site arte... RPB 1 Float Mann-Whitney U test of Read Position Bias (bigger is... MQB 1 Float Mann-Whitney U test of Mapping Quality Bias (bigger ... BQB 1 Float Mann-Whitney U test of Base Quality Bias (bigger is ... MQSB 1 Float Mann-Whitney U test of Mapping Quality vs Strand Bia... SGB 1 Float Segregation based metric. MQ0F 1 Float Fraction of MQ0 reads (smaller is better) ICB 1 Float Inbreeding Coefficient Binomial test (bigger is better) HOB 1 Float Bias in the number of HOMs number (smaller is better) AC A Integer Allele count in genotypes for each ALT allele, in th... AN 1 Integer Total number of alleles in called genotypes DP4 4 Integer Number of high-quality ref-forward , ref-reverse, al... MQ 1 Integer Average mapping quality geno(vcf): SimpleList of length 2: GT, PL geno(header(vcf)): Number Type Description GT 1 String Genotype PL G Integer List of Phred-scaled genotype likelihoods > > header(v) class: VCFHeader samples(1): dedup.bam meta(2): META contig fixed(2): FILTER ALT info(17): INDEL IDV ... DP4 MQ geno(2): GT PL > > dim(info(v)) [1] 302121 17 > info(v)[1:4, ] DataFrame with 4 rows and 17 columns INDEL IDV IMF DP VDB RPB <logical> <integer> <numeric> <integer> <numeric> <numeric> 1:10285_T/C FALSE NA NA 4 0.6400000 1 1:10333_C/T FALSE NA NA 6 0.3256920 NA 1:16257_G/C FALSE NA NA 5 0.0481133 1 1:16534_C/T FALSE NA NA 5 0.8726800 NA MQB BQB MQSB SGB MQ0F ICB <numeric> <numeric> <numeric> <numeric> <numeric> <numeric> 1:10285_T/C 1 1 NA -0.453602 0.000000 NA 1:10333_C/T NA NA NA -0.556411 0.333333 NA 1:16257_G/C 1 1 1 -0.511536 0.000000 1 1:16534_C/T NA NA NA -0.556411 0.400000 NA HOB AC AN DP4 MQ <numeric> <IntegerList> <integer> <IntegerList> <integer> 1:10285_T/C NA 2 2 0,1,0,... 22 1:10333_C/T NA 2 2 0,0,0,... 11 1:16257_G/C 0.5 1 2 1,0,2,... 26 1:16534_C/T NA 2 2 0,0,4,... 11 > write.table(info(v)[1:4,], file="infoFieldTable3.txt", sep="\t", quote=F) > head(rowRanges(v), 3) GRanges object with 3 ranges and 5 metadata columns: seqnames ranges strand | paramRangeID REF <Rle> <IRanges> <Rle> | <factor> <DNAStringSet> 1:10285_T/C 1 [10285, 10285] * | <NA> T 1:10333_C/T 1 [10333, 10333] * | <NA> C 1:16257_G/C 1 [16257, 16257] * | <NA> G ALT QUAL FILTER <DNAStringSetList> <numeric> <character> 1:10285_T/C C 19.3175 . 1:10333_C/T T 14.9851 . 1:16257_G/C C 24.5660 . ------- seqinfo: 25 sequences from hg19 genome > qual(v)[1:5] [1] 19.3175 14.9851 24.5660 13.9287 12.4197 > alt(v)[1:5] DNAStringSetList of length 5 [[1]] C [[2]] T [[3]] C [[4]] T [[5]] A > q('no')
vcfR package
Filtering strategy
- https://support.bioconductor.org/p/62817/ using QUAL and DP.
Note that the QUAL (variant quality score) values can go very large. For example in GSE48215, samtools gives QUAL a range of [3,228] but gatk gives a range of [3, 10042]. This post says QUAL is not often a very useful property for evaluating the quality of a variant call.
# vcfs is vcf file ran by samtools using GSE48215subset # vcfg is vcf file ran by gatk using GSE48215subset > summary(vcfs) Length Class Mode 1604 CollapsedVCF S4 > summary(vcfg) Length Class Mode 868 CollapsedVCF S4 > summary(qual(vcfs)) Min. 1st Qu. Median Mean 3rd Qu. Max. 3.013 10.580 23.650 45.510 45.400 228.000 > summary(qual(vcfg)) Min. 1st Qu. Median Mean 3rd Qu. Max. 3.98 21.77 47.74 293.90 116.10 10040.00 > range(info(vcfs)$DP) [1] 1 336 > range(info(vcfg)$DP) [1] 1 317 > range(info(vcfs)$MQ) [1] 4 60 > range(info(vcfg)$MQ) [1] 21.00 65.19 # vcfg2 is vcf file ran by gatk using GSE48215 > vcfg2 <- readVcf("~/GSE48215/outputgcli/bt20_raw.vcf", "hg19") > summary(vcfg2) Length Class Mode 506851 CollapsedVCF S4 > range(qual(vcfg2)) [1] 0.00 73662.77 > summary(qual(vcfg2)) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.00 21.77 21.77 253.70 62.74 73660.00 > range(info(vcfg2)$DP) [1] 0 3315 > summary(info(vcfg2)$DP) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.00 2.00 2.00 14.04 4.00 3315.00 > range(info(vcfg2)$MQ) [1] NaN NaN > range(info(vcfg2)$MQ, na.rm=T) [1] 20 70
- vaf and AD field (stands for allele depth/number of reads, 2 values for each genotype per sample, reference:alternative).
These two values will usually, but not always sum to the DP value. Reads that are not used for calling are not counted in the DP measure, but are included in AD. See Question: Understanding Vcf File Format
An example
GT:AD:DP:GQ:PL 0/1:1,2:3:30:67,0,30
R code to compute VAF by using AD information only (AD = 1,2 in this case)
require(VariantAnnotation) vcf <- readVcf(file, refg) vaf <- sapply(geno(vcf)$AD, function(x) x[2]/sum(x))
extract allele frequency
https://en.wikipedia.org/wiki/Minor_allele_frequency
Calculate allele frequency from vcf files.
- https://gatkforums.broadinstitute.org/gatk/discussion/6202/vcf-file-and-allele-frequency. In the code below, vaf is calculated from AD and DP was obtained directly from DP field.
readvcf2 <- function(file, refg="hg19") { vcf <- readVcf(file, refg) if (!is.null(geno(vcf)$DP) && ncol(geno(vcf)$DP) > 1) stop("More than one sample were found!") # http://gatkforums.broadinstitute.org/gatk/discussion/6202/vcf-file-and-allele-frequency # READ AD if ("AD" %in% names(geno(vcf))) { # note it is possible DP does not exist but AD exists (mutect2 output) # vaf <- sapply(geno(vcf)$AD, function(x) x[2]) / geno(vcf)$DP # vaf <- vaf[, 1] vaf <- sapply(geno(vcf)$AD, function(x) x[2]/sum(x)) } else { vaf <- NULL } # READ DP if (is.null(geno(vcf)$DP) || (is.na(geno(vcf)$DP[1]) && is.null(info(vcf)$DP)) || (is.na(geno(vcf)$DP[1]) && is.na(info(vcf)$DP[1]))) { cat("Warning: no DP information can be retrieved!\n") dp <- NULL } else { if (!is.null(geno(vcf)$DP) && !is.na(geno(vcf)$DP[1])) { dp <- geno(vcf)$DP if (is.matrix(dp)) dp <- dp[, 1] } else { dp <- info(vcf)$DP } } if (! "chr" %in% substr(unique(seqnames(vcf)), 1, 3)) { chr <- paste('chr', as.character(seqnames(vcf)), sep='') } else { chr <- as.character(seqnames(vcf)) } strt <- paste(chr, start(vcf)) # ?BiocGenerics::start return(list(dp=dp, vaf=vaf, start=strt, chr=unique(as.character(seqnames(vcf))))) }
- http://samtools.github.io/hts-specs/VCFv4.1.pdf, http://samtools.github.io/hts-specs/VCFv4.2.pdf
- vcftools
vcftools --vcf file.vcf --freq --out output # No DP, No AD. No useful information vcftools --vcf file.vcf --freq -c > output # same as above
How can I extract only insertions from a VCF file?
subset vcf file
Using tabix.
Adding/removing 'chr' to/from vcf files
https://www.biostars.org/p/98582/
awk '{if($0 !~ /^#/) print "chr"$0; else print $0}' no_chr.vcf > with_chr.vcf # Not enough awk '{ if($0 !~ /^#/) print "chr"$0; else if(match($0,/(##contig=<ID=)(.*)/,m)) print m[1]"chr"m[2]; else print $0 }' no_chr.vcf > with_chr.vcf
SAMtools (samtools, bcftools, htslib)
- http://samtools.sourceforge.net/mpileup.shtml
- http://massgenomics.org/2012/03/5-things-to-know-about-samtools-mpileup.html. Li's paper is available in NCBI PMC.
- A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data by Heng Li.
- https://www.broadinstitute.org/gatk/media/docs/Samtools.pdf
export seqtools_samtools_PATH=/opt/SeqTools/bin/samtools-1.3:/opt/SeqTools/bin/samtools-1.3/misc export PATH=$seqtools_samtools_PATH:$PATH samtools sort TNBC1/accepted_hits.bam TNBC1/accepted_hits-sorted samtools index TNBC1/accepted_hits-sorted.bam TNBC1/accepted_hits-sorted.bai samtools mpileup -uf ~/igenome/human/NCBI/build37.2/genome.fa \ TNBC1/accepted_hits-sorted.bam | bcftools view -vcg - > TNBC1/var.raw.vcf
where '-u' in mpileup means uncompressed and '-f' means faidx indexed reference sequence file. If we do not use pipe command, the output from samtools mpileup is a bcf file which can be viewed by using 'bcftools view XXX.bcf | more' command.
Note that the samtools mpileup can be used in different ways. For example,
samtools mpileup -f XXX.fa XXX.bam > XXX.mpileup samtools mpileup -v -u -f XXX.fa XXX.bam > XXX.vcf samtools mpileup -g -f XXX.fa XXX.bam > XXX.bcf
bcftools
bcftools — utilities for variant calling and manipulating VCFs and their binary counterparts BCFs. bcftools was one of components in SAMtools software (not anymore, see http://www.htslib.org/download/)
Installation
wget https://github.com/samtools/bcftools/releases/download/1.2/bcftools-1.2.tar.bz2 sudo tar jxf bcftools-1.2.tar.bz2 -C /opt/RNA-Seq/bin/ cd /opt/RNA-Seq/bin/bcftools-1.2/ sudo make # create bcftools, plot-vcfstats, vcfutils.pl commands
Example: Add or remove or update annotations. http://samtools.github.io/bcftools/bcftools.html
# Remove three fields bcftools annotate -x ID,INFO/DP,FORMAT/DP file.vcf.gz # Remove all INFO fields and all FORMAT fields except for GT and PL bcftools annotate -x INFO,^FORMAT/GT,FORMAT/PL file.vcf # Add ID, QUAL and INFO/TAG, not replacing TAG if already present bcftools annotate -a src.bcf -c ID,QUAL,+TAG dst.bcf # Update 'ID' column in VCF file, https://www.biostars.org/p/227652/ # Note that the column header CHROM,FROM,.. only needs to appear in input.vcf.gz; # they may not appear in the annotation file # For vcf files, there is a comment sign '#' on the header line containing CHROM,FROM,... bcftools annotate -c CHROM,FROM,TO,ID,INFO/MLEAC,INFO/MLEAF -a annotation.vcf.gz -o output.vcf input.vcf.gz # Carry over all INFO and FORMAT annotations except FORMAT/GT bcftools annotate -a src.bcf -c INFO,^FORMAT/GT dst.bcf # Annotate from a tab-delimited file with six columns (the fifth is ignored), # first indexing with tabix. The coordinates are 1-based. tabix -s1 -b2 -e2 annots.tab.gz bcftools annotate -a annots.tab.gz -h annots.hdr -c CHROM,POS,REF,ALT,-,TAG file.vcf # Annotate from a tab-delimited file with regions (1-based coordinates, inclusive) tabix -s1 -b2 -e3 annots.tab.gz bcftools annotate -a annots.tab.gz -h annots.hdr -c CHROM,FROM,TO,TAG inut.vcf
Example: variant call
samtools sort TNBC1/accepted_hits.bam TNBC1/accepted_hits-sorted samtools index TNBC1/accepted_hits-sorted.bam TNBC1/accepted_hits-sorted.bai samtools mpileup -uf ~/igenome/human/NCBI/build37.2/genome.fa \ TNBC1/accepted_hits-sorted.bam | bcftools view -vcg - > TNBC1/var.raw.vcf # Or samtools mpileup -g -f XXX.fa XXX.bam > sample.bcf bcftools call -v -m -O z -o var.raw.vcf.gz sample.bcf zcat var.raw.vcf.gz | more zcat var.raw.vcf.gz | grep -v "^#" | wc -l samtools tview -p 17:1234567 XXX.bam XXX.fa | more # IGV alternative
where '-v' means exports variants only, '-m' for multiallelic-caller and '-O z' means compressed vcf format.
Example: count the number of snps, indels, et al in the vcf file, use
bcftools stats xxx.vcf | more
Example: filter based on variant quality, depth, mapping quality
bcftools filter -i"QUAL >= 20 && DP >= 5 && MQ >= 60" inputVCF > output.VCF
where '-i' include only sites for which EXPRESSION is true.
Example: change the header (dedup.bam -> dedup), use
$ grep dedup.bam dT_ori_raw.vcf ##samtoolsCommand=samtools mpileup -go temp.bcf -uf /home/brb/GSE11209-master/annotation/genome.fa dedup.bam #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT dedup.bam $ echo dedup > sampleName $ bcftools reheader -s sampleName dT_ori_raw.vcf -o dT_ori_raw2.vcf $ grep dedup.bam dT_ori_raw2.vcf ##samtoolsCommand=samtools mpileup -go temp.bcf -uf /home/brb/GSE11209-master/annotation/genome.fa dedup.bam $ diff dT_ori_raw.vcf dT_ori_raw2.vcf 45c45 < #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT dedup.bam --- > #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT dedup
What bcftools commands are used in BRB-SeqTools?
- bcftools filter: apply fixed-threshold filters.
bcftools filter -i "QUAL >= 1 && DP >= 60 && MQ >= 1" INPUT.vcf > filtered.vcf
- bcftools norm: Left-align and normalize indels. http://annovar.openbioinformatics.org/en/latest/articles/VCF/. Note that this step may fail (Error: wrong number of fields in INFO/MLEAC at chr8:59535859, expected 2, found 1). If I follow the suggestion https://github.com/samtools/bcftools/issues/581 Setting INFO/MLEAC and INFO/MLEAF to ‘Number=.’ Then I got a message Failed to open /tmp/vcf/K01621_295-R_M205_v2.0.1.51.0_WES.vcf: could not parse header. So it's safer to remove this step (2 lines).
bcftools norm -m-both -o splitted.vcf filtered.vcf bcftools norm -f genomeRef -o leftnormalized.vcf splitted.vcf
- bcftools annotate: add/remove or update annotations
bcftools annotate -c ID -a dbSNPVCF leftnormalized.vcf.gz > dbsnp_anno.vcf bcftools annotate -c ID,+GENE -a cosmicVCF dbsnp_anno.vcf.gz > cosmic_dbsnp.vcf # +GENE: add annotations without overwriting existing values # In this case, it is likely GENE does not appear in dbsnp_anno.vcf.gz # It is better +INFO/GENE instead of GENE in '-c' parameter.
- bcftools query: Extracts fields from VCF or BCF files and outputs them in user-defined format.
bcftools query -f '%INFO/AC\n' input.vcf > AC.txt bcftools query -f '%INFO/MLEAC\n' input.vcf > MLEAC.txt
htslib: bgzip and tabix
- bgzip – Block compression/decompression utility. The output file .gz is in a binary format.
- tabix – Generic indexer for TAB-delimited genome position files. The output file tbi is in a binary format.
Installation
wget https://github.com/samtools/htslib/releases/download/1.2.1/htslib-1.2.1.tar.bz2 sudo tar jxf htslib-1.2.1.tar.bz2 -C /opt/RNA-Seq/bin/ cd /opt/RNA-Seq/bin/htslib-1.2.1/ sudo make # create tabix, htsfile, bgzip commands
Example
export PATH=/opt/SeqTools/bin/samtools-1.3/htslib-1.3:$PATH export PATH=/opt/RNA-Seq/bin/bcftools-1.2/:$PATH # zip and index bgzip -c var.raw.vcf > var.raw.vcf.gz # var.raw.vcf will not be kept tabix var.raw.vcf.gz # create var.raw.vcf.ga.tbi, index vcf files (very fast in this step) bcftools annotate -c ID -a common_all_20150603.vcf.gz var.raw.vcf.gz > var_annot.vcf # 2 min # subset based on chromosome 1, include 'chr' and position range if necessary tabix -h var.raw.vcf.gz 1: > chr1.vcf tabix -h var.raw.vcf.gz chr1:10,000,000-20,000,000 # subset a vcf file using a bed file bgzip -c raw.vcf > raw.vcf.gz # without "-c", the original vcf file will not be kept tabix -p vcf raw.vcf.gz # create tbi file tabix -R test.bed raw.vcf.gz > testout.vcf
GATK (Java)
- Genomics in the cloud
- Source code is at github (up to 3.8) and building instruction https://gatkforums.broadinstitute.org/gatk/discussion/comment/8443.
- Source code for GATK4 https://github.com/broadinstitute/gatk
- GATK4 tutorial
Need to create an account w/ password and log in in order to see and download the software(not anymore).- Downloaded file is called GenomeAnalysisTK-3.5.tar.bz2 or GenomeAnalysisTK-3.6.tar.bz2. Note that the current version 3.6 (released on 6/1/2016) requires Java 1.8.
# Download GenomeAnalysisTK-3.4-46.tar.bz2 from gatk website sudo mkdir /opt/RNA-Seq/bin/gatk sudo tar jxvf ~/Downloads/GenomeAnalysisTK-3.4-46.tar.bz2 -C /opt/RNA-Seq/bin/gatk ls /opt/RNA-Seq/bin/gatk # GenomeAnalysisTK.jar resources
- (Blog) https://software.broadinstitute.org/gatk/blog
- Ubuntu 14 only has Java 1.6 and 1.7. Ubuntu 16 only has Java 1.8 and 1.9.
- Picard and HTSJDK also rely on Java.
- Different results on 2 second run. http://gatkforums.broadinstitute.org/gatk/discussion/5008/haplotypecaller-on-whole-genome-or-chromosome-by-chromosome-different-results
- GATK guide and requirements.
- Best Practices workflow for SNP and indel calling on RNAseq data using GATK. It recommend using HaplotypeCaller.
- Indel realignment Input=BAM, Output=BAM. Big improvement for Base Quality Score Recalibration when run on realigned BAM files (artificial SNPs are replaced with real indels).
- Base Quality Score Recalibration Input=BAM, known sites, Output=BAM.
- UnifiedGenotyper for variant call.
- https://wikis.utexas.edu/display/bioiteam/Variant+calling+with+GATK
- Identification of somatic and germline mutations using whole exome sequencing of congenital acute lymphoblastic leukemia: a paper that has used GATK for germline and somatic analyses
- http://gatkforums.broadinstitute.org/discussion/3892/the-gatk-best-practices-for-variant-calling-on-rnaseq-in-full-detail
- New plugin to support your BWA-GATK pipelines for Biomedical Genomics Server Solution
Citing papers
https://software.broadinstitute.org/gatk/documentation/article.php?id=6201
- McKenna et al. 2010 "The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data"
- DePristo et al. 2011 "A framework for variation discovery and genotyping using next-generation DNA sequencing data"
- Van der Auwera et al. 2013 "rom FastQ Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline"
Container version and Java
For some reason, running GATK 3.8 on Biowulf (CentOS + Sun Java) does not give any variants. But in my Ubuntu (OpenJDK), it does.
It is strange the website recommends Sun Java, but the container version uses OpenJDK.
$ docker run -it --rm broadinstitute/gatk (gatk) root@9c630a926bc1:/gatk# java -version openjdk version "1.8.0_131" OpenJDK Runtime Environment (build 1.8.0_131-8u131-b11-2ubuntu1.16.04.3-b11) OpenJDK 64-Bit Server VM (build 25.131-b11, mixed mode) $ docker run -it --rm broadinstitute/gatk3:3.8-0 root@80b7efa0c3ac:/usr# java -version openjdk version "1.8.0_102" OpenJDK Runtime Environment (build 1.8.0_102-8u102-b14.1-1~bpo8+1-b14) OpenJDK 64-Bit Server VM (build 25.102-b14, mixed mode)
See the example 'how to run a shell script on host' on how to run GATK from the host command line (the container will be deleted after the job is done; similar to what 'singularity' does).
Pipeline
- Quick Start Guide: installation, best practice, how to run, run pipelines with WDL, ...
- Variant Calling Pipeline: FastQ to Annotated SNPs in Hours
- https://www.broadinstitute.org/partnerships/education/broade/best-practices-variant-calling-gatk-1
- https://gatkforums.broadinstitute.org/gatk/discussion/3891/best-practices-for-variant-calling-on-rnaseq
- Snakemake workflow: dna-seq-gatk-variant-calling
IGV
dbSNP file
For running GATK best practices, dbsnp file has to be downloaded using the GATK version (with 'chr') for Ensembl but non-GATK (without 'chr') for UCSC. See Anders -> GATK.
- ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606_b147_GRCh37p13/VCF/GATK/ common_all_xxxxxx.vcf.gz and tbi files
- ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606_b147_GRCh38p2/VCF/GATK/ common_all_xxxxxx.vcf.gz and tbi files
MarkDuplicates by Picard
Sequencing error propagated in duplicates. See p14 on Broad Presentation -> Pipeline Talks -> MPG_Primer_2016-Seq_and_Variant_Discovery.
Reads have to be sorted by coordinates (using eg picard.jar SortSam OR samtools sort) first.
java -Djava.io.tmpdir="./tmpJava" \ -Xmx10g -jar $PICARDJARPATH/picard.jar \ MarkDuplicates \ VALIDATION_STRINGENCY=SILENT \ METRICS_FILE=MarkDudup.metrics \ INPUT=sorted.bam \ OUTPUT=bad.bam
Check if sam is sorted
http://plindenbaum.blogspot.com/2011/02/testing-if-bam-file-is-sorted-using.html
Read group assignment by Picard
java -Djava.io.tmpdir="/home/brb/SRP049647/outputvc/tmpJava" -Xmx10g \ -jar /opt/SeqTools/bin/picard-tools-2.1.1/picard.jar AddOrReplaceReadGroups \ INPUT=BMBC2_liver3_IMPACT.bam \ OUTPUT=rg_added_sorted.bam \ RGID=1 \ RGLB=rna \ RGPL=illumina \ RGPU=UNKNOWN \ RGSM=BMBC2_liver3_IMPACT
Split reads into exon (RNA-seq only)
samtools index reorder.bam java -Djava.io.tmpdir="/home/brb/SRP049647/outputvc/tmpJava" -Xmx10g \ -jar /opt/SeqTools/bin/gatk/GenomeAnalysisTK.jar \ -T SplitNCigarReads \ -R /home/brb/igenomes/Homo_sapiens/UCSC/hg38/Sequence/BWAIndex/../WholeGenomeFasta/genome.fa \ -I reorder.bam \ -o split.bam \ -U ALLOW_N_CIGAR_READS \ -fixNDN \ -allowPotentiallyMisencodedQuals samtools index split.bam
Indel realignment
Local alignment around indels corrects mapping errors. See p15 on Broad Presentation -> Pipeline Talks -> MPG_Primer_2016-Seq_and_Variant_Discovery.
Notes
- (from its documentation) indel realignment is no longer necessary for variant discovery if you plan to use a variant caller that performs a haplotype assembly step, such as HaplotypeCaller or MuTect2. However it is still required when using legacy callers such as UnifiedGenotyper or the original MuTect.
- It require the following two steps before running indel realignment
- Generate an intervals (see next subsection) file
- sorted bam file (necessary?)
- The '-known' option is not necessary. In this GATK workflow with HaplotypeCaller, it does not use '-known' or '-knownSites' in the pipeline.
Create realignment targets (*.intervals) using '-known' option
The following code follows Local Realignment around Indels. That is, we don't need to use the '-I' parameter as in example from the RealignerTargetCreator documentation.
java -Xmx10g -jar /opt/SeqTools/bin/gatk/GenomeAnalysisTK.jar \ -T RealignerTargetCreator \ -R /home/brb/igenomes/Homo_sapiens/UCSC/hg19/Sequence/WholeGenomeFasta/genome.fa \ -o /home/brb/SeqTestdata/usefulvcf/hg19/gatk/BRB-SeqTools_indels_only.intervals \ -known /home/brb/SeqTestdata/usefulvcf/hg19/gatk/common_all_20160601.vcf \ -nt 11
Indel realignment requires an intervals file.
ReorderSam by Picard
Question: is this step necessary? Local Realignment around Indels documentation does not have emphasized this step.
java -Djava.io.tmpdir="/home/brb/SRP049647/outputvc/tmpJava" -Xmx10g \ -jar /opt/SeqTools/bin/picard-tools-2.1.1/picard.jar \ ReorderSam \ INPUT=rg_added_sorted.bam \ OUTPUT=reorder.bam \ REFERENCE=/home/brb/igenomes/Homo_sapiens/UCSC/hg38/Sequence/BWAIndex/../WholeGenomeFasta/genome.fa
Indel realignment using '-known' option
java -Djava.io.tmpdir="/home/brb/SRP049647/outputvc/tmpJava" -Xmx10g \ -jar /opt/SeqTools/bin/gatk/GenomeAnalysisTK.jar \ -T IndelRealigner \ -R /home/brb/igenomes/Homo_sapiens/UCSC/hg38/Sequence/BWAIndex/../WholeGenomeFasta/genome.fa \ -I split.bam \ -targetIntervals /home/brb/SeqTestdata/usefulvcf/hg38/gatk/BRB-SeqTools_indels_only.intervals \ -known /home/brb/SeqTestdata/usefulvcf/hg38/gatk/common_all_20170710.vcf.gz \ -o realigned_reads.bam \ -allowPotentiallyMisencodedQuals
Base quality score recalibration using '-knownSites' option
Base recalibrartion corrects for machine errors. See p16 on Broad Presentation -> Pipeline Talks -> MPG_Primer_2016-Seq_and_Variant_Discovery.
The base recalibration process involves two key steps
- builds a model of covariation based on the data and produces the recalibration table. It operates only at sites that are not in dbSNP; we assume that all reference mismatches we see are therefore errors and indicative of poor base quality.
- Assuming we are working with a large amount of data, we can then calculate an empirical probability of error given the particular covariates seen at this site, where p(error) = num mismatches / num observations. The output file is a table (of the several covariate values, number of observations, number of mismatches, empirical quality score).
Afterwards, it (I guess it is in the PrintReads command) adjusts the base quality scores in the data based on the model
(from the documentation) -knownSites parameter: This algorithm treats every reference mismatch as an indication of error. However, real genetic variation is expected to mismatch the reference, so it is critical that a database of known polymorphic sites (e.g. dbSNP) is given to the tool in order to mask out those sites.
In terms of the software implementation, this workflow actually includes two commands: BaseRecalibrator and PrintReads.
In my experience running the PrintReads command is very very slow even I have used the multi-threaded mode option (-nct). See a discussion parallelizing PrintReads.
java -Djava.io.tmpdir="/home/brb/SRP049647/outputvc/tmpJava" -Xmx10g \ -jar /opt/SeqTools/bin/gatk/GenomeAnalysisTK.jar \ -T BaseRecalibrator \ -R /home/brb/igenomes/Homo_sapiens/UCSC/hg38/Sequence/BWAIndex/../WholeGenomeFasta/genome.fa \ -I realigned_reads.bam \ -nct 11 \ -knownSites /home/brb/SeqTestdata/usefulvcf/hg38/gatk/common_all_20170710.vcf.gz \ -o recal_data.table -allowPotentiallyMisencodedQuals java -Djava.io.tmpdir="/home/brb/SRP049647/outputvc/tmpJava" -Xmx10g -jar /opt/SeqTools/bin/gatk/GenomeAnalysisTK.jar -T PrintReads -R /home/brb/igenomes/Homo_sapiens/UCSC/hg38/Sequence/BWAIndex/../WholeGenomeFasta/genome.fa -I realigned_reads.bam -nct 11 -BQSR recal_data.table -o recal.bam
Variant call by HaplotypeCaller (germline) and MuTec2 (somatic)
- Germline vs. somatic mutations
- HaplotypeCaller
- The (HaplotypeCaller) algorithms used to calculate variant likelihoods is not well suited to extreme allele frequencies (relative to ploidy) so its use is not recommended for somatic (cancer) variant discovery. For that purpose, use MuTect2 instead.
- HaplotypeCaller theory/properties https://wiki.nbic.nl/images/1/13/Wim_2013_07_12.pdf#page=6
- Local denovo assembly (De novo transcriptome assembly) based variant caller. Whenever the program encounters a region showing signs of variation, it discards the existing mapping information and completely reassembles the reads in that region. This allows the HaplotypeCaller to be more accurate when calling regions that are traditionally difficult to call, for example when they contain different types of variants close to each other.
- Calls SNP, INDEL, MNP and small SV simultaneously
- Removes mapping artifacts
- More sensitive and accurate than the Unified Genotyper (UG)
- How the HaplotypeCaller works? (Broad Presentation -> Pipeline Talks -> MPG_Primer_2015-Seq_and_Variant_Discovery)
- Define active regions (substantial evidence of variation relative to the reference)
- Determine haplotypes by re-assembly of the active region
- Determine likelihoods of the haplotypes given the read data
- Assign sample genotypes
java -Djava.io.tmpdir="/home/brb/SRP049647/outputvc/tmpJava" -Xmx10g -jar /opt/SeqTools/bin/gatk/GenomeAnalysisTK.jar -T HaplotypeCaller --genotyping_mode DISCOVERY -R /home/brb/igenomes/Homo_sapiens/UCSC/hg38/Sequence/BWAIndex/../WholeGenomeFasta/genome.fa -I recal.bam -stand_call_conf 30 -o /home/brb/SRP049647/outputvc/BMBC2_liver3_IMPACT_raw.vcf -allowPotentiallyMisencodedQuals -nct 11
Variant call by VarDict
https://github.com/AstraZeneca-NGS/VarDict
Random results and downsampling
- HaplotypeCaller on whole genome or chromosome by chromosome: different results Downsampling is random, and a few different reads can make a difference.
- Downsampling with HaplotypeCaller
- Downsampling details We do not recommend changing the downsampling settings in the tool.
- What I want to obtain is the same result as when running just HC on BAM files in plain VCF output
- You can use PrintReads to downsample first then run HaplotypeCaller on the downsampled BAM
- HaplotypeCaller generates diff results on different CPUs. you might well get into reproducibility problems if you use single process multi-thread parallelism (i.e. -nt N where N > 1) regardless of what pair HMM implementation you are using.
Why expected variants are not called
- I expect to see a variant at a specific site, but it's not getting called
- Generate a "bamout file" showing how HaplotypeCaller has remapped sequence reads
- Call variants with HaplotypeCaller
- Inconsistency among the depth in the vcf file and in the original bam file and HC -bamout bam file
- To include all trimmed, downsampled, filtered and uninformative reads when -bamout is specified, add the --emitDroppedReads argument.
Why is HaplotypeCaller dropping half of my reads?
Missing mapping quality score
https://www.biostars.org/p/79367/#79369
On GSE48215 case, I got 34 missing MQ from bwa + gatk but no missing MQ from bwa + samtools???
VQSR 质控
https://zhuanlan.zhihu.com/p/34878471
idx file
It is a binary file. It is one of two ouptut from the GATK's Haplotype calling.
Unfortunately there is no documentation about its spec. It can be generated if VCF files can be validated by ValidateVariants
Djava.io.tmpdir
- Grokking GATK: Common Pitfalls with the Genome Analysis Tool Kit (and Picard)
- the number of files (such as bamschedule.* files) in the tmp is so large(about 11000)
- Is there any speed benefit to redirecting Djava.io.tmpdir to local scratch?
- http://people.duke.edu/~ccc14/duke-hts-2017/Statistics/08032017/GATK-pipeline-sample.html
- How large is the tmp directory required? Less than 1G is sufficient for 12GB bam file.
how to deal with errors
- ERROR : BAM file has a read with mismatching number of bases and base qualities (works) with indelrealigner. GATK 3.8 log4j error (not useful). The solution is to add the option --filter_mismatching_base_and_quals to IndelRealigner.
$ grep -n ERROR swarm_58155698_0.e --color 513:ERROR StatusLogger Unable to create class org.apache.logging.log4j.core.impl.Log4jContextFactory specified in jar:file:/usr/local/apps/GATK/3.8-0/GenomeAnalysisTK.jar!/META-INF/log4j-provider.properties 514:ERROR StatusLogger Log4j2 could not find a logging implementation. Please add log4j-core to the classpath. Using SimpleLogger to log to the console... 535:##### ERROR ------------------------------------------------------------------------------------------ 536:##### ERROR A USER ERROR has occurred (version 3.8-0-ge9d806836): 537:##### ERROR 538:##### ERROR This means that one or more arguments or inputs in your command are incorrect. 539:##### ERROR The error message below tells you what is the problem. 540:##### ERROR 541:##### ERROR If the problem is an invalid argument, please check the online documentation guide 542:##### ERROR (or rerun your command with --help) to view allowable command-line arguments for this tool. 543:##### ERROR 544:##### ERROR Visit our website and forum for extensive documentation and answers to 545:##### ERROR commonly asked questions https://software.broadinstitute.org/gatk 546:##### ERROR 547:##### ERROR Please do NOT post this error to the GATK forum unless you have really tried to fix it yourself. 548:##### ERROR 549:##### ERROR MESSAGE: SAM/BAM/CRAM file htsjdk.samtools.SamReader$PrimitiveSamReaderToSamReaderAdapter@4a7427f9 is malformed. Please see https://software.broadinstitute.org/gatk/documentation/article?id=1317for more information. Error details: BAM file has a read with mismatching number of bases and base qualities. Offender: homo_simulated_Error0_Mu0-j1-chr2-r10408427 [55 bases] [0 quals]. You can use --defaultBaseQualities to assign a default base quality for all reads, but this can be dangerous in you don't know what you are doing. 550:##### ERROR -----------------------------------------------------------------------------
- ERROR SAM/BAM/CRAM file appears to be using the wrong encoding for quality scores in BaseRecalibrator. Adding '--fix_misencoded_quality_scores' does not help.
##### ERROR A USER ERROR has occurred (version 3.8-0-ge9d806836): ##### ERROR ##### ERROR This means that one or more arguments or inputs in your command are incorrect. ##### ERROR The error message below tells you what is the problem. ##### ERROR ##### ERROR If the problem is an invalid argument, please check the online documentation guide ##### ERROR (or rerun your command with --help) to view allowable command-line arguments for this tool. ##### ERROR ##### ERROR Visit our website and forum for extensive documentation and answers to ##### ERROR commonly asked questions https://software.broadinstitute.org/gatk ##### ERROR ##### ERROR Please do NOT post this error to the GATK forum unless you have really tried to fix it yourself. ##### ERROR ##### ERROR MESSAGE: SAM/BAM/CRAM file htsjdk.samtools.SamReader$PrimitiveSamReaderToSamReaderAdapter@6c0bf8f4 appears to be using the wrong encoding for quality scores: we encountered an extremely high quality score (68) with BAQ correction factor of 4. Please see https://software.broadinstitute.org/gatk/documentation/article?id=6470 for more details and options related to this error. After adding '--fix_misencoded_quality_scores' does not help. #### ERROR MESSAGE: Bad input: while fixing mis-encoded base qualities we encountered a read that was correctly encoded; we cannot handle such a mixture of reads so unfortunately the BAM must be fixed with some other tool
Novocraft
https://hpc.nih.gov/apps/novocraft.html
Running index is very quick (2 minutes for hg19). The following commands will generate a file <hg19index> which is about 7.8GB in size.
$ sinteractive --mem=32g -c 16 $ module load novocraft $ novoindex hg19index $HOME/igenomes/Homo_sapiens/UCSC/hg19/Sequence/WholeGenomeFasta/genome.fa # novoindex (3.8) - Universal k-mer index constructor. # (C) 2008 - 2011 NovoCraft Technologies Sdn Bhd # novoindex hg19index /home/limingc/igenomes/Homo_sapiens/UCSC/hg19/Sequence/WholeGenomeFasta/genome.fa # Creating 55 indexing threads. # Building with 14-mer and step of 2 bp. tcmalloc: large alloc 1073750016 bytes == 0x13f8000 @ 0x4008e4 0x56c989 0x40408c 0x40127b 0x4d20bb 0x402845 tcmalloc: large alloc 8344305664 bytes == 0x41402000 @ 0x4008e4 0x56d6d3 0x40423a 0x40127b 0x4d20bb 0x402845 # novoindex construction dT = 116.1s # Index memory size 7.771Gbyte. # Done.
freebayes
The program gave different errors for some real datasets downloaded from GEO.
A small test data included in the software works.
brb@brb-P45T-A:~/github$ sudo apt-get update brb@brb-P45T-A:~/github$ sudo apt-get install cmake brb@brb-P45T-A:~/github$ git clone --recursive git://github.com/ekg/freebayes.git brb@brb-P45T-A:~/github$ cd freebayes/ brb@brb-P45T-A:~/github/freebayes$ make brb@brb-P45T-A:~/github/freebayes$ make test # Got some errors. So don't worry to 'make test' brb@brb-P45T-A:~/github/freebayes/test/tiny$ ../../bin/freebayes -f q.fa NA12878.chr22.tiny.bam > tmp.vcf brb@brb-P45T-A:~/github/freebayes/test/tiny$ ls -lt total 360 -rw-rw-r-- 1 brb brb 15812 Oct 9 10:52 tmp.vcf -rw-rw-r-- 1 brb brb 287213 Oct 9 09:33 NA12878.chr22.tiny.bam -rw-rw-r-- 1 brb brb 96 Oct 9 09:33 NA12878.chr22.tiny.bam.bai -rw-rw-r-- 1 brb brb 16307 Oct 9 09:33 NA12878.chr22.tiny.giab.vcf -rw-rw-r-- 1 brb brb 12565 Oct 9 09:33 q.fa -rw-rw-r-- 1 brb brb 16 Oct 9 09:33 q.fa.fai -rw-rw-r-- 1 brb brb 2378 Oct 9 09:33 q_spiked.vcf.gz -rw-rw-r-- 1 brb brb 91 Oct 9 09:33 q_spiked.vcf.gz.tbi -rw-rw-r-- 1 brb brb 4305 Oct 9 09:33 q.vcf.gz -rw-rw-r-- 1 brb brb 102 Oct 9 09:33 q.vcf.gz.tbi brb@brb-P45T-A:~/github/freebayes/test/tiny$ ~/github/samtools/samtools view NA12878.chr22.tiny.bam | wc -l 3333 brb@brb-P45T-A:~/github/freebayes/test/tiny$ wc -l tmp.vcf 76 tmp.vcf brb@brb-P45T-A:~/github/freebayes/test/tiny$ wc -l q.fa 207 q.fa
To debug the code, we can
../../bin/freebayes -f q.fa NA12878.chr22.tiny.bam > tmpFull.out 2>&1
Then compare tmp.vcf and tmpFull.out files. We see
- total sites: 12280
- the first variant call happens at position 186. Look at tmpFull.out file, we see most of positions just show 3 lines in the output but variants like position 186 show a lot of output (line 643 to 736).
- the output 'processing position XXX' was generated from AlleleParser:toNextPosition() which was called by AlleleParser::getNextAlleles() which was called by freebayes.cpp::main() line 126, the while() loop.
freeBayes vs HaplotypeCaller
- https://www.biostars.org/p/174510/
- Updated comparison of variant detection methods: Ensemble, FreeBayes and minimal BAM preparation pipelines
Varscan2
vcftools
https://vcftools.github.io/examples.html
This toolset can be used to perform the following operations on VCF files:
- Filter out specific variants
- Compare files
- Summarize variants
- Convert to different file types
- Validate and merge files
- Create intersections and subsets of variants
wget http://sourceforge.net/projects/vcftools/files/vcftools_0.1.12b.tar.gz/download \ -o vcftools_0.1.12b.tar.gz tar -xzvf vcftools_0.1.12b.tar.gz sudo mv vcftools_0.1.12b /opt/RNA-Seq/bin/ export PERL5LIB=/opt/RNA-Seq/bin/vcftools_0.1.12b/perl/ /opt/RNA-Seq/bin/vcftools_0.1.12b/ make export PATH=$PATH:/opt/RNA-Seq/bin/vcftools_0.1.12b/bin ls bin # fill-aa vcf-annotate vcf-convert vcf-phased-join vcf-subset # fill-an-ac vcf-compare vcf-fix-ploidy vcf-query vcftools # fill-fs vcf-concat vcf-indel-stats vcf-shuffle-cols vcf-to-tab # fill-ref-md5 vcf-consensus vcf-isec vcf-sort vcf-tstv # man1 vcf-contrast vcf-merge vcf-stats vcf-validator
Some example
$ cd ~/SRP032789 $ vcftools --vcf GSM1261016_IP2-50_var.flt.vcf VCFtools - v0.1.12b (C) Adam Auton and Anthony Marcketta 2009 Parameters as interpreted: --vcf GSM1261016_IP2-50_var.flt.vcf After filtering, kept 1 out of 1 Individuals After filtering, kept 193609 out of a possible 193609 Sites Run Time = 1.00 seconds $ wc -l GSM1261016_IP2-50_var.flt.vcf 193636 GSM1261016_IP2-50_var.flt.vcf $ vcf-indel-stats < GSM1261016_IP2-50_var.flt.vcf > out.txt Use of uninitialized value in pattern match (m//) at /opt/RNA-Seq/bin/vcftools_0.1.12b/bin/vcf-indel-stats line 49. Use of uninitialized value in concatenation (.) or string at /opt/RNA-Seq/bin/vcftools_0.1.12b/bin/vcf-indel-stats line 49. <: No such file or directory at /opt/RNA-Seq/bin/vcftools_0.1.12b/bin/vcf-indel-stats line 18. main::error('<: No such file or directory') called at /opt/RNA-Seq/bin/vcftools_0.1.12b/bin/vcf-indel-stats line 50 main::init_regions('HASH(0xd77cb8)') called at /opt/RNA-Seq/bin/vcftools_0.1.12b/bin/vcf-indel-stats line 71 main::do_stats('HASH(0xd77cb8)') called at /opt/RNA-Seq/bin/vcftools_0.1.12b/bin/vcf-indel-stats line 9
To compare two vcf files, see https://vcftools.github.io/documentation.html
./vcftools --vcf input_data.vcf --diff other_data.vcf --out compare
Online course on Variant calling
- edX: HarvardX: PH525.6x Case Study: Variant Discovery and Genotyping. Course notes is at their Github page.
GenomeVIP
a cloud platform for genomic variant discovery and interpretation
PCA
PCA of genomic variant data across one chromosome from 2,504 people from the 1000 genomes project
Variant Annotation
See also the paper A survey of tools for variant analysis of next-generation genome sequencing data.
突变注释工具SnpEff,Annovar,VEP,oncotator比较分析
Awesome-cancer-variant-databases - A community-maintained repository of cancer clinical knowledge bases and databases focused on cancer variants.
dbSNP
SNPlocs data R package for Human. Some clarification about SNPlocs.Hsapiens.dbSNP.20120608 package.
> library(BSgenome) > available.SNPs() [1] "SNPlocs.Hsapiens.dbSNP141.GRCh38" [2] "SNPlocs.Hsapiens.dbSNP142.GRCh37" [3] "SNPlocs.Hsapiens.dbSNP.20090506" [4] "SNPlocs.Hsapiens.dbSNP.20100427" [5] "SNPlocs.Hsapiens.dbSNP.20101109" [6] "SNPlocs.Hsapiens.dbSNP.20110815" [7] "SNPlocs.Hsapiens.dbSNP.20111119" [8] "SNPlocs.Hsapiens.dbSNP.20120608" [9] "XtraSNPlocs.Hsapiens.dbSNP141.GRCh38"
An example:
wget https://github.com/samtools/bcftools/releases/download/1.2/bcftools-1.2.tar.bz2 sudo tar jxf bcftools-1.2.tar.bz2 -C /opt/RNA-Seq/bin/ cd /opt/RNA-Seq/bin/bcftools-1.2/ sudo make wget https://github.com/samtools/htslib/releases/download/1.2.1/htslib-1.2.1.tar.bz2 sudo tar jxf htslib-1.2.1.tar.bz2 -C /opt/RNA-Seq/bin/ cd /opt/RNA-Seq/bin/htslib-1.2.1/ sudo make # create tabix, htsfile, bgzip commands export bdge_bowtie_PATH=/opt/RNA-Seq/bin/bowtie2-2.2.1 export bdge_tophat_PATH=/opt/RNA-Seq/bin/tophat-2.0.11.Linux_x86_64 export bdge_samtools_PATH=/opt/RNA-Seq/bin/samtools-0.1.19 export PATH=$bdge_bowtie_PATH:$bdge_samtools_PATH:$bdge_tophat_PATH:$PATH export PATH=/opt/RNA-Seq/bin/bcftools-1.2/:$PATH export PATH=/opt/RNA-Seq/bin/htslib-1.2.1/:$PATH wget ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/VCF/common_all_20150603.vcf.gz.tbi wget ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/VCF/common_all_20150603.vcf.gz cd TNBC1 mv ~/Downloads/common_all_20150603.vcf.gz* . bgzip -c var.raw.vcf > var.raw.vcf.gz tabix var.raw.vcf.gz bcftools annotate -c ID -a common_all_20150603.vcf.gz var.raw.vcf.gz > var_annot.vcf
Any found in dbSNP?
grep -c 'rs[0-9]' raw_snps.vcf
ANNOVAR
ANNOVAR and the web based interface to ANNOVAR wANNOVAR. ANNOVAR can annotate genetic variants using
- Gene-based annotation
- Region-based annotation
- Filter-based annotation
- Other functionalities
Note that
- annovarR R package. The wrapper functions of annovarR unified the interface of many published annotation tools, such as VEP, ANNOVAR, vcfanno and AnnotationDbi.
- It is correct to use the original download link from the email to download the latest version.
- annovar folder needs to be placed under a directory with write permission
- If we run annovar with a new reference genome, the code will need to download some database. When annovar is downloading the database, the cpu is resting so the whole process looks idling.
- Annovar will print out a warning with information about changes if there is a new version available.
- BRB-SeqTools (grep "\.pl" preprocessgui/*.*) uses
- annotate_variation.pl (5); download db,
- convert2annovar.pl (2), convert to *.avinput format,
- table_annovar.pl (4), annotation, (after this step the INFO column will be changed)
- variants_reduction.pl (1).
- In nih/biowulf, it creates $ANNOVAR_HOME and $ANNOVAR_DATA environment variables.
- To check the version of my local copy
~/annovar/annotate_variation.pl
- Contents of annovar
brb@T3600 ~ $ ls -l ~/annovar/ total 476 -rwxr-xr-x 1 brb brb 212090 Mar 7 14:59 annotate_variation.pl -rwxr-xr-x 1 brb brb 13589 Mar 7 14:59 coding_change.pl -rwxr-xr-x 1 brb brb 166582 Mar 7 14:59 convert2annovar.pl drwxr-xr-x 2 brb brb 4096 Jun 18 2015 example drwxr-xr-x 3 brb brb 4096 Mar 21 09:59 humandb -rwxr-xr-x 1 brb brb 19419 Mar 7 14:59 retrieve_seq_from_fasta.pl -rwxr-xr-x 1 brb brb 34682 Mar 7 14:59 table_annovar.pl -rwxr-xr-x 1 brb brb 21774 Mar 7 14:59 variants_reduction.pl brb@T3600 ~ $ ls -lh ~/annovar/humandb | head total 36G -rw-r--r-- 1 brb brb 927 Mar 21 09:59 annovar_downdb.log drwxr-xr-x 2 brb brb 4.0K Jun 18 2015 genometrax-sample-files-gff -rw-r--r-- 1 brb brb 20K Mar 7 14:59 GRCh37_MT_ensGeneMrna.fa -rw-r--r-- 1 brb brb 3.1K Mar 7 14:59 GRCh37_MT_ensGene.txt -rw-r--r-- 1 brb brb 1.4G Dec 15 2014 hg19_AFR.sites.2014_10.txt -rw-r--r-- 1 brb brb 87M Dec 15 2014 hg19_AFR.sites.2014_10.txt.idx -rw-r--r-- 1 brb brb 2.8G Dec 15 2014 hg19_ALL.sites.2014_10.txt -rw-r--r-- 1 brb brb 89M Dec 15 2014 hg19_ALL.sites.2014_10.txt.idx -rw-r--r-- 1 brb brb 978M Dec 15 2014 hg19_AMR.sites.2014_10.txt
- Youtube ANNOVAR How to annotate genetic variants
- Compare the INFO column before and after running the annotation
> x <- read.delim("reduced.vcf", skip=190, header=F) > y <- read.delim("K01621_295-R_M205M321M592M940M987_v2.0.1.51.0_WES_annotated.vcf", skip=231, header=F) > x[1, 8] [1] "AC=2;AF=1;AN=2;DB;DP=8;ExcessHet=3.0103;FS=0;MLEAC=2;MLEAF=1;MQ=60;QD=23.1;SOR=0.693;set=HC;GENE=SAMD11" > y[1, 8] [1] "AC=2;AF=1;AN=2;DB;DP=8;ExcessHet=3.0103;FS=0;MLEAC=2;MLEAF=1;MQ=60;QD=23.1;SOR=0.693;set=HC;GENE=SAMD11;ANNOVAR_DATE=2017-07-17;Func.refGene=exonic;Gene.refGene=SAMD11;GeneDetail.refGene=.;ExonicFunc.refGene=nonsynonymous_SNV;AAChange.refGene=SAMD11:NM_152486:exon10:c.T1027C:p.W343R;SIFT_score=1.0;SIFT_pred=T;Polyphen2_HDIV_score=0.0;Polyphen2_HDIV_pred=B;Polyphen2_HVAR_score=0.0;Polyphen2_HVAR_pred=B;LRT_score=0.003;LRT_pred=N;MutationTaster_score=1.000;MutationTaster_pred=P;MutationAssessor_score=-2.085;MutationAssessor_pred=N;FATHMM_score=.;FATHMM_pred=.;PROVEAN_score=5.06;PROVEAN_pred=N;VEST3_score=0.421;CADD_raw=-0.287;CADD_phred=0.712;DANN_score=0.606;fathmm-MKL_coding_score=0.100;fathmm-MKL_coding_pred=N;MetaSVM_score=-0.980;MetaSVM_pred=T;MetaLR_score=0.000;MetaLR_pred=T;integrated_fitCons_score=0.598;integrated_confidence_value=0;GERP++_RS=2.51;phyloP7way_vertebrate=-0.448;phyloP20way_mammalian=-0.090;phastCons7way_vertebrate=0.013;phastCons20way_mammalian=0.866;SiPhy_29way_logOdds=7.519;ALLELE_END"
SnpEff & SnpSift
- http://snpeff.sourceforge.net/SnpEff.html (basic information)
- http://snpeff.sourceforge.net/SnpEff_manual.html (Manual)
- http://snpeff.sourceforge.net/protocol.html (6 examples)
- https://wiki.hpcc.msu.edu/display/Bioinfo/SnpEff+-+The+Basics
- https://docs.uabgrid.uab.edu/wiki/Galaxy_DNA-Seq_Tutorial
- http://www.genome.gov/Pages/Research/DIR/DIRNewsFeatures/Next-Gen101/Teer_VariantAnnotation.pdf
- http://veda.cs.uiuc.edu/course2013/pres/fields/lab/Variant_Calling_v1.pptx (if you click the link, chrome will dl the pptx file)
- In BRB-SeqTools, snpEff.jar (2) and SnpSift.jar (5)
- NIH/biowulf also has installed snpEff & SnpSift
SnpEff: Genetic variant annotation and effect prediction toolbox
- Input: vcf & reference genome database (eg GRCh38.79).
- Output: vcf & <snpEff_summary.html> & < snpEff_genes.txt> files.
wget http://iweb.dl.sourceforge.net/project/snpeff/snpEff_latest_core.zip sudo unzip snpEff_latest_core.zip -d /opt/RNA-Seq/bin export PATH=/opt/RNA-Seq/bin/snpEff/:$PATH # Next we want to download snpEff database. # 1. Need to pay attention the database is snpEff version dependent # 2. Instead of using the command line (very slow < 1MB/s), # java -jar /opt/RNA-Seq/bin/snpEff/snpEff.jar databases | grep GRCh # java -jar /opt/RNA-Seq/bin/snpEff/snpEff.jar download GRCh38.79 # we just go to the file using the the web browser # http://sourceforge.net/projects/snpeff/files/databases/v4_1/ # 525MB # 3. the top folder of the zip file is called 'data'. We will need to unzip it to the snpEff directory. # That is, snpEff +- data # |- examples # |- galaxy # +- scripts mv ~/Downloads/snpEff_v4_1_GRCh38.79.zip . unzip snpEff_v4_1GRCh38.79.zip sudo java -Xmx4G -jar /opt/RNA-Seq/bin/snpEff/snpEff.jar \ -i vcf -o vcf GRCh38.79 var_annot.vcf > var_annot_snpEff.vcf brb@T3600 ~ $ ls -l /opt/SeqTools/bin/snpEff/ total 44504 drwxrwxr-x 5 brb brb 4096 May 5 11:24 data drwxr-xr-x 2 brb brb 4096 Feb 17 16:37 examples drwxr-xr-x 3 brb brb 4096 Feb 17 16:37 galaxy drwxr-xr-x 3 brb brb 4096 Feb 17 16:37 scripts -rw-r--r-- 1 brb brb 6138594 Dec 5 10:49 snpEff.config -rw-r--r-- 1 brb brb 20698856 Dec 5 10:49 snpEff.jar -rw-r--r-- 1 brb brb 18712032 Dec 5 10:49 SnpSift.jar
Output file (compare cosmic_dbsnp_rem.vcf and snpeff_anno.vcf at here):
- add 5 lines at the header. Search "ID=ANN" at snpeff_anno.vcf
##SnpEffVersion="4.2 (build 2015-12-05), by Pablo Cingolani" ##SnpEffCmd="SnpEff -no-downstream -no-upstream .... ##INFO=<ID=ANN,Number=.,Type=String,Description="Functional annotations: 'Allele | Annotation | Annotation_Impact | Gene_Name | Gene_ID | Feature_Type | Feature_ID |... ##INFO=<ID=LOF,Number=.,Type=String,Description="Predicted loss of function effects for this variant. ... ##INFO=<ID=NMD,Number=.,Type=String,Description="Predicted nonsense mediated decay effects for this variant. ...
- added functional annotations ANN in the INFO field. See an example at Basic example: Annotate using SnpEff
ANN=A|missense_variant|MODERATE|ISG15|ISG15|transcript|NM_005101.3|protein_coding|2/2|c.248G>A|p.Ser83Asn|355/666|248/498|83/165||
SnpSift: SnpSift helps filtering and manipulating genomic annotated files
Once you annotated your files using SnpEff, you can use SnpSift to help you filter large genomic datasets in order to find the most significant variants
cat "$outputDir/tmp/$tmpfd/snpeff_anno.vcf" | \ java -jar "$seqtools_snpeff/SnpSift.jar" \ filter "(ANN[*].BIOTYPE = 'protein_coding') | (ANN[*].EFFECT has 'splice')" \ > "$outputDir/tmp/$tmpfd/snpeff_proteincoding.vcf"
the output file (compare snpeff_anno.vcf and snpeff_proteincoding.vcf at https://github.com/arraytools/vc-annotation/tree/master/snpeff/tmp here]
- the header will add 3 lines
##SnpSiftVersion="SnpSift 4.2 (build 2015-12-05), by Pablo Cingolani" ##SnpSiftCmd="SnpSift filter '(ANN[*].BIOTYPE = 'protein_coding') | (ANN[*].EFFECT has 'splice')'" ##FILTER=<ID=SnpSift,Description="SnpSift 4.2 ...
- KEEP variants satisfying the filter criterion (In the ANN field, BIOTYPE=protein_coding and EFFECT=splice). So it will reduce the variants size. No more fields are added.
java -jar "$seqtools_snpeff/SnpSift.jar" dbNSFP -f $dbnsfpField \ -v -db "$dbnsfpFile" "$outputDir/tmp/$tmpfd/nonsyn_splicing2.vcf" \ > "$outputDir/tmp/$tmpfd/nonsyn_splicing_dbnsfp.vcf"
Compare nonsyn_splicing2.vcf and nonsyn_splicing_dbnsfp.vcf at github output file
- the header adds 29 lines.
##SnpSiftCmd="SnpSift dbnsfp -f SIFT_score,SIFT_pred, ... ##INFO=<ID=dbNSFP_GERP___RS,Number=A,Type=Float,Description="Field 'GERP++_RS' from dbNSFP"> ##INFO=<ID=dbNSFP_CADD_phred,Number=A,Type=Float,Description="Field 'CADD_phred' from dbNSFP"> ...
- the INFO field will add
dbNSFP_CADD_phred=2.276;dbNSFP_CADD_raw=-0.033441;dbNSFP_FATHMM_pred=.,.,T; ...
java -jar "$seqtools_snpeff/SnpSift.jar" extractFields \ -s "," -e "." "$outputDir/tmp/$tmpfd/nonsyn_splicing_dbnsfp.vcf" CHROM POS ID REF ALT "ANN[0].EFFECT" "ANN[0].IMPACT" "ANN[0].GENE" "ANN[0].GENEID" "ANN[0].FEATURE" "ANN[0].FEATUREID" "ANN[0].BIOTYPE" "ANN[0].HGVS_C" "ANN[0].HGVS_P" dbNSFP_SIFT_score dbNSFP_SIFT_pred dbNSFP_Polyphen2_HDIV_score dbNSFP_Polyphen2_HDIV_pred dbNSFP_Polyphen2_HVAR_score dbNSFP_Polyphen2_HVAR_pred dbNSFP_LRT_score dbNSFP_LRT_pred dbNSFP_MutationTaster_score dbNSFP_MutationTaster_pred dbNSFP_MutationAssessor_score dbNSFP_MutationAssessor_pred dbNSFP_FATHMM_score dbNSFP_FATHMM_pred dbNSFP_PROVEAN_score dbNSFP_PROVEAN_pred dbNSFP_VEST3_score dbNSFP_CADD_raw dbNSFP_CADD_phred dbNSFP_MetaSVM_score dbNSFP_MetaSVM_pred dbNSFP_MetaLR_score dbNSFP_MetaLR_pred dbNSFP_GERP___NR dbNSFP_GERP___RS dbNSFP_phyloP100way_vertebrate dbNSFP_phastCons100way_vertebrate dbNSFP_SiPhy_29way_logOdds \ > "$outputDir/tmp/$tmpfd/annoTable.txt"
The output file will
- remove header from the input VCF file
- break the INFO field into several columns; Only the columns we specify in the command will be kept.
Local
$ ls -l /opt/SeqTools/bin/snpEff/ total 44504 drwxrwxr-x 5 brb brb 4096 May 5 11:24 data drwxr-xr-x 2 brb brb 4096 Feb 17 16:37 examples drwxr-xr-x 3 brb brb 4096 Feb 17 16:37 galaxy drwxr-xr-x 3 brb brb 4096 Feb 17 16:37 scripts -rw-r--r-- 1 brb brb 6138594 Dec 5 10:49 snpEff.config -rw-r--r-- 1 brb brb 20698856 Dec 5 10:49 snpEff.jar -rw-r--r-- 1 brb brb 18712032 Dec 5 10:49 SnpSift.jar $ ls -l /opt/SeqTools/bin/snpEff/data total 12 drwxr-xr-x 2 brb brb 4096 May 5 11:24 GRCh38.82 drwxrwxr-x 2 brb brb 4096 Feb 5 09:28 hg19 drwxr-xr-x 2 brb brb 4096 Mar 8 09:44 hg38
Biowulf
The following code fixed some typos on biowulf website.
echo $SNPSIFT_JAR # Make sure the database (GRCH37.75 in this case) exists ls /usr/local/apps/snpEff/4.2/data # CanFam3.1.75 Felis_catus_6.2.75 GRCh37.75 GRCh38.82 GRCm38.81 GRCz10.82 hg38 # CanFam3.1.81 Felis_catus_6.2.81 GRCh37.GTEX GRCh38.p2.RefSeq GRCm38.82 hg19 hg38kg # CanFam3.1.82 Felis_catus_6.2.82 GRCh38.81 GRCm38.75 GRCz10.81 hg19kg Zv9.75 # Use snpEff to annotate against GRCh37.75 snpEff -v -lof -motif -hgvs -nextProt GRCh37.75 protocols/ex1.vcf > ex1.eff.vcf # 25 minutes # create ex1.eff.vcf (475MB), snpEff_genes.txt (2.5MB) and snpEff_summary.html (22MB) # Use SnpSift to pull out 'HIGH IMPACT' or 'MODERATE IMPACT' variants cat ex1.eff.vcf | \ java -jar $SNPSIFT_JAR filter "((EFF[*].IMPACT = 'HIGH') | (EFF[*].IMPACT = 'MODERATE'))" \ > ex1.filtered.vcf # ex1.filtered.vcf (8.2MB), 2 minutes # Use SnpSift to annotate against the dbNSFP database java -jar $SNPSIFT_JAR dbnsfp -v -db /fdb/dbNSFP2/dbNSFP2.9.txt.gz ex1.eff.vcf \ > file.annotated.vcf # file.annotated.vcf (479 MB), 11 minutes
and the output
$ ls -lth | head total 994M -rw-r----- 1 479M May 15 11:47 file.annotated.vcf -rw-r----- 1 8.2M May 15 11:31 ex1.filtered.vcf -rw-r----- 1 476M May 15 10:31 ex1.eff.vcf -rw-r----- 1 2.5M May 15 10:30 snpEff_genes.txt -rw-r----- 1 22M May 15 10:30 snpEff_summary.html lrwxrwxrwx 1 39 May 15 10:01 protocols -> /usr/local/apps/snpEff/4.2/../protocols
Strange error
- Run 1: Error
$ java -Xmx4G -jar "$seqtools_snpeff/snpEff.jar" -canon \ -no-downstream -no-upstream -no-intergenic -no-intron -no-utr \ -noNextProt -noMotif $genomeVer -s "$outputDir/tmp/$tmpfd/annodbsnpRemove.html" \ "$outputDir/tmp/$tmpfd/cosmic_dbsnp_rem.vcf" java.lang.RuntimeException: ERROR: Cannot read file '/opt/SeqTools/bin/snpEff/./data/hg38/snpEffectPredictor.bin'. You can try to download the database by running the following command: java -jar snpEff.jar download hg38 at ca.mcgill.mcb.pcingola.snpEffect.SnpEffectPredictor.load(SnpEffectPredictor.java:62) at ca.mcgill.mcb.pcingola.snpEffect.Config.loadSnpEffectPredictor(Config.java:517) at ca.mcgill.mcb.pcingola.snpEffect.commandLine.SnpEff.loadDb(SnpEff.java:339) at ca.mcgill.mcb.pcingola.snpEffect.commandLine.SnpEffCmdEff.run(SnpEffCmdEff.java:956) at ca.mcgill.mcb.pcingola.snpEffect.commandLine.SnpEffCmdEff.run(SnpEffCmdEff.java:939) at ca.mcgill.mcb.pcingola.snpEffect.commandLine.SnpEff.run(SnpEff.java:978) at ca.mcgill.mcb.pcingola.snpEffect.commandLine.SnpEff.main(SnpEff.java:136) NEW VERSION! There is a new SnpEff version available: Version : 4.3P Release date : 2017-06-06 Download URL : http://sourceforge.net/projects/snpeff/files/snpEff_latest_core.zip
- Run 2: OK
$ java -Xmx4G -jar "$seqtools_snpeff/snpEff.jar" -canon -no-downstream \ -no-upstream -no-intergenic -no-intron -no-utr \ -noNextProt -noMotif $genomeVer \ -s "$outputDir/tmp/$tmpfd/annodbsnpRemove.html" \ "$outputDir/tmp/$tmpfd/cosmic_dbsnp_rem.vcf" ##fileformat=VCFv4.2 ##FILTER=<ID=PASS,Description="All filters passed"> ##samtoolsVersion=1.3+htslib-1.3 ...
ANNOVAR and SnpEff examples
https://github.com/arraytools/brb-seqtools/tree/master/testdata/GSE48215subset/output
COSMIC
- Youtube videos
- Histogram of BRAF (melanoma).
AnnTools
GNS-SNP
SeattleSeq
SVA
VARIANT
VEP
DNA Sequencing analysis on Artemis Mapping and Variant Calling Tracy Chew et al
Web tools
- UCSC Variant Annotation Integrator
- SeattleSeq Annotation 137
- Variant Effect Predictor and VEP script
pcgr
- https://github.com/sigven/pcgr
- Personal Cancer Genome Reporter: variant interpretation report for precision oncology 2017
SPDI
SPDI: Data Model for Variants and Applications at NCBI
De novo genome assembly
Single Cell RNA-Seq
- https://github.com/seandavi/awesome-single-cell#tutorials-and-workflows List of software packages for single-cell data analysis collected by Sean Davis
- Single-Cell RNA-Sequencing: Assessment of Differential Expression Analysis Methods by Dal Molin et al 2017.
- Normalization and noise reduction for single cell RNA-seq experiments by Bo Ding et al 2015.
- A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor by Lun 2016.
- (Video) Analysis of single cell RNA-seq data - Lecture 1 by BioinformaticsTraining
- (Video) Single-cell isolation by a modular single-cell pipette for RNA-sequencing by labonachipVideos
- Gene length and detection bias in single cell RNA sequencing protocols and the script & data are available online. Belinda Phipson1 et al 2017.
- Bioconductor workflow for single-cell RNA sequencing: Normalization, dimensionality reduction, clustering, and lineage inference in ISCB (International Society for Computational Biology Community Journal). It has open peer reviews too.
- Welcome to the Tidyverse from the Journal of Open Source Software. It has open peer reviews too.
- Missing data and technical variability in single-cell RNA-sequencing experiments
- A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications 2017
- How to design a single-cell RNA-sequencing experiment: pitfalls, challenges and perspectives by Alessandra Dal Molin 2018
How many cells are in the human body?
CPM and glmpca package
Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model, glmpca package. All codes are available in github.
scone package: normalization
Performance Assessment and Selection of Normalization Procedures for Single-Cell RNA-Seq.
monocle package
sincell package
SCell
SCell – integrated analysis of single-cell RNA-seq data
GEVM
Detection of high variability in gene expression from single-cell RNA-seq profiling. Two mouse scRNA-seq data sets were obtained from Gene Expression Omnibus (GSE65525 and GSE60361).
NMFEM
Detecting heterogeneity in single-cell RNA-Seq data by non-negative matrix factorization
Seurat
Splatter: Simulation Of Single-Cell RNA Sequencing Data
http://www.biorxiv.org/content/early/2017/07/24/133173?rss=1
Scater
Pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R
DEsingle
DEsingle – detecting three types of differential expression in single-cell RNA-seq data
Co-expression in RNA-Seq
- Co-expression network analysis using RNA-Seq data
- coseq - Co-Expression Analysis of Sequencing Data
- Gene co-expression analysis for functional classification and gene–disease predictions
Monitor Software Version Change
Circos Plot
Circos is a popular tool for summarizing genomic events in a tumor genome.
- Genome Modeling System: A Knowledge Management Platform for Genomics
- MS-Helios: a Circos wrapper to visualize multi-omic datasets
Cancer & Mutation
My Cancer Genome
CIViC - Clinical Interpretations of Variants in Cancer
NCBI
- NCBI Resources and Variant Interpretation Tools for the Clinical Community: ClinVar, MedGen, GTR, Variation Viewer