Heatmap
Evaluate the effect of centering & scaling
1-correlation distance
Effect of centering and scaling on clustering of genes and samples in terms of distance. 'Yes' means the distance was changed compared to the baseline where no centering or scaling was applied.
clustering genes | clustering samples | |
---|---|---|
centering on each genes | No | Yes |
scaling on each genes | No | Yes |
Euclidean distance
clustering genes | clustering samples | |
---|---|---|
centering on each genes | Yes | No |
scaling on each genes | Yes | Yes |
Supporting R code
1. 1-Corr distance
source("http://www.bioconductor.org/biocLite.R") biocLite("limma"); biocLite("ALL") library(limma); library(ALL) data(ALL) eset <- ALL[, ALL$mol.biol %in% c("BCR/ABL", "ALL1/AF4")] f <- factor(as.character(eset$mol.biol)) design <- model.matrix(~f) fit <- eBayes(lmFit(eset,design)) selected <- p.adjust(fit$p.value[, 2]) < 0.05 esetSel <- eset [selected, ] # 165 x 47 heatmap(exprs(esetSel)) esetSel2 <- esetSel[sample(1:nrow(esetSel), 20), sample(1:ncol(esetSel), 10)] # 20 x 10 dist.no <- 1-cor(t(as.matrix(esetSel2))) dist.mean <- 1-cor(t(sweep(as.matrix(esetSel2), 1L, rowMeans(as.matrix(esetSel2))))) # gene variance has not changed! dist.median <- 1-cor(t(sweep(as.matrix(esetSel2), 1L, apply(esetSel2, 1, median)))) range(dist.no - dist.mean) # [1] -1.110223e-16 0.000000e+00 range(dist.no - dist.median) # [1] -1.110223e-16 0.000000e+00 range(dist.mean - dist.median) # [1] 0 0
So centering (no matter which measure: mean, median, ...) genes won't affect 1-corr distance of genes.
dist.mean <- 1-cor(t(sweep(as.matrix(esetSel2), 1L, rowMeans(as.matrix(esetSel2)), "/"))) dist.median <- 1-cor(t(sweep(as.matrix(esetSel2), 1L, apply(esetSel2, 1, median), "/"))) range(dist.no - dist.mean) # [1] -8.881784e-16 6.661338e-16 range(dist.no - dist.median) # [1] -6.661338e-16 6.661338e-16 range(dist.mean - dist.median) # [1] -1.110223e-15 1.554312e-15
So scaling after centering (no matter what measures: mean, median,...) won't affect 1-corr distance of genes.
How about centering / scaling genes on array clustering?
dist.no <- 1-cor(as.matrix(esetSel2)) dist.mean <- 1-cor(sweep(as.matrix(esetSel2), 1L, rowMeans(as.matrix(esetSel2)))) # array variance has changed! dist.median <- 1-cor(sweep(as.matrix(esetSel2), 1L, apply(esetSel2, 1, median))) range(dist.no - dist.mean) # [1] -1.547086 0.000000 range(dist.no - dist.median) # [1] -1.483427 0.000000 range(dist.mean - dist.median) # [1] -0.5283601 0.6164602 dist.mean <- 1-cor(sweep(as.matrix(esetSel2), 1L, rowMeans(as.matrix(esetSel2)), "/")) dist.median <- 1-cor(sweep(as.matrix(esetSel2), 1L, apply(esetSel2, 1, median), "/")) range(dist.no - dist.mean) # [1] -1.477407 0.000000 range(dist.no - dist.median) # [1] -1.349419 0.000000 range(dist.mean - dist.median) # [1] -0.5419534 0.6269875
2. Euclidean distance
dist.no <- dist(as.matrix(esetSel2)) dist.mean <- dist(sweep(as.matrix(esetSel2), 1L, rowMeans(as.matrix(esetSel2)))) dist.median <- dist(sweep(as.matrix(esetSel2), 1L, apply(esetSel2, 1, median))) range(dist.no - dist.mean) # [1] 7.198864e-05 2.193487e+01 range(dist.no - dist.median) # [1] -0.3715231 21.9320846 range(dist.mean - dist.median) # [1] -0.923717629 -0.000088385
Centering does affect the Euclidean distance.
dist.mean <- dist(sweep(as.matrix(esetSel2), 1L, rowMeans(as.matrix(esetSel2)), "/")) dist.median <- dist(sweep(as.matrix(esetSel2), 1L, apply(esetSel2, 1, median), "/")) range(dist.no - dist.mean) # [1] 0.7005071 24.0698991 range(dist.no - dist.median) # [1] 0.636749 24.068920 range(dist.mean - dist.median) # [1] -0.22122869 0.02906131
And scaling affects Euclidean distance too.
How about centering / scaling genes on array clustering?
dist.no <- dist(t(as.matrix(esetSel2))) dist.mean <- dist(t(sweep(as.matrix(esetSel2), 1L, rowMeans(as.matrix(esetSel2))))) dist.median <- dist(t(sweep(as.matrix(esetSel2), 1L, apply(esetSel2, 1, median)))) range(dist.no - dist.mean) # 0 0 range(dist.no - dist.median) # 0 0 range(dist.mean - dist.median) # 0 0 dist.mean <- dist(t(sweep(as.matrix(esetSel2), 1L, rowMeans(as.matrix(esetSel2)), "/"))) dist.median <- dist(t(sweep(as.matrix(esetSel2), 1L, apply(esetSel2, 1, median), "/"))) range(dist.no - dist.mean) # [1] 1.698960 9.383789 range(dist.no - dist.median) # [1] 1.683028 9.311603 range(dist.mean - dist.median) # [1] -0.09139173 0.02546394
Simple image plot using image() function
https://chitchatr.wordpress.com/2010/07/01/matrix-plots-in-r-a-neat-way-to-display-three-variables/
### Create Matrix plot using colors to fill grid # Create matrix. Using random values for this example. rand <- rnorm(286, 0.8, 0.3) mat <- matrix(sort(rand), nr=26) dim(mat) # Check dimensions # Create x and y labels yLabels <- seq(1, 26, 1) xLabels <- c("a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k"); # Set min and max values of rand min <- min(rand, na.rm=T) max <- max(rand, na.rm=T) # Red and green range from 0 to 1 while Blue ranges from 1 to 0 ColorRamp <- rgb(seq(0.95,0.99,length=50), # Red seq(0.95,0.05,length=50), # Green seq(0.95,0.05,length=50)) # Blue ColorLevels <- seq(min, max, length=length(ColorRamp)) # Set layout. We are going to include a colorbar next to plot. layout(matrix(data=c(1,2), nrow=1, ncol=2), widths=c(4,1), heights=c(1,1)) #plotting margins. These seem to work well for me. par(mar = c(5,5,2.5,1), font = 2) # Plot it up! image(1:ncol(mat), 1:nrow(mat), t(mat), col=ColorRamp, xlab="Variable", ylab="Time", axes=FALSE, zlim=c(min,max), main= NA) # Now annotate the plot box() axis(side = 1, at=seq(1,length(xLabels),1), labels=xLabels, cex.axis=1.0) axis(side = 2, at=seq(1,length(yLabels),1), labels=yLabels, las= 1, cex.axis=1) # Add colorbar to second plot region par(mar = c(3,2.5,2.5,2)) image(1, ColorLevels, matrix(data=ColorLevels, ncol=length(ColorLevels),nrow=1), col=ColorRamp,xlab="",ylab="",xaxt="n", las = 1)
If we define ColorRamp variable using the following way, we will get the 2nd plot.
require(RColorBrewer) # get brewer.pal() ColorRamp <- colorRampPalette( rev(brewer.pal(9, "RdBu")) )(25)
Note that
- colorRampPalette() is an R's built-in function. It interpolate a set of given colors to create new color palettes. The return is a function that takes an integer argument (the required number of colors) and returns a character vector of colors (see rgb()) interpolating the given sequence (similar to heat.colors() or terrain.colors()).
# An example of showing 50 shades of grey in R greys <- grep("^grey", colours(), value = TRUE) length(greys) # [1] 102 shadesOfGrey <- colorRampPalette(c("grey0", "grey100")) shadesOfGrey(2) # [1] "#000000" "#FFFFFF" # And 50 shades of grey? fiftyGreys <- shadesOfGrey(50) mat <- matrix(rep(1:50, each = 50)) image(mat, axes = FALSE, col = fiftyGreys) box()
- brewer.pal(9, "RdBu") creates a diverging palette based on "RdBu" with 9 colors. See help(brewer.pal, package="RColorBrewer") for a list of palette name. The meaning of the palette name can be found on colorbrew2.org website.
gplots package
The following example is extracted from DESeq2 package.
## ----loadDESeq2, echo=FALSE---------------------------------------------- # in order to print version number below library("DESeq2") ## ----loadExonsByGene, echo=FALSE----------------------------------------- library("parathyroidSE") library("GenomicFeatures") data(exonsByGene) ## ----locateFiles, echo=FALSE--------------------------------------------- bamDir <- system.file("extdata",package="parathyroidSE",mustWork=TRUE) fls <- list.files(bamDir, pattern="bam$",full=TRUE) ## ----bamfilepaired------------------------------------------------------- library( "Rsamtools" ) bamLst <- BamFileList( fls, yieldSize=100000 ) ## ----sumOver------------------------------------------------------------- library( "GenomicAlignments" ) se <- summarizeOverlaps( exonsByGene, bamLst, mode="Union", singleEnd=FALSE, ignore.strand=TRUE, fragments=TRUE ) ## ----libraries----------------------------------------------------------- library( "DESeq2" ) library( "parathyroidSE" ) ## ----loadEcs------------------------------------------------------------- data( "parathyroidGenesSE" ) se <- parathyroidGenesSE colnames(se) <- se$run ## ----fromSE-------------------------------------------------------------- ddsFull <- DESeqDataSet( se, design = ~ patient + treatment ) ## ----collapse------------------------------------------------------------ ddsCollapsed <- collapseReplicates( ddsFull, groupby = ddsFull$sample, run = ddsFull$run ) ## ----subsetCols---------------------------------------------------------- dds <- ddsCollapsed[ , ddsCollapsed$time == "48h" ] ## ----subsetRows, echo=FALSE---------------------------------------------- idx <- which(rowSums(counts(dds)) > 0)[1:4000] dds <- dds[idx,] ## ----runDESeq, cache=TRUE------------------------------------------------ dds <- DESeq(dds) rld <- rlog( dds) library( "genefilter" ) topVarGenes <- head( order( rowVars( assay(rld) ), decreasing=TRUE ), 35 ) ## ----beginner_geneHeatmap, fig.width=9, fig.height=9--------------------- library(RColorBrewer) library(gplots) heatmap.2( assay(rld)[ topVarGenes, ], scale="row", trace="none", dendrogram="column", col = colorRampPalette( rev(brewer.pal(9, "RdBu")) )(255))
ggplot2 package
- https://learnr.wordpress.com/2010/01/26/ggplot2-quick-heatmap-plotting/
- http://www.kim-herzig.de/2014/06/19/heat-maps-with-ggplot2/
- http://is-r.tumblr.com/post/32387034930/simplest-possible-heatmap-with-ggplot2
ComplexHeatmap
http://bioconductor.org/packages/devel/bioc/vignettes/ComplexHeatmap/inst/doc/ComplexHeatmap.html