Benchmark: Difference between revisions

From 太極
Jump to navigation Jump to search
 
(55 intermediate revisions by the same user not shown)
Line 1: Line 1:
= [http://www.geekbench.com/ Geekbench] =
= Geekbench and Geekbench browser =
Geekbench is a cross-platform benchmark that measures the performance of your computer's processor and memory.
[http://www.geekbench.com/ Geekbench] is a cross-platform benchmark that measures the performance of your computer's processor and memory.
 
* Download Geekbench 5. https://www.geekbench.com/download/, [https://www.geekbench.com/blog/2021/03/geekbench-54/ ARM].
* How to run geekbench on the raspberry pi
* Some testing results  from running GeekBench 6 on Android devices (gpu benchmark is based on [https://browser.geekbench.com/opencl-benchmarks OpenCL])
** Unisoc t820 on anbernic rg556: [https://nanoreview.net/en/soc-compare/unisoc-t820-vs-qualcomm-snapdragon-778g-5g cpu 872/2349, gpu 2248]
** RK3588 on Orange Pi 5+: cpu 738/2243, '''gpu 3496''' [https://gadgetversus.com/processor/unisoc-tiger-t820-vs-rockchip-rk3588/ Unisoc Tiger T820 vs Rockchip RK3588]
** Snapdragon 720G on Galaxy s6 lite SM-P613 2022 : cpu 735/1641, gpu 1211
** Snapdragon 662 on moto g power 2021: cpu 337/1184, gpu 301
* [https://write.corbpie.com/how-to-install-and-run-geekbench-on-ubuntu/ How to install and run Geekbench on Ubuntu]
<pre>
wget https://cdn.geekbench.com/Geekbench-5.3.1-Linux.tar.gz
tar xf Geekbench-5.3.1-Linux.tar.gz
cd Geekbench-5.3.1-Linux/
./geekbench5
</pre>


= Sysbench =
= Sysbench =
<syntaxhighlight lang='bash'>
<syntaxhighlight lang='bash'>
# Enable 'Universe' first
sudo apt-get update
sudo apt-get update
sudo apt-get install sysbench
sudo apt-get install sysbench
sysbench --num-threads=1 --test=cpu --cpu-max-prime=20000 --validate run
sysbench --num-threads=1 --test=cpu --cpu-max-prime=20000 run
# sysbench version is 0.4.12, Ubuntu 16.04
# sysbench version is 0.4.12, Ubuntu 16.04, 10000 events


sysbench --threads=1 cpu --cpu-max-prime=20000 --validate run
sysbench cpu --threads=1 --cpu-max-prime=20000 --time=0 --events=10000 run
# sysbench version 1.0.11, Ubuntu 18.04
# sysbench version 1.0.11, Ubuntu 18.04
</syntaxhighlight>
</syntaxhighlight>
The following one was used to [https://youtu.be/L7pojxAEb10?t=108 benchmark Raspberry Pi 32-bit vs 64-bit] (Novaspirit Tech).
See [https://youtu.be/G-w7ycyd8tA?t=535 Odroid C4 vs Raspberry Pi 4] (ExplainingComputers) for a video demonstration. See [https://youtu.be/0kr_yS9OhLM?t=1158 Raspberry Pi OS Bullseye Update: New Features & Camera Issues] for a comparison of the syntax of version 0.4.12 and 1.0.x.
<syntaxhighlight lang='bash'>
sysbench --threads=4 --test=cpu --cpu-max-prime=300000 run && 7za b
</syntaxhighlight>


Two websites have a database for benchmarks.  
Two websites have a database for benchmarks.  
Line 27: Line 40:
! Average CPU Mark
! Average CPU Mark
|-
|-
| [https://everymac.com/systems/apple/macbook_pro/specs/macbook-pro-core-i7-2.2-15-mid-2018-true-tone-display-touch-bar-specs.html Intel Core i7-8750H @ 2.20GHz Macbook Pro 2018 (6 cores)]
| Intel i7-11850H @ 2.5GHz (Dell Latitude 5521, 8 cores, 16 threads)
|  
| 6.42s
|  
| 1.1s
|
|-
| [https://everymac.com/systems/apple/macbook_pro/specs/macbook-pro-core-i7-2.6-15-mid-2018-true-tone-display-touch-bar-specs.html Intel Core i7-8850H @ 2.6GHz Macbook Pro 2018 (6 cores, 12 threads)] brew install sysbench
| 0.0028s (not reliable on macOS)
| 0.0008s
| [https://www.cpubenchmark.net/compare/Intel-Core-i7-8750H-vs-Intel-Core-i7-7700HQ/3237vs2906 12407]
| [https://www.cpubenchmark.net/compare/Intel-Core-i7-8750H-vs-Intel-Core-i7-7700HQ/3237vs2906 12407]
|-
|-
| [http://ark.intel.com/products/64601/Intel-Xeon-Processor-E5-1650-12M-Cache-3_20-GHz-0_0-GTs-Intel-QPI Xeon E5-1650 (12 threads)]
| [http://ark.intel.com/products/64601/Intel-Xeon-Processor-E5-1650-12M-Cache-3_20-GHz-0_0-GTs-Intel-QPI Xeon E5-1650 Dell Precision T3600 (6 cores, 12 threads)]
| 23s
| 23s
| 2.5s
| 2.5s
Line 42: Line 60:
| [https://www.cpubenchmark.net/cpu.php?cpu=Intel+Core+i5-4590T+%40+2.00GHz&id=2276 5622]
| [https://www.cpubenchmark.net/cpu.php?cpu=Intel+Core+i5-4590T+%40+2.00GHz&id=2276 5622]
|-
|-
| Intel i5 8259U (4-core) NUC8i5BEH 4-core 8-thread
| Intel i5 8259U (4-core) [https://www.intel.com/content/dam/support/us/en/documents/mini-pcs/NUC8i3BE_NUC8i5BE_NUC8i7BE_TechProdSpec.pdf NUC8i5BEH] 4-core 8-thread
|  
| 20.7s
|  
| 3.2s
|  
|  
|-
|-
Line 52: Line 70:
| [http://www.cpubenchmark.net/cpu.php?cpu=AMD+Phenom+II+X6+1055T&id=390 5058]
| [http://www.cpubenchmark.net/cpu.php?cpu=AMD+Phenom+II+X6+1055T&id=390 5058]
|-
|-
| Intel Core2 Quad Q9500 @2.8GHz (4-core)
| Intel [https://www.intel.com/content/www/us/en/products/sku/37159/intel-core2-quad-processor-q9500-6m-cache-2-83-ghz-1333-mhz-fsb/specifications.html Core2 Quad Q9500] @2.8GHz (4-core) Yorkfield
|  
| 23.8s
|  
| 6.1s
| [https://www.cpubenchmark.net/cpu.php?cpu=Intel+Core2+Quad+Q9500+%40+2.83GHz 3542]
| [https://www.cpubenchmark.net/cpu.php?cpu=Intel+Core2+Quad+Q9500+%40+2.83GHz 3542]
|-
|-
| Intel Pentium J5005 4-core 4-thread
| Intel [https://ark.intel.com/content/www/us/en/ark/products/128984/intel-pentium-silver-j5005-processor-4m-cache-up-to-2-80-ghz.html Pentium J5005] 4-core 4-thread (Gemini Lake) [https://www.intel.com/content/dam/support/us/en/documents/mini-pcs/nuc-kits/NUC7xJY_TechProdSpec.pdf NUC7PJYH]
|  
| 16
|  
| 4.3s
|  
|  
|-
|-
Line 78: Line 96:
|-
|-
| Core(TM) i7-2640M CPU @ 2.80GHz (Lenovo T420s)
| Core(TM) i7-2640M CPU @ 2.80GHz (Lenovo T420s)
| 10s
|  
| 10s
|  
| [https://www.cpubenchmark.net/cpu.php?cpu=Intel+Core+i7-2640M+%40+2.80GHz&id=876 3933]
| [https://www.cpubenchmark.net/cpu.php?cpu=Intel+Core+i7-2640M+%40+2.80GHz&id=876 3933]
|-
|-
Line 108: Line 126:
|-
|-
| RPi3B BCM2837 SoC @ 1.2Ghz (4-core)
| RPi3B BCM2837 SoC @ 1.2Ghz (4-core)
|  
| 382s
|  
| 100s
|
|
|-
|-
Line 132: Line 150:
|
|
|-
|-
| [[Udoo#Benchmark|UDoo X86 Advanced Celeron N3160 2.24 GHZ turbo speed (2-core) ]]
| [[Udoo#Benchmark|UDoo X86 Advanced Celeron N3160 2.24 GHZ turbo speed (2-core, 4 threads) ]]
| 10s
| 52s
| 10s
| 13s
| 1472
| 1472
|-
|-
| [[Odroid#Benchmark|ODroid xu4 (8-core)]]
| [[Odroid#Benchmark|ODroid xu4 (8-core)]]
| 372s
| 372s
| 60s
| 40s
|
|-
| [[Jetson#Benchmark|Jetson nano (4-core)]]
| 21.4s
| 5s
|
|
|}
|}
Line 175: Line 198:
</pre>
</pre>


== Run sysbench 0.4.12 using singularity ==
== Run using Docker ==
# Install singularity either from pre-build binary or source (See the 'Docs' under https://sylabs.io/singularity/)
Odroid xu4
# Create a new sub and build a container
# 'Execute' the container
{{Pre}}
{{Pre}}
# step 1: the following method installed an old version (2.6.1) of singularity
$ docker run -it --rm ubuntu:16.04 bash
#       
# apt update
$ wget -O- http://neuro.debian.net/lists/bionic.us-nh.libre | sudo tee /etc/apt/sources.list.d/neurodebian.sources.list
# apt-get install sysbench
$ sudo apt-key adv --recv-keys --keyserver hkp://pool.sks-keyservers.net:80 0xA5D32F012649A5A9
# sysbench --num-threads=8 --test=cpu --cpu-max-prime=20000 run
$ sudo apt update
$ sudo apt-get install singularity-container
$ singularity --version


# step 2
sysbench 0.4.12:  multi-threaded system evaluation benchmark
$ mkdir sysbench; cd sysbench
$ nano sysbench.def
$ sudo singularity build sysbench0412 sysbench.def


# step 3
Running the test with following options:
$ singularity exec sysbench0412 sysbench --num-threads=1 --test=cpu --cpu-max-prime=20000 --validate run
Number of threads: 8
$ singularity exec sysbench0412 sysbench --num-threads=4 --test=cpu --cpu-max-prime=20000 --validate run
Additional request validation enabled.
</pre>
where the definition file <Singularity> (recall Ubuntu 16.04 still has the old version of sysbench) is
<pre>
$ cat sysbench.def
Bootstrap: docker
From: ubuntu:16.04


%post
    apt-get -y update
    apt-get -y install sysbench
%environment
    export LC_ALL=C
    export PATH=/usr/games:$PATH
</pre>
Interestingly, the container build using singularity 2.6.1 also works on singularity 3.5.0 (compile from source).


== Version 1.0.X ==
Doing CPU performance benchmark


I find the correct way to use the utility is to specify the all threads and use the '''time''' command.
Threads started!
<pre>
Done.
$ time sysbench --threads=4 cpu --cpu-max-prime=20000 --validate run
sysbench 1.0.11 (using system LuaJIT 2.1.0-beta3)


Running the test with following options:
Maximum prime number checked in CPU test: 20000
Number of threads: 4
Additional request validation enabled.


Initializing random number generator from current time


Test execution summary:
    total time:                          39.5979s
    total number of events:              10000
    total time taken by event execution: 316.5830
    per-request statistics:
        min:                                23.31ms
        avg:                                31.66ms
        max:                                73.12ms
        approx.  95 percentile:              37.96ms


Prime numbers limit: 20000
Threads fairness:
    events (avg/stddev):          1250.0000/201.36
    execution time (avg/stddev):  39.5729/0.01


Initializing worker threads...
# sysbench --help
Usage:
  sysbench [general-options]... --test=<test-name> [test-options]... command


Threads started!
General options:
  --num-threads=N            number of threads to use [1]
  --max-requests=N          limit for total number of requests [10000]
  --max-time=N              limit for total execution time in seconds [0]
  --forced-shutdown=STRING  amount of time to wait after --max-time before forcing shutdown [off]
  --thread-stack-size=SIZE  size of stack per thread [32K]
  --init-rng=[on|off]        initialize random number generator [off]
  --test=STRING              test to run
  --debug=[on|off]          print more debugging info [off]
  --validate=[on|off]        perform validation checks where possible [off]
  --help=[on|off]            print help and exit
  --version=[on|off]        print version and exit


CPU speed:
Compiled-in tests:
    events per second:   769.40
  fileio - File I/O test
  cpu - CPU performance test
  memory - Memory functions speed test
  threads - Threads subsystem performance test
  mutex - Mutex performance test
   oltp - OLTP test


General statistics:
Commands: prepare run cleanup help version
    total time:                          10.0053s
    total number of events:              7700


Latency (ms):
See 'sysbench --test=<name> help' for a list of options for each test.
        min:                                  5.18
</pre>
        avg:                                  5.20
        max:                                14.56
        95th percentile:                      5.18
        sum:                              40003.22


Threads fairness:
Directly
    events (avg/stddev):          1925.0000/1.00
{{Pre}}
    execution time (avg/stddev):  10.0008/0.00
$ cat /etc/os-release
NAME="Ubuntu"
VERSION="18.04.5 LTS (Bionic Beaver)"


 
$ apt install sysbench # 1.0.11
real 0m10.043s
$ sysbench cpu --threads=8 --cpu-max-prime=20000 --time=0 --events=10000 run
user 0m39.992s
sys 0m0.016s
 
$ time sysbench --threads=1 cpu --cpu-max-prime=20000 --validate run
sysbench 1.0.11 (using system LuaJIT 2.1.0-beta3)
sysbench 1.0.11 (using system LuaJIT 2.1.0-beta3)


Running the test with following options:
Running the test with following options:
Number of threads: 1
Number of threads: 8
Additional request validation enabled.
 
Initializing random number generator from current time
Initializing random number generator from current time


Line 273: Line 287:


CPU speed:
CPU speed:
     events per second:  192.45
     events per second:  221.17


General statistics:
General statistics:
     total time:                          10.0034s
     total time:                          45.2074s
     total number of events:              1927
     total number of events:              10000


Latency (ms):
Latency (ms):
         min:                                 5.18
         min:                                 25.98
         avg:                                 5.19
         avg:                                 36.14
         max:                                17.24
         max:                                69.89
         95th percentile:                     5.18
         95th percentile:                     44.98
         sum:                             10000.58
         sum:                             361398.71


Threads fairness:
Threads fairness:
     events (avg/stddev):          1927.0000/0.00
     events (avg/stddev):          1250.0000/246.26
     execution time (avg/stddev):  10.0006/0.00
     execution time (avg/stddev):  45.1748/0.01
</pre>


== Run sysbench 0.4.12 using singularity ==
# Install singularity either from pre-build binary or source (See the 'Docs' under https://sylabs.io/singularity/)
# Create a new sub and build a container
# 'Execute' the container
{{Pre}}
# step 1: the following method installed an old version (2.6.1) of singularity
#       
$ wget -O- http://neuro.debian.net/lists/bionic.us-nh.libre | sudo tee /etc/apt/sources.list.d/neurodebian.sources.list
$ sudo apt-key adv --recv-keys --keyserver hkp://pool.sks-keyservers.net:80 0xA5D32F012649A5A9
$ sudo apt update
$ sudo apt-get install singularity-container
$ singularity --version


real 0m10.049s
# step 2
user 0m10.028s
$ mkdir sysbench; cd sysbench
sys 0m0.020s
$ nano sysbench.def
$ sudo singularity build sysbench0412 sysbench.def
 
# step 3
$ singularity exec sysbench0412 sysbench --num-threads=1 --test=cpu --cpu-max-prime=20000 --validate run
$ singularity exec sysbench0412 sysbench --num-threads=4 --test=cpu --cpu-max-prime=20000 --validate run
</pre>
</pre>
where the definition file <Singularity> (recall Ubuntu 16.04 still has the old version of sysbench) is
<pre>
$ cat sysbench.def
Bootstrap: docker
From: ubuntu:16.04
%post
    apt-get -y update
    apt-get -y install sysbench


[https://youtu.be/G-w7ycyd8tA?t=535 Odroid C4 vs Raspberry Pi 4] (ExplainingComputers)
%environment
<pre>
    export LC_ALL=C
sysbench cpu --cpu-max-prime=20000 --threads=4 --time=0 --events=10000 run
    export PATH=/usr/games:$PATH
</pre>
</pre>
We can look at
Interestingly, the container build using singularity 2.6.1 also works on singularity 3.5.0 (compile from source).
# the CPU speed: '''events per second''' (higher is better),
# General statistics: '''total time''' (lower is better).


= [http://www.tux.org/~mayer/linux/bmark.html nbench] =
= [http://www.tux.org/~mayer/linux/bmark.html nbench] =
Line 312: Line 351:
./nbench
./nbench
</syntaxhighlight>
</syntaxhighlight>
= geekbench =
https://www.geekbench.com/
Google: how to run geekbench on the raspberry pi


= CPU stress test =
= CPU stress test =
Line 336: Line 370:
</pre>
</pre>
</li>
</li>
</ul>
= GPU =
[https://www.howtogeek.com/how-to-understand-gpu-benchmarks/ How To Understand GPU Benchmarks]
== iGPU ==
* You can find the number of '''cores''' in an iGPU by looking up the specifications of the CPU that contains the iGPU. This information can be found on the manufacturer’s website or through a web search. For example, if you search for [https://ark.intel.com/content/www/us/en/ark/products/208664/intel-core-i71185g7-processor-12m-cache-up-to-4-80-ghz-with-ipu.html Intel Core i7-1185G7] specifications” you will find that this CPU has an integrated Intel Iris Xe Graphics with 96 '''Execution Units (EUs)''', which are equivalent to cores in a GPU.
* [https://www.makeuseof.com/amd-radeon-igpu-vs-intel-iris-xe/ AMD Radeon iGPU vs. Intel Iris Xe: What's the Best Integrated Graphics?]
== CPU/GPU overlock ==
[https://www.makeuseof.com/ways-to-check-if-cpu-gpu-overclocked/ 3 Ways to Check If Your CPU or GPU Is Overclocked]
== NVIDIA GPU ==
<ul>
<li>The main difference between NVIDIA '''GeForce GTX''' and '''Quadro''' GPUs is their target audience and intended use.
* '''GeForce GTX''' series is primarily designed for gaming and consumer-level applications. These graphics cards are optimized for high performance, which reduces latency in online games. GeForce GTX cards are designed specifically for gaming and consumer-level applications. They are optimized for high performance, which '''reduces latency''' in online games.
* '''Quadro''' series is designed for professional applications such as computer-aided design (CAD), digital content creation (DCC), and scientific simulations. Quadro cards are designed for very specific render tasks like CAD design and professional video rendering. They also '''support double precision computations''' which are used in scientific research and digital content creation (DCC) 12. This makes them more suitable for scientific simulations than GTX cards.
<li>Monitor GPU in real-time
<syntaxhighlight lang='sh'>
$ nvidia-smi -l 1
</syntaxhighlight>
<li>[https://hub.docker.com/r/nvidia/cuda/ Docker nvidia/cuda]
<li>[https://www.howtogeek.com/devops/how-to-use-an-nvidia-gpu-with-docker-containers/ How to Use an NVIDIA GPU with Docker Containers]
</ul>
</ul>
== Glmark2 ==
* It requires X11 (not wayland)
* https://github.com/glmark2/glmark2. Ubuntu 24.04 using X11 still works.
* [https://www.youtube.com/watch?v=dljAxpjyRVc Raspberry Pi 5 vs Intel N100 Mini PC - Which Is Right For You]
* [https://askubuntu.com/a/1452081 How can I run glmark2 on the dedicated GPU?]
* [https://readmedium.com/opengl-and-cuda-applications-in-docker-af0eece000f1 OpenGL and CUDA Applications in Docker]. Use host's X server.


= Hardinfo (GUI) =
= Hardinfo (GUI) =
Line 356: Line 419:
* sudo lshw -C display
* sudo lshw -C display
* lspci | grep -i --color 'vga\|3d\|2d'
* lspci | grep -i --color 'vga\|3d\|2d'
== webgl ==
http://webglsamples.org/aquarium/aquarium.html
* Macbook Pro A1990 (2018) @2.6GHz. 60fps 1000 fish, 44fps 5000 fish, 27fps 10000 fish
* NUC7PJYH Pentium J5005 @2.8GHz. 60fps 1000 fish, 42fps 5000 fish, 26fps 10000 fish
* Jetson nano 2G, 60fps 1000 fish, 26fps 5000 fish, 14fps 10000 fish
* Macbook Pro M1 2021, 120fps 5000 fish, 120fps 10000 fish, 65fps 20000 fish, 45fps 30000 fish.
= USB, SATA and PCIe =
* [https://www.makeuseof.com/raspberry-pi-4-vs-raspberry-pi-5-key-differences/ Raspberry Pi 4 vs. Raspberry Pi 5: 14 Key Differences]
** the PCIe on the Raspberry Pi 5 is a single-line PCI Express 2.0 x1 connector. This has a maximum bandwidth of 500MBps (Bytes, not bits). The latest PCIe 4.0 SSDs can do 8000Mbps (1000MBps).
** Whether a SATA SSD connected to USB 3.0 is a better choice then an M.2 SSD connected to PCIe: USB 3.0 in the Pi 5 is 5Gbps, which is 625MBps. SATA 3 adapters can handle 6Gbps. '''PCIe''' 2.0 x1 is limited to 500MBps. So, it will be similar speeds for both '''SATA''' and '''PCIe''' SSDs on the Pi 5. The advantage with SATA adapters is that you do not need to use the HAT.


= Disk speed test =
= Disk speed test =
* [https://www.shellhacks.com/disk-speed-test-read-write-hdd-ssd-perfomance-linux/ Disk Speed Test (Read/Write): HDD, SSD Performance in Linux]
<ul>
* GUI method: use the 'disks' (gnome-disks) utility in Ubuntu
<li>[https://www.shellhacks.com/disk-speed-test-read-write-hdd-ssd-perfomance-linux/ Disk Speed Test (Read/Write): HDD, SSD Performance in Linux]
* [https://www.tech21century.com/hdd-ssd-drive-speed-test/ 14 Hard Drive Speed Test & Benchmark Tools for SSD/HDD] such as [https://crystalmark.info/en/software/crystaldiskmark/ CrystalDiskMark]
<li>GUI method: use the 'disks' (gnome-disks) utility in Ubuntu
<li>[https://www.tech21century.com/hdd-ssd-drive-speed-test/ 14 Hard Drive Speed Test & Benchmark Tools for SSD/HDD] such as [https://crystalmark.info/en/software/crystaldiskmark/ CrystalDiskMark]
<li>http://www.cyberciti.biz/faq/freebsd-command-to-find-sata-link-speed/
{{Pre}}
$ dmesg | grep -i SATA
[    0.311173] pci 0000:00:11.0: set SATA to AHCI mode
[    1.510881] ahci 0000:00:11.0: AHCI 0001.0200 32 slots 4 ports 6 Gbps 0xf impl SATA mode
[    1.512669] ata1: SATA max UDMA/133 abar m1024@0xfe02f000 port 0xfe02f100 irq 19
[    1.512672] ata2: SATA max UDMA/133 abar m1024@0xfe02f000 port 0xfe02f180 irq 19
[    1.512675] ata3: SATA max UDMA/133 abar m1024@0xfe02f000 port 0xfe02f200 irq 19
[    1.512677] ata4: SATA max UDMA/133 abar m1024@0xfe02f000 port 0xfe02f280 irq 19
[    1.832349] ata4: SATA link down (SStatus 0 SControl 300)
[    1.832418] ata2: SATA link down (SStatus 0 SControl 300)
[    2.004290] ata3: SATA link up 6.0 Gbps (SStatus 133 SControl 300)
[    2.004313] ata1: SATA link up 3.0 Gbps (SStatus 123 SControl 300)
</pre>
<li>[https://www.makeuseof.com/ways-test-ssd-speed-performance/ 3 Ways to Test SSD Speed & Performance] (windows, mac, linux)
</ul>


== KDiskMark (GUI) ==
== KDiskMark (GUI) ==
Line 370: Line 462:
* Test write speed
* Test write speed
:<syntaxhighlight lang='bash'>
:<syntaxhighlight lang='bash'>
$ sync; dd if=/dev/zero of=tempfile bs=1M count=1024; sync
$ sync; dd if=/dev/zero of=tempfile bs=1M count=1024; sync; rm tempfile


# External storage
# External storage
Line 385: Line 477:


== hdparm ==
== hdparm ==
'''hdparm''' is a Linux command line utility that allows to set and view hardware parameters of hard disk drives. '''-t and --direct''' measures data transfer rate but bypassing hard drive's buffer cache memory thus reading directly from the disk.
To test the disk performance, follow [http://www.cyberciti.biz/faq/howto-linux-unix-test-disk-performance-with-dd-command/ cyberciti.biz]. Note that the parameter '''oflag=dsync''' makes a difference. '''-t and --direct''' measures data transfer rate but bypassing hard drive's buffer cache memory thus reading directly from the disk.
 
Here I have a 7200rpm Seagate (ST2000DM001-1CH164) and a 5400rpm WD-blue (WD30EZRZ-00WN9B0)
{{Pre}}
# Hard disk info https://en.wikipedia.org/wiki/Hdparm
sudo hdparm -I /dev/sda
sudo hdparm -I /dev/sdb
 
# Writing speed, where /tmp is a directory from the disk
dd if=/dev/zero of=/tmp/test1.img bs=2G count=1; rm /tmp/test1.img
# 1.4 GB/s from either 5400 or 7200 rpm
$ dd if=/dev/zero of=/media/brb/My\ Passport/test1.img bs=2G count=1
# 2147479552 bytes (2.1 GB, 2.0 GiB) copied, 12.0418 s, 178 MB/s. --- WD 2T HDD
 
dd if=/dev/zero of=/tmp/test1.img bs=2G count=1 oflag=dsync; rm /tmp/test1.img
# 115 MB/s from 5400 rpm
# 166 MB/s from 7200 rpm
 
# Latency
dd if=/dev/zero of=/tmp/test2.img bs=512 count=1000 oflag=dsync; rm /tmp/test2.img
# 27.7 kB/s from 5400 rpm  <==== This is interesting
# 12.5 kB/s from 7200 rpm
 
# Read speed
dd if=/dev/zero of=/tmp/test3.img bs=1G count=1 oflag=direct; rm /tmp/test3.img
# 122 MB/s from 5400 rpm
# 180 MB/s from 7200 rpm
</pre>
Note
* [http://man7.org/linux/man-pages/man1/dd.1.html dd manual]
* oflag=dsync: Use synchronized I/O for data. Do not skip this option. This option get rid of caching and gives you good and accurate results
 
<syntaxhighlight lang='bash'>
<syntaxhighlight lang='bash'>
lsblk  # find the root "/" device
lsblk  # find the root "/" device, look at the "NAME" column


sudo hdparm -t [DEVICE NAME]  # real world scenario
                              # Using a partition name may work
</syntaxhighlight>
<syntaxhighlight lang='bash'>
# The --direct option bypasses the operating system's caches.
sudo hdparm -t --direct /dev/mmcblk0p1  # eg internal
sudo hdparm -t --direct /dev/mmcblk0p1  # eg internal
sudo hdparm -t --direct /dev/mmcblk0p2  # eg sd card
sudo hdparm -t --direct /dev/mmcblk0p2  # eg sd card
sudo hdparm -t --direct /dev/sda1       # eg USB  
sudo hdparm -t --direct /dev/sda       # eg USB  
sudo hdparm -Tt /dev/sda
 
sudo hdparm -t /dev/vdb                # Measure Hard Disk Device Read Speed
sudo hdparm -t /dev/vdb                # Measure Hard Disk Device Read Speed
sudo hdparm -T /dev/vdb                # Measure Hard Disk Cache Read Speed
sudo hdparm -T /dev/vdb                # Measure Hard Disk Cache Read Speed
# Reading cache will give more higher performance than reading  
# Reading cache will give more higher performance than reading  
# from disk because only the cached data will be used and tested.
# from disk because only the cached data will be used and tested.
sudo hdparm -Tt /dev/mmcblk1 # emmc on beaglebone black
                            # -t timing test for device reads.
                            # -T timing test for cache reads.
# /dev/mmcblk1:
#  Timing cached reads:  376 MB in  2.01 seconds = 187.22 MB/sec
#  Timing buffered disk reads:  60 MB in  3.03 seconds =  19.83 MB/sec
sudo hdparm -t --direct /dev/mmcblk0 # SD on beaglebone black
# /dev/mmcblk0:
#  Timing O_DIRECT disk reads:  60 MB in  3.02 seconds =  19.88 MB/sec


hdparm -I /dev/sda                      # show information about disk
hdparm -I /dev/sda                      # show information about disk
</syntaxhighlight>
</syntaxhighlight>
NB: hdparm does not have the ability to find the write speed. You will have to use another command line utility called '''dd''' to find the write speed.
Example: [https://www.silicon-power.com/web/category/SSD Silicon-power] 512GB ssd. The box says it can read up to 560MB/s & write up to 530MB/s. Below is a test result running on NUC Pentium Silver J5005 CPU.  
Example: [https://www.silicon-power.com/web/category/SSD Silicon-power] 512GB ssd. The box says it can read up to 560MB/s & write up to 530MB/s. Below is a test result running on NUC Pentium Silver J5005 CPU.  
<pre>
<pre>
$ sudo hdparm -t --direct /dev/sdb1
$ sudo hdparm -t --direct /dev/sdb
[sudo] password for brb:
/dev/sdb:
 
/dev/sdb1:
  Timing O_DIRECT disk reads: 1068 MB in  3.01 seconds = 355.34 MB/sec
  Timing O_DIRECT disk reads: 1068 MB in  3.01 seconds = 355.34 MB/sec
</pre>
</pre>
Line 411: Line 551:


On ODroid x4, the eMMC is 150MB/s.
On ODroid x4, the eMMC is 150MB/s.
On Zimablade, the eMMC is 115MB/s, the SSD is 442MB/s.


On phenom server, Samsung SSD 860 EVO 500GB is 235 MB/s, the HDD speed is 150MB/s (WD black WD4003FZEX 4TB, 2013) and 68MB/s (ST ST3640323as 640GB, 2014).
On phenom server, Samsung SSD 860 EVO 500GB is 235 MB/s, the HDD speed is 150MB/s (WD black WD4003FZEX 4TB, 2013) and 68MB/s (ST ST3640323as 640GB, 2014).
Line 419: Line 561:


[https://youtu.be/G-w7ycyd8tA?t=962 Odroid C4 vs Raspberry Pi 4] Micro SD Card, USB 3.0 SSD, eMMC module.
[https://youtu.be/G-w7ycyd8tA?t=962 Odroid C4 vs Raspberry Pi 4] Micro SD Card, USB 3.0 SSD, eMMC module.
== SLC cache in SSD ==
* [https://www.atpinc.com/blog/what-is-SLC-cache-difference-between-Dynamic-Static-SLC-cache SLC Cache vs. Direct TLC Write]
* [https://www.reddit.com/r/hardware/comments/kn7can/how_does_slc_cache_work_in_ssds/ How does SLC cache work in ssd's?]
* [https://www.windowscentral.com/best-ssd-nas Best SSD for NAS 2022]
== SMART data ==
<ul>
<li>https://en.wikipedia.org/wiki/S.M.A.R.T.
<li>[https://www.crucial.com/articles/about-ssd/smart-and-ssds S.M.A.R.T. and SSDs] from crucial.com
<li>[https://www.backblaze.com/blog/what-smart-stats-indicate-hard-drive-failures/ What SMART Stats Tell Us About Hard Drives]
<li>[https://www.crucial.com/support/articles-faq-ssd/ssds-and-smart-data SSDs and SMART Data] from crucial.com
<li>[https://www.10-strike.com/network-monitor/pro/hdd-smart-monitoring.shtml How to Monitor HDD/SSD SMART Drive Health Parameters including SSD NVMe/SATA over Network]
<li>Most USB controllers/enclosures do not support smart data. SMART is defined for SATA and SAS type interfaces. [https://forums.macrumors.com/threads/how-to-enable-s-m-a-r-t-on-ssd.1720343/ How to enable S.M.A.R.T on SSD]
<li>[https://linuxhandbook.com/check-ssd-health/ Monitoring and Testing the Health of SSD in Linux]
* Search the keyword '''fail''' or '''attribute'''
* Because Lack of normalization or metainformation for vendor-specific data, many attributes are reported as “Unknown_SSD_Attribute.”
* The test option also works on the host os drive
<li>[https://linuxconfig.org/how-to-configure-smartd-and-be-notified-of-hard-disk-problems-via-email How to configure smartd and be notified of hard disk problems via email]
** A table to recap common options
<li>Microcenter 480gb SSD. Use '''-i -A -a''' options.
<pre>
$ sudo smartctl -i /dev/sda
smartctl 7.1 2019-12-30 r5022 [x86_64-linux-5.15.0-56-generic] (local build)
Copyright (C) 2002-19, Bruce Allen, Christian Franke, www.smartmontools.org
=== START OF INFORMATION SECTION ===
Model Family:    Phison Driven OEM SSDs
Device Model:    SATA SSD
Serial Number:    18060548000982
LU WWN Device Id: 0 000000 000000000
Firmware Version: SBFM61.2
User Capacity:    480,103,981,056 bytes [480 GB]
Sector Size:      512 bytes logical/physical
Rotation Rate:    Solid State Device
Form Factor:      2.5 inches
Device is:        In smartctl database [for details use: -P show]
ATA Version is:  ACS-4 (minor revision not indicated)
SATA Version is:  SATA 3.2, 6.0 Gb/s (current: 6.0 Gb/s)
Local Time is:    Thu Dec 22 12:05:47 2022 EST
SMART support is: Available - device has SMART capability.
SMART support is: Enabled
$ sudo smartctl -A /dev/sda
smartctl 7.1 2019-12-30 r5022 [x86_64-linux-5.15.0-56-generic] (local build)
Copyright (C) 2002-19, Bruce Allen, Christian Franke, www.smartmontools.org
=== START OF READ SMART DATA SECTION ===
SMART Attributes Data Structure revision number: 16
Vendor Specific SMART Attributes with Thresholds:
ID# ATTRIBUTE_NAME          FLAG    VALUE WORST THRESH TYPE      UPDATED  WHEN_FAILED RAW_VALUE
  1 Raw_Read_Error_Rate    0x000b  100  100  050    Pre-fail  Always      -      0
  9 Power_On_Hours          0x0012  100  100  000    Old_age  Always      -      24481
12 Power_Cycle_Count      0x0012  100  100  000    Old_age  Always      -      410
168 SATA_Phy_Error_Count    0x0012  100  100  000    Old_age  Always      -      0
170 Bad_Blk_Ct_Erl/Lat      0x0003  066  066  010    Pre-fail  Always      -      0/549
173 MaxAvgErase_Ct          0x0012  100  100  000    Old_age  Always      -      64 (Average 33)
192 Unsafe_Shutdown_Count  0x0012  100  100  000    Old_age  Always      -      93
194 Temperature_Celsius    0x0023  067  067  000    Pre-fail  Always      -      33 (Min/Max 33/33)
218 CRC_Error_Count        0x000b  100  100  050    Pre-fail  Always      -      0
231 SSD_Life_Left          0x0013  100  100  000    Pre-fail  Always      -      98
241 Lifetime_Writes_GiB    0x0012  100  100  000    Old_age  Always      -      8864
$ sudo smartctl -i -a /dev/sda
</pre>
<li>Sandisk Extreme 55AE external SSD:  "sudo smartctl -i '''-d scsi''' /dev/sdc". Without specify "-d", I'll get the following message (see [https://unix.stackexchange.com/questions/604453/unable-to-dd-smartmon-fdisk-or-anything-on-a-working-external-western-digital this post])
<pre>
/dev/sdc: Unknown USB bridge [0x0781:0x55ae (0x3001)]
Please specify device type with the -d option.
</pre>
Unforunately, smartctl shows my device lacks SMART capability.
</ul>
== GSmartControl: GUI for smartctl ==
* https://help.ubuntu.com/community/Smartmontools,
* https://github.com/ashaduri/gsmartcontrol, [https://gsmartcontrol.shaduri.dev/downloads Downloads] available for Windows/mac/Linux.
* [https://www.geeksforgeeks.org/gsmartcontrol-tool-to-check-ssd-hdd-health-on-linux/ GSmartControl – Tool to Check SSD/HDD Health on Linux]


= Website loading =
= Website loading =
Line 466: Line 685:
** [https://magpi.raspberrypi.org/articles/raspberry-pi-4-vs-raspberry-pi-3b-plus Gigabit Ethernet over USB 2.0 (maximum throughput 300Mbps)] on Raspberry Pi 3B+.
** [https://magpi.raspberrypi.org/articles/raspberry-pi-4-vs-raspberry-pi-3b-plus Gigabit Ethernet over USB 2.0 (maximum throughput 300Mbps)] on Raspberry Pi 3B+.
* 5.3MB/s ethernet on UDOO x86 at home wifi-to-ethernet, 62MB/s ethernet-to-ethernet (scp).
* 5.3MB/s ethernet on UDOO x86 at home wifi-to-ethernet, 62MB/s ethernet-to-ethernet (scp).
* 33MB/s when I downloaded Linux iso from [http://mirror.umd.edu/mxlinux-iso/ANTIX/Final/antiX-19/antiX-19.4_x64-full.iso antiX], [http://mirror.umd.edu/mxlinux-iso/MX/Final/Xfce/MX-21_x64.iso MX Linux] from mirror.umd.edu.
== Ethernet cables ==
* [https://fiber-optic-module.com/blog/cat-6-speed/ Cat 6 Speed: A Comprehensive Guide to Ethernet Cables]
* Cat 5e: 1Gbps
* Cat 6: 10Gbps


== iperf: network speed test between two boxes ==
== iperf: network speed test between two boxes ==
Line 502: Line 727:
</li>
</li>
</ul>
</ul>
== OpenSpeedTest ==
[https://ubuntushell.com/install-openspeedtest/ Check Your Local Network Speed in Linux, Windows, and macOS]
== ntttcp ==
* https://github.com/microsoft/ntttcp
* [https://liliputing.com/replacing-iperf3-with-ntttcp-to-measure-networking-throughput-in-reviews/ Replacing “iperf3” with “ntttcp” to measure networking throughput in reviews]


== SSH speed test ==
== SSH speed test ==
Line 508: Line 740:
yes | pv | ssh user@remote_host "cat >/dev/null"
yes | pv | ssh user@remote_host "cat >/dev/null"
</pre>
</pre>
== rsync --progress ==
== time command ==
transfer_speed = (file_size * 8) / (transfer_time * 1000000)
For example, if you transferred a 10 MB file in 5 seconds, the transfer speed would be calculated like this: transfer_speed = (10 * 1024 * 1024 * 8) / (5 * 1000000) = 16.78 Mbit/s
In the formula for calculating the transfer speed in megabits per second (Mbit/s), we divide by 1,000,000 (one million) to convert the result from bits per second (bit/s) to megabits per second (Mbit/s).

Latest revision as of 21:15, 9 November 2024

Geekbench and Geekbench browser

Geekbench is a cross-platform benchmark that measures the performance of your computer's processor and memory.

wget https://cdn.geekbench.com/Geekbench-5.3.1-Linux.tar.gz
tar xf Geekbench-5.3.1-Linux.tar.gz
cd Geekbench-5.3.1-Linux/
./geekbench5

Sysbench

# Enable 'Universe' first
sudo apt-get update
sudo apt-get install sysbench
sysbench --num-threads=1 --test=cpu --cpu-max-prime=20000 run
# sysbench version is 0.4.12, Ubuntu 16.04, 10000 events 

sysbench cpu --threads=1 --cpu-max-prime=20000 --time=0 --events=10000 run
# sysbench version 1.0.11, Ubuntu 18.04

See Odroid C4 vs Raspberry Pi 4 (ExplainingComputers) for a video demonstration. See Raspberry Pi OS Bullseye Update: New Features & Camera Issues for a comparison of the syntax of version 0.4.12 and 1.0.x.

Two websites have a database for benchmarks.

Device Total time (1-thread) Total time (all threads) Average CPU Mark
Intel i7-11850H @ 2.5GHz (Dell Latitude 5521, 8 cores, 16 threads) 6.42s 1.1s
Intel Core i7-8850H @ 2.6GHz Macbook Pro 2018 (6 cores, 12 threads) brew install sysbench 0.0028s (not reliable on macOS) 0.0008s 12407
Xeon E5-1650 Dell Precision T3600 (6 cores, 12 threads) 23s 2.5s 11808
Intel i5-4590T (4-core) Dell Optiplex 3020M 5622
Intel i5 8259U (4-core) NUC8i5BEH 4-core 8-thread 20.7s 3.2s
AMD Phenom II X6 1055T (6-core) 28s 5.5s 5058
Intel Core2 Quad Q9500 @2.8GHz (4-core) Yorkfield 23.8s 6.1s 3542
Intel Pentium J5005 4-core 4-thread (Gemini Lake) NUC7PJYH 16 4.3s
Intel Core2 Duo E8400 @3.0GHz (2-core) 21.5s 11.5s 2178
Intel Core i3-4010U @ 1.7GHz (4-core) 47.2s 13.4s 2437
Core(TM) i3-3110M @ 2.40GHz (4-core) 35s 10s 3049
Core(TM) i7-2640M CPU @ 2.80GHz (Lenovo T420s) 3933
Atom(TM) z3735G @ 1.33GHz (hp stream 8 2-core) 918
Atom(TM) z2760 @ 1.8GHz (lenovo lynx 2-core) 576
Atom(TM) N270 @ 1.60GHz (EEE PC 2-core) 192s 120s 272
RPi1 (1-core) 1412s
RPi2 (4-core) 768s 191s
RPi3B BCM2837 SoC @ 1.2Ghz (4-core) 382s 100s
RPi3B+ BCM2837 SoC @ 1.4GHz (4-core)
RPi0-W (1-core) 624s
BeagleBlack (1-core) 673s
UDoo (2-core) 603s 302s
UDoo X86 Advanced Celeron N3160 2.24 GHZ turbo speed (2-core, 4 threads) 52s 13s 1472
ODroid xu4 (8-core) 372s 40s
Jetson nano (4-core) 21.4s 5s

Note that

watch -n1 "cat /proc/cpuinfo | grep \"MHz\""
sudo cat /sys/devices/system/cpu/*/cpufreq/cpuinfo_max_freq

Install 0.4.12 from source

For some reason, the threads option in version 1.0 does not work. See cpu test: single thread and multi-threads get the same result and Question about CPU benchmarking.

If we need to use version 0.4.12, we need to build from the source.

sudo apt install automake autoconf libtool libmysqlclient-dev libssl1.0.0 libssl-dev make

wget http://pkgs.fedoraproject.org/repo/pkgs/sysbench/sysbench-0.4.12.tar.gz/3a6d54fdd3fe002328e4458206392b9d/sysbench-0.4.12.tar.gz
tar zxvf sysbench-0.4.12.tar.gz
cd sysbench-0.4.12/
./autogen.sh
./configure --without-mysql
sudo make # Cannot establish any listening sockets - Make sure an X server isn't already running(EE)
          # ...
          # ../libtool: line 5281: : command not found
sudo make install

Run using Docker

Odroid xu4

$ docker run -it --rm ubuntu:16.04 bash
# apt update
# apt-get install sysbench
# sysbench --num-threads=8 --test=cpu --cpu-max-prime=20000 run

sysbench 0.4.12:  multi-threaded system evaluation benchmark

Running the test with following options:
Number of threads: 8
Additional request validation enabled.


Doing CPU performance benchmark

Threads started!
Done.

Maximum prime number checked in CPU test: 20000


Test execution summary:
    total time:                          39.5979s
    total number of events:              10000
    total time taken by event execution: 316.5830
    per-request statistics:
         min:                                 23.31ms
         avg:                                 31.66ms
         max:                                 73.12ms
         approx.  95 percentile:              37.96ms

Threads fairness:
    events (avg/stddev):           1250.0000/201.36
    execution time (avg/stddev):   39.5729/0.01

# sysbench --help 
Usage:
  sysbench [general-options]... --test=<test-name> [test-options]... command

General options:
  --num-threads=N            number of threads to use [1]
  --max-requests=N           limit for total number of requests [10000]
  --max-time=N               limit for total execution time in seconds [0]
  --forced-shutdown=STRING   amount of time to wait after --max-time before forcing shutdown [off]
  --thread-stack-size=SIZE   size of stack per thread [32K]
  --init-rng=[on|off]        initialize random number generator [off]
  --test=STRING              test to run
  --debug=[on|off]           print more debugging info [off]
  --validate=[on|off]        perform validation checks where possible [off]
  --help=[on|off]            print help and exit
  --version=[on|off]         print version and exit

Compiled-in tests:
  fileio - File I/O test
  cpu - CPU performance test
  memory - Memory functions speed test
  threads - Threads subsystem performance test
  mutex - Mutex performance test
  oltp - OLTP test

Commands: prepare run cleanup help version

See 'sysbench --test=<name> help' for a list of options for each test.

Directly

$ cat /etc/os-release
NAME="Ubuntu"
VERSION="18.04.5 LTS (Bionic Beaver)"

$ apt install sysbench # 1.0.11
$ sysbench cpu --threads=8 --cpu-max-prime=20000 --time=0 --events=10000 run
sysbench 1.0.11 (using system LuaJIT 2.1.0-beta3)

Running the test with following options:
Number of threads: 8
Initializing random number generator from current time


Prime numbers limit: 20000

Initializing worker threads...

Threads started!

CPU speed:
    events per second:   221.17

General statistics:
    total time:                          45.2074s
    total number of events:              10000

Latency (ms):
         min:                                 25.98
         avg:                                 36.14
         max:                                 69.89
         95th percentile:                     44.98
         sum:                             361398.71

Threads fairness:
    events (avg/stddev):           1250.0000/246.26
    execution time (avg/stddev):   45.1748/0.01

Run sysbench 0.4.12 using singularity

  1. Install singularity either from pre-build binary or source (See the 'Docs' under https://sylabs.io/singularity/)
  2. Create a new sub and build a container
  3. 'Execute' the container
# step 1: the following method installed an old version (2.6.1) of singularity
#         
$ wget -O- http://neuro.debian.net/lists/bionic.us-nh.libre | sudo tee /etc/apt/sources.list.d/neurodebian.sources.list
$ sudo apt-key adv --recv-keys --keyserver hkp://pool.sks-keyservers.net:80 0xA5D32F012649A5A9
$ sudo apt update
$ sudo apt-get install singularity-container
$ singularity --version

# step 2
$ mkdir sysbench; cd sysbench
$ nano sysbench.def 
$ sudo singularity build sysbench0412 sysbench.def

# step 3
$ singularity exec sysbench0412 sysbench --num-threads=1 --test=cpu --cpu-max-prime=20000 --validate run
$ singularity exec sysbench0412 sysbench --num-threads=4 --test=cpu --cpu-max-prime=20000 --validate run

where the definition file <Singularity> (recall Ubuntu 16.04 still has the old version of sysbench) is

$ cat sysbench.def
Bootstrap: docker
From: ubuntu:16.04

%post
    apt-get -y update
    apt-get -y install sysbench

%environment
    export LC_ALL=C
    export PATH=/usr/games:$PATH

Interestingly, the container build using singularity 2.6.1 also works on singularity 3.5.0 (compile from source).

nbench

wget http://www.tux.org/~mayer/linux/nbench-byte-2.2.3.tar.gz
tar xzvf nbench-byte-2.2.3.tar.gz
cd nbench-byte-2.2.3
make
./nbench

CPU stress test

How to Impose High CPU Load and Stress Test on Linux Using ‘Stress-ng’ Tool

  • stress
    sudo apt-get install stress
    uptime; sudo stress --cpu  8 --timeout 20; uptime   # 8 cores, 20 seconds
    
  • stress-ng
    sudo apt-get install stress-ng    
    uptime; sudo stress-ng --cpu 8 --timeout 60 --metrics-brief; uptime 
    uptime; sudo stress-ng --cpu 4 --cpu-method fft --timeout 2m; uptime
    uptime; sudo stress-ng --hdd 5 --hdd-ops 100000; uptime
    uptime; sudo stress-ng --cpu 4 --io 4 --vm 1 --vm-bytes 1G --timeout 60s --metrics-brief; uptime
    

GPU

How To Understand GPU Benchmarks

iGPU

  • You can find the number of cores in an iGPU by looking up the specifications of the CPU that contains the iGPU. This information can be found on the manufacturer’s website or through a web search. For example, if you search for Intel Core i7-1185G7 specifications” you will find that this CPU has an integrated Intel Iris Xe Graphics with 96 Execution Units (EUs), which are equivalent to cores in a GPU.
  • AMD Radeon iGPU vs. Intel Iris Xe: What's the Best Integrated Graphics?

CPU/GPU overlock

3 Ways to Check If Your CPU or GPU Is Overclocked

NVIDIA GPU

  • The main difference between NVIDIA GeForce GTX and Quadro GPUs is their target audience and intended use.
    • GeForce GTX series is primarily designed for gaming and consumer-level applications. These graphics cards are optimized for high performance, which reduces latency in online games. GeForce GTX cards are designed specifically for gaming and consumer-level applications. They are optimized for high performance, which reduces latency in online games.
    • Quadro series is designed for professional applications such as computer-aided design (CAD), digital content creation (DCC), and scientific simulations. Quadro cards are designed for very specific render tasks like CAD design and professional video rendering. They also support double precision computations which are used in scientific research and digital content creation (DCC) 12. This makes them more suitable for scientific simulations than GTX cards.
  • Monitor GPU in real-time
    $ nvidia-smi -l 1
  • Docker nvidia/cuda
  • How to Use an NVIDIA GPU with Docker Containers

Glmark2

Hardinfo (GUI)

sudo apt install hardinfo (this will appear in administration as “System Profiler & Benchmark”). See Odroid C4 vs Raspberry Pi 4.

Simple C program

See Time the iterations from 0 to_2147483647

Python vs C

How fast is C++ compared to Python?

R program

Gross inefficiency in influence.lm, r-source on github

Videos

Raspberry Pi 4B vs Jetson Nano

On Ubuntu, use one of the following commands to find out the graphics card information.

  • sudo lshw -C display
  • lspci | grep -i --color 'vga\|3d\|2d'

webgl

http://webglsamples.org/aquarium/aquarium.html

  • Macbook Pro A1990 (2018) @2.6GHz. 60fps 1000 fish, 44fps 5000 fish, 27fps 10000 fish
  • NUC7PJYH Pentium J5005 @2.8GHz. 60fps 1000 fish, 42fps 5000 fish, 26fps 10000 fish
  • Jetson nano 2G, 60fps 1000 fish, 26fps 5000 fish, 14fps 10000 fish
  • Macbook Pro M1 2021, 120fps 5000 fish, 120fps 10000 fish, 65fps 20000 fish, 45fps 30000 fish.

USB, SATA and PCIe

  • Raspberry Pi 4 vs. Raspberry Pi 5: 14 Key Differences
    • the PCIe on the Raspberry Pi 5 is a single-line PCI Express 2.0 x1 connector. This has a maximum bandwidth of 500MBps (Bytes, not bits). The latest PCIe 4.0 SSDs can do 8000Mbps (1000MBps).
    • Whether a SATA SSD connected to USB 3.0 is a better choice then an M.2 SSD connected to PCIe: USB 3.0 in the Pi 5 is 5Gbps, which is 625MBps. SATA 3 adapters can handle 6Gbps. PCIe 2.0 x1 is limited to 500MBps. So, it will be similar speeds for both SATA and PCIe SSDs on the Pi 5. The advantage with SATA adapters is that you do not need to use the HAT.

Disk speed test

KDiskMark (GUI)

KDiskMark Is A GUI HDD / SSD Benchmark Tool For Linux (Similar To CrystalDiskMark)

dd

Linux and Unix Test Disk I/O Performance With dd Command

  • Test write speed
$ sync; dd if=/dev/zero of=tempfile bs=1M count=1024; sync; rm tempfile

# External storage
$ sync; dd if=/dev/zero of=/media/user/MyUSB/tempfile bs=1M count=1024; sync
  • Test read speed
$ dd if=tempfile of=/dev/null bs=1M count=1024  # do not use this

# Clear the cache
$ sudo /sbin/sysctl -w vm.drop_caches=3
$ dd if=tempfile of=/dev/null bs=1M count=1024  # consistent with 'disks' utility

hdparm

To test the disk performance, follow cyberciti.biz. Note that the parameter oflag=dsync makes a difference. -t and --direct measures data transfer rate but bypassing hard drive's buffer cache memory thus reading directly from the disk.

Here I have a 7200rpm Seagate (ST2000DM001-1CH164) and a 5400rpm WD-blue (WD30EZRZ-00WN9B0)

# Hard disk info https://en.wikipedia.org/wiki/Hdparm
sudo hdparm -I /dev/sda
sudo hdparm -I /dev/sdb

# Writing speed, where /tmp is a directory from the disk 
dd if=/dev/zero of=/tmp/test1.img bs=2G count=1; rm /tmp/test1.img
# 1.4 GB/s from either 5400 or 7200 rpm
$ dd if=/dev/zero of=/media/brb/My\ Passport/test1.img bs=2G count=1
# 2147479552 bytes (2.1 GB, 2.0 GiB) copied, 12.0418 s, 178 MB/s. --- WD 2T HDD 

dd if=/dev/zero of=/tmp/test1.img bs=2G count=1 oflag=dsync; rm /tmp/test1.img
# 115 MB/s from 5400 rpm
# 166 MB/s from 7200 rpm

# Latency
dd if=/dev/zero of=/tmp/test2.img bs=512 count=1000 oflag=dsync; rm /tmp/test2.img
# 27.7 kB/s from 5400 rpm  <==== This is interesting
# 12.5 kB/s from 7200 rpm

# Read speed
dd if=/dev/zero of=/tmp/test3.img bs=1G count=1 oflag=direct; rm /tmp/test3.img
# 122 MB/s from 5400 rpm
# 180 MB/s from 7200 rpm

Note

  • dd manual
  • oflag=dsync: Use synchronized I/O for data. Do not skip this option. This option get rid of caching and gives you good and accurate results
lsblk   # find the root "/" device, look at the "NAME" column

sudo hdparm -t [DEVICE NAME]   # real world scenario
                               # Using a partition name may work
# The --direct option bypasses the operating system's caches.
sudo hdparm -t --direct /dev/mmcblk0p1  # eg internal
sudo hdparm -t --direct /dev/mmcblk0p2  # eg sd card
sudo hdparm -t --direct /dev/sda       # eg USB 

sudo hdparm -t /dev/vdb                 # Measure Hard Disk Device Read Speed
sudo hdparm -T /dev/vdb                 # Measure Hard Disk Cache Read Speed
# Reading cache will give more higher performance than reading 
# from disk because only the cached data will be used and tested.

sudo hdparm -Tt /dev/mmcblk1 # emmc on beaglebone black
                             # -t timing test for device reads.
                             # -T timing test for cache reads.
# /dev/mmcblk1:
#  Timing cached reads:   376 MB in  2.01 seconds = 187.22 MB/sec
#  Timing buffered disk reads:  60 MB in  3.03 seconds =  19.83 MB/sec

sudo hdparm -t --direct /dev/mmcblk0 # SD on beaglebone black
# /dev/mmcblk0:
#  Timing O_DIRECT disk reads:  60 MB in  3.02 seconds =  19.88 MB/sec

hdparm -I /dev/sda                      # show information about disk

NB: hdparm does not have the ability to find the write speed. You will have to use another command line utility called dd to find the write speed.

Example: Silicon-power 512GB ssd. The box says it can read up to 560MB/s & write up to 530MB/s. Below is a test result running on NUC Pentium Silver J5005 CPU.

$ sudo hdparm -t --direct /dev/sdb
/dev/sdb:
 Timing O_DIRECT disk reads: 1068 MB in  3.01 seconds = 355.34 MB/sec

On UDOO x86, the SSD is 341.77MB/s. The eMMC speed on UDOO x86 is 130MB/s. A portable HDD has a speed 24-29MB/s.

On ODroid x4, the eMMC is 150MB/s.

On Zimablade, the eMMC is 115MB/s, the SSD is 442MB/s.

On phenom server, Samsung SSD 860 EVO 500GB is 235 MB/s, the HDD speed is 150MB/s (WD black WD4003FZEX 4TB, 2013) and 68MB/s (ST ST3640323as 640GB, 2014).

On Raspberry Pi 3B (sudo apt-get install hdparm), the microSD speed is 22MB/s only. The same SSD plugged to a USB2 port has a speed 34MB/s only.

on Dell t3600 Xeon E5-1650, the HDD (WD Blue 3TB 5400 rpm) speed is 50MB/s and the external USB (WD My Book 4T) is 25MB/s (216.50 kB/s before waking up).

Odroid C4 vs Raspberry Pi 4 Micro SD Card, USB 3.0 SSD, eMMC module.

SLC cache in SSD

SMART data

  • https://en.wikipedia.org/wiki/S.M.A.R.T.
  • S.M.A.R.T. and SSDs from crucial.com
  • What SMART Stats Tell Us About Hard Drives
  • SSDs and SMART Data from crucial.com
  • How to Monitor HDD/SSD SMART Drive Health Parameters including SSD NVMe/SATA over Network
  • Most USB controllers/enclosures do not support smart data. SMART is defined for SATA and SAS type interfaces. How to enable S.M.A.R.T on SSD
  • Monitoring and Testing the Health of SSD in Linux
    • Search the keyword fail or attribute
    • Because Lack of normalization or metainformation for vendor-specific data, many attributes are reported as “Unknown_SSD_Attribute.”
    • The test option also works on the host os drive
  • How to configure smartd and be notified of hard disk problems via email
      • A table to recap common options
  • Microcenter 480gb SSD. Use -i -A -a options.
    $ sudo smartctl -i /dev/sda 
    smartctl 7.1 2019-12-30 r5022 [x86_64-linux-5.15.0-56-generic] (local build)
    Copyright (C) 2002-19, Bruce Allen, Christian Franke, www.smartmontools.org
    
    === START OF INFORMATION SECTION ===
    Model Family:     Phison Driven OEM SSDs
    Device Model:     SATA SSD
    Serial Number:    18060548000982
    LU WWN Device Id: 0 000000 000000000
    Firmware Version: SBFM61.2
    User Capacity:    480,103,981,056 bytes [480 GB]
    Sector Size:      512 bytes logical/physical
    Rotation Rate:    Solid State Device
    Form Factor:      2.5 inches
    Device is:        In smartctl database [for details use: -P show]
    ATA Version is:   ACS-4 (minor revision not indicated)
    SATA Version is:  SATA 3.2, 6.0 Gb/s (current: 6.0 Gb/s)
    Local Time is:    Thu Dec 22 12:05:47 2022 EST
    SMART support is: Available - device has SMART capability.
    SMART support is: Enabled
    
    $ sudo smartctl -A /dev/sda 
    smartctl 7.1 2019-12-30 r5022 [x86_64-linux-5.15.0-56-generic] (local build)
    Copyright (C) 2002-19, Bruce Allen, Christian Franke, www.smartmontools.org
    
    === START OF READ SMART DATA SECTION ===
    SMART Attributes Data Structure revision number: 16
    Vendor Specific SMART Attributes with Thresholds:
    ID# ATTRIBUTE_NAME          FLAG     VALUE WORST THRESH TYPE      UPDATED  WHEN_FAILED RAW_VALUE
      1 Raw_Read_Error_Rate     0x000b   100   100   050    Pre-fail  Always       -       0
      9 Power_On_Hours          0x0012   100   100   000    Old_age   Always       -       24481
     12 Power_Cycle_Count       0x0012   100   100   000    Old_age   Always       -       410
    168 SATA_Phy_Error_Count    0x0012   100   100   000    Old_age   Always       -       0
    170 Bad_Blk_Ct_Erl/Lat      0x0003   066   066   010    Pre-fail  Always       -       0/549
    173 MaxAvgErase_Ct          0x0012   100   100   000    Old_age   Always       -       64 (Average 33)
    192 Unsafe_Shutdown_Count   0x0012   100   100   000    Old_age   Always       -       93
    194 Temperature_Celsius     0x0023   067   067   000    Pre-fail  Always       -       33 (Min/Max 33/33)
    218 CRC_Error_Count         0x000b   100   100   050    Pre-fail  Always       -       0
    231 SSD_Life_Left           0x0013   100   100   000    Pre-fail  Always       -       98
    241 Lifetime_Writes_GiB     0x0012   100   100   000    Old_age   Always       -       8864
    
    $ sudo smartctl -i -a /dev/sda
    
  • Sandisk Extreme 55AE external SSD: "sudo smartctl -i -d scsi /dev/sdc". Without specify "-d", I'll get the following message (see this post)
    /dev/sdc: Unknown USB bridge [0x0781:0x55ae (0x3001)]
    Please specify device type with the -d option.
    

    Unforunately, smartctl shows my device lacks SMART capability.

GSmartControl: GUI for smartctl

Website loading

# http
$ curl -s -w 'Testing Website Response Time for :%{url_effective}\n\nLookup Time:\t\t%{time_namelookup}\nConnect Time:\t\t%{time_connect}\nPre-transfer Time:\t%{time_pretransfer}\nStart-transfer Time:\t%{time_starttransfer}\n\nTotal Time:\t\t%{time_total}\n' -o /dev/null http://192.168.1.88/wiki/index.php/C

# https
$ curl -s -w 'Testing Website Response Time for :%{url_effective}\n\nLookup Time:\t\t%{time_namelookup}\nConnect Time:\t\t%{time_connect}\nAppCon Time:\t\t%{time_appconnect}\nRedirect Time:\t\t%{time_redirect}\nPre-transfer Time:\t%{time_pretransfer}\nStart-transfer Time:\t%{time_starttransfer}\n\nTotal Time:\t\t%{time_total}\n' -o /dev/null https://taichimd.us/mediawiki/index.php/C

Lookup Time:		0.004311
Connect Time:		0.010050
AppCon Time:		0.049561 (https only)
Redirect Time:		0.000000 (https only)
Pre-transfer Time:	0.049659
Start-transfer Time:	5.035105

Total Time:		5.174981
$ wget -c https://raw.githubusercontent.com/reorx/httpstat/master/httpstat.py
$ python httpstat.py https://taichimd.us/mediawiki/index.php/C
...
  DNS Lookup   TCP Connection   TLS Handshake   Server Processing   Content Transfer
[     4ms    |       8ms      |     34ms      |      31300ms      |       169ms      ]
             |                |               |                   |                  |
    namelookup:4ms            |               |                   |                  |
                        connect:12ms          |                   |                  |
                                    pretransfer:46ms              |                  |
                                                      starttransfer:31346ms          |
                                                                                 total:31515ms

ApacheBench (ab)

Network speed

Ethernet cables

iperf: network speed test between two boxes

  • https://iperf.fr/
  • How To Use iPerf To Test Network Speed From Host To Host. The default port for iPerf 3 is 5201. iPerf 2 default port is 5001.
    # Server
    iperf3 -s
    
    # Client
    iperf3 -c XXX.XXX.X.XX
    

    Test on Raspberr Pi 3B+ and ODroid Xu4

    client not matter, ethernet cable not matter
    
    server: pi3b+ running ubuntu 20.04.1 64-bit
    [ ID] Interval           Transfer     Bandwidth       Retr  Cwnd
    [  4]   0.00-1.00   sec  39.3 MBytes   329 Mbits/sec    1    239 KBytes       
    [  4]   1.00-2.00   sec  38.2 MBytes   320 Mbits/sec    0    270 KBytes
    
    server: pi3b+ running raspberry pi OS lite (buster) 32-bit 
    SAME result as above. Note Pi 3B+ ethernet is slower than Udoo Quad
    
    server: odroid xu4 ubuntu 20.04.1 64-bit
    [ ID] Interval           Transfer     Bandwidth       Retr  Cwnd
    [  4]   0.00-1.00   sec   109 MBytes   911 Mbits/sec    0    334 KBytes       
    [  4]   1.00-2.00   sec   107 MBytes   900 Mbits/sec    0    334 KBytes
    
    server: Udoo Dual ubuntu 20.04.1/Armbian 20.08 Focal 32-bit
    [ ID] Interval           Transfer     Bandwidth       Retr  Cwnd
    [  4]   0.00-1.00   sec  63.8 MBytes   535 Mbits/sec    0   1.30 MBytes       
    [  4]   1.00-2.00   sec  54.9 MBytes   460 Mbits/sec    0   1.33 MBytes
    

OpenSpeedTest

Check Your Local Network Speed in Linux, Windows, and macOS

ntttcp

SSH speed test

Linux Fu

yes | pv | ssh user@remote_host "cat >/dev/null"

rsync --progress

time command

transfer_speed = (file_size * 8) / (transfer_time * 1000000)

For example, if you transferred a 10 MB file in 5 seconds, the transfer speed would be calculated like this: transfer_speed = (10 * 1024 * 1024 * 8) / (5 * 1000000) = 16.78 Mbit/s

In the formula for calculating the transfer speed in megabits per second (Mbit/s), we divide by 1,000,000 (one million) to convert the result from bits per second (bit/s) to megabits per second (Mbit/s).