Statistics: Difference between revisions

From 太極
Jump to navigation Jump to search
Line 1,126: Line 1,126:


=== Lasso/glmnet, adaptive lasso and FAQs ===
=== Lasso/glmnet, adaptive lasso and FAQs ===
* https://en.wikipedia.org/wiki/Lasso_(statistics). It has a discussion when two covariates are highly correlated. For example if gene <math>i</math> and gene <math>j</math> are identical, then the values of <math>\beta _{j}</math> and <math>\beta _{k}</math> that minimize the lasso objective function are not uniquely determined. Elastic Net has been designed to address this shortcoming.
[[glmnet|glmnet]]
** Strongly correlated covariates have similar regression coefficients, is referred to as the '''grouping''' effect. From the wikipedia page ''"one would like to find all the associated covariates, rather than selecting only one from each set of strongly correlated covariates, as lasso often does. In addition, selecting only a single covariate from each group will typically result in increased prediction error, since the model is less robust (which is why ridge regression often outperforms lasso)"''.
* [https://web.stanford.edu/~hastie/Papers/Glmnet_Vignette.pdf Glmnet Vignette]. It tries to minimize <math>RSS(\beta) + \lambda [(1-\alpha)\|\beta\|_2^2/2 + \alpha \|\beta\|_1] </math>. The ''elastic-net'' penalty is controlled by <math>\alpha</math>, and bridge the gap between lasso (<math>\alpha = 1</math>) and ridge (<math>\alpha = 0</math>). Following is a CV curve (adaptive lasso) using the example from glmnet(). Two vertical lines are indicated: left one is '''lambda.min''' (that gives minimum mean cross-validated error) and right one is '''lambda.1se''' (the most ''regularized'' model such that error is within one standard error of the minimum). For the tuning parameter <math>\lambda</math>,
** The larger the <math>\lambda</math>, more coefficients are becoming zeros (think about '''coefficient path''' plots) and thus the simpler (more '''regularized''') the model.
** If <math>\lambda</math> becomes zero, it reduces to the regular regression and if <math>\lambda</math> becomes infinity, the coefficients become zeros.
** In terms of the bias-variance tradeoff, the larger the <math>\lambda</math>, the higher the bias and the lower the variance of the coefficient estimators.
 
[[:File:Glmnetplot.svg]]  [[:File:Glmnet path.svg]] [[:File:Glmnet l1norm.svg]]
: <syntaxhighlight lang='rsplus'>
set.seed(1010)
n=1000;p=100
nzc=trunc(p/10)
x=matrix(rnorm(n*p),n,p)
beta=rnorm(nzc)
fx= x[,seq(nzc)] %*% beta
eps=rnorm(n)*5
y=drop(fx+eps)
px=exp(fx)
px=px/(1+px)
ly=rbinom(n=length(px),prob=px,size=1)
 
## Full lasso
set.seed(999)
cv.full <- cv.glmnet(x, ly, family='binomial', alpha=1, parallel=TRUE)
plot(cv.full)  # cross-validation curve and two lambda's
plot(glmnet(x, ly, family='binomial', alpha=1), xvar="lambda", label=TRUE) # coefficient path plot
plot(glmnet(x, ly, family='binomial', alpha=1))  # L1 norm plot
log(cv.full$lambda.min) # -4.546394
log(cv.full$lambda.1se) # -3.61605
sum(coef(cv.full, s=cv.full$lambda.min) != 0) # 44
 
## Ridge Regression to create the Adaptive Weights Vector
set.seed(999)
cv.ridge <- cv.glmnet(x, ly, family='binomial', alpha=0, parallel=TRUE)
wt <- 1/abs(matrix(coef(cv.ridge, s=cv.ridge$lambda.min)
                  [, 1][2:(ncol(x)+1)] ))^1 ## Using gamma = 1, exclude intercept
## Adaptive Lasso using the 'penalty.factor' argument
set.seed(999)
cv.lasso <- cv.glmnet(x, ly, family='binomial', alpha=1, parallel=TRUE, penalty.factor=wt)
# defautl type.measure="deviance" for logistic regression
plot(cv.lasso)
log(cv.lasso$lambda.min) # -2.995375
log(cv.lasso$lambda.1se) # -0.7625655
sum(coef(cv.lasso, s=cv.lasso$lambda.min) != 0) # 34
</syntaxhighlight>
* A list of potential lambdas: see [http://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html#lin Linear Regression] case. The λ sequence is determined by '''lambda.max''' and '''lambda.min.ratio'''. The latter (default is ifelse(nobs<nvars,0.01,0.0001)) is the ratio of smallest value of the generated λ sequence (say ''lambda.min'') to  ''lambda.max''. The program then generated ''nlambda'' values linear on the log scale from ''lambda.max'' down to ''lambda.min''. ''lambda.max'' is not given, but easily computed from the input x and y; it is the smallest value for ''lambda'' such that all the coefficients are zero.
* [https://privefl.github.io/blog/choosing-hyper-parameters-in-penalized-regression/ Choosing hyper-parameters (α and λ) in penalized regression] by Florian Privé
* [https://stats.stackexchange.com/questions/70249/feature-selection-model-with-glmnet-on-methylation-data-pn lambda.min vs lambda.1se]
** The '''lambda.1se''' represents the value of λ in the search that was simpler than the best model ('''lambda.min'''), but which has error within 1 standard error of the best model. In other words, using the value of ''lambda.1se'' as the selected value for λ results in a model that is slightly simpler than the best model but which cannot be distinguished from the best model in terms of error given the uncertainty in the k-fold CV estimate of the error of the best model.
** The '''lambda.min''' option refers to value of λ at the lowest CV error. The error at this value of λ is the average of the errors over the k folds and hence this estimate of the error is uncertain.
* https://www.rdocumentation.org/packages/glmnet/versions/2.0-10/topics/glmnet
* [http://blog.revolutionanalytics.com/2016/11/glmnetutils.html glmnetUtils: quality of life enhancements for elastic net regression with glmnet]
* Mixing parameter: alpha=1 is the '''lasso penalty''', and alpha=0 the '''ridge penalty''' and anything between 0–1 is '''Elastic net'''.
** RIdge regression uses Euclidean distance/L2-norm as the penalty. It won't remove any variables.
** Lasso uses L1-norm as the penalty. Some of the coefficients may be shrunk exactly to zero.
* [https://www.quora.com/In-ridge-regression-and-lasso-what-is-lambda In ridge regression and lasso, what is lambda?]
** Lambda is a penalty coefficient. Large lambda will shrink the coefficients.
** cv.glment()$lambda.1se gives the most regularized model such that error is within one standard error of the minimum
* cv.glmnet() has a logical parameter '''parallel''' which is useful if a cluster or cores have been previously allocated
* [http://statweb.stanford.edu/~tibs/sta305files/Rudyregularization.pdf Ridge regression and the LASSO]
* Standard error/Confidence interval
** [https://www.reddit.com/r/statistics/comments/1vg8k0/standard_errors_in_glmnet/ Standard Errors in GLMNET] and [https://stackoverflow.com/questions/39750965/confidence-intervals-for-ridge-regression Confidence intervals for Ridge regression]
** '''[https://cran.r-project.org/web/packages/penalized/vignettes/penalized.pdf#page=18 Why SEs are not meaningful and are usually not provided in penalized regression?]'''
**# Hint:  standard errors are not very meaningful for strongly biased estimates such as arise from penalized estimation methods.
**# '''Penalized estimation is a procedure that reduces the variance of estimators by introducing substantial bias.'''
**# The bias of each estimator is therefore a major component of its mean squared error, whereas its variance may contribute only a small part.
**# Any bootstrap-based calculations can only give an assessment of the variance of the estimates.
**# Reliable estimates of the bias are only available if reliable unbiased estimates are available, which is typically not the case in situations in which penalized estimates are used.
** [https://stats.stackexchange.com/tags/glmnet/hot Hottest glmnet questions from stackexchange].
** [https://stats.stackexchange.com/questions/91462/standard-errors-for-lasso-prediction-using-r Standard errors for lasso prediction]. There might not be a consensus on a statistically valid method of calculating standard errors for the lasso predictions.
** [https://www4.stat.ncsu.edu/~lu/programcodes.html Code] for Adaptive-Lasso for Cox's proportional hazards model by Zhang & Lu (2007). This can compute the SE of estimates. The weights are originally based on the maximizers of the log partial likelihood. However, the beta may not be estimable in cases such as high-dimensional gene data, or the beta may be unstable if strong collinearity exists among covariates. In such cases, robust estimators such as ridge regression estimators would be used to determine the weights.
* LASSO vs Least angle regression
** https://web.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf
** [http://web.stanford.edu/~hastie/TALKS/larstalk.pdf Least Angle Regression, Forward Stagewise and the Lasso]
** https://www.quora.com/What-is-Least-Angle-Regression-and-when-should-it-be-used
** [http://statweb.stanford.edu/~tibs/lasso/simple.html A simple explanation of the Lasso and Least Angle Regression]
** https://stats.stackexchange.com/questions/4663/least-angle-regression-vs-lasso
** https://cran.r-project.org/web/packages/lars/index.html
* '''Oracle property''' and '''adaptive lasso'''
** [http://www.stat.wisc.edu/~shao/stat992/fan-li2001.pdf Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties], Fan & Li (2001) JASA
** [http://ricardoscr.github.io/how-to-adaptive-lasso.html Adaptive Lasso: What it is and how to implement in R]. Adaptive lasso weeks to minimize <math> RSS(\beta) + \lambda \sum_1^p \hat{\omega}_j |\beta_j| </math> where <math>\lambda</math> is the tuning parameter, <math>\hat{\omega}_j = \frac{1}{(|\hat{\beta}_j^{ini}|)^\gamma}</math> is the adaptive weights vector and <math>\hat{\beta}_j^{ini}</math> is an initial estimate of the coefficients obtained through ridge regression. '''Adaptive Lasso ends up penalizing more those coefficients with lower initial estimates.''' <math>\gamma</math> is a positive constant for adjustment of the adaptive weight vector, and the authors suggest the possible values of 0.5, 1 and 2.
** When n goes to infinity, <math>\hat{\omega}_j |\beta_j|  </math> converges to <math>I(\beta_j \neq 0) </math>. So the adaptive Lasso procedure can be regarded as an automatic implementation of best-subset selection in some asymptotic sense.
** [https://stats.stackexchange.com/questions/229142/what-is-the-oracle-property-of-an-estimator What is the oracle property of an estimator?] An oracle estimator must be consistent in 1) '''variable selection''' and 2) '''consistent parameter estimation'''.
** (Linear regression) The adaptive lasso and its oracle properties Zou (2006, JASA)
** (Cox model) Adaptive-LASSO for Cox's proportional hazard model by Zhang and Lu (2007, Biometrika)
**[https://insightr.wordpress.com/2017/06/14/when-the-lasso-fails/ When the LASSO fails???]. Adaptive lasso is used to demonstrate its usefulness.
* [https://statisticaloddsandends.wordpress.com/2018/11/13/a-deep-dive-into-glmnet-penalty-factor/ A deep dive into glmnet: penalty.factor], [https://statisticaloddsandends.wordpress.com/2018/11/15/a-deep-dive-into-glmnet-standardize/ standardize], [https://statisticaloddsandends.wordpress.com/2019/01/09/a-deep-dive-into-glmnet-offset/ offset]
** Lambda sequence is not affected by the "penalty.factor"
** How "penalty.factor" used by the objective function may need to be corrected
* Some issues:
** With group of highly correlated features, Lasso tends to select amongst them arbitrarily.
** Often empirically ridge has better predictive performance than lasso but lasso leads to sparser solution
** Elastic-net (Zou & Hastie '05) aims to address these issues: hybrid between Lasso and ridge regression, uses L1 and L2 penalties.
* [https://statcompute.wordpress.com/2019/02/23/gradient-free-optimization-for-glmnet-parameters/ Gradient-Free Optimization for GLMNET Parameters]
* [https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2656-1 Gsslasso Cox]: a Bayesian hierarchical model for predicting survival and detecting associated genes by incorporating pathway information, Tang et al BMC Bioinformatics 2019


=== Lasso logistic regression ===
=== Lasso logistic regression ===

Revision as of 21:58, 5 February 2020

Statisticians

Statistics for biologists

http://www.nature.com/collections/qghhqm

Data

Coefficient of variation (CV)

Motivating the coefficient of variation (CV) for beginners:

  • Boss: Measure it 5 times.
  • You: 8, 8, 9, 6, and 8
  • B: SD=1. Make it three times more precise!
  • Y: 0.20 0.20 0.23 0.15 0.20 meters. SD=0.3!
  • B: All you did was change to meters! Report the CV instead!
  • Y: Damn it.
R> sd(c(8, 8, 9, 6, 8))
[1] 1.095445
R> sd(c(8, 8, 9, 6, 8)*2.54/100)
[1] 0.02782431

Transform sample values to their percentiles

https://stackoverflow.com/questions/21219447/calculating-percentile-of-dataset-column

set.seed(1234)
x <- rnorm(10)
x
# [1] -1.2070657  0.2774292  1.0844412 -2.3456977  0.4291247  0.5060559
# [7] -0.5747400 -0.5466319 -0.5644520 -0.8900378
ecdf(x)(x)
# [1] 0.2 0.7 1.0 0.1 0.8 0.9 0.4 0.6 0.5 0.3

rank(x)
# [1]  2  7 10  1  8  9  4  6  5  3

Eleven quick tips for finding research data

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006038

An archive of 1000+ datasets distributed with R

https://vincentarelbundock.github.io/Rdatasets/

Box(Box and whisker) plot in R

See

An example for a graphical explanation.

> x=c(0,4,15, 1, 6, 3, 20, 5, 8, 1, 3)
> summary(x)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
      0       2       4       6       7      20 
> sort(x)
 [1]  0  1  1  3  3  4  5  6  8 15 20
> boxplot(x, col = 'grey')

# https://en.wikipedia.org/wiki/Quartile#Example_1
> summary(c(6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49))
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   6.00   25.50   40.00   33.18   42.50   49.00

File:Boxplot.svg, File:Geom boxplot.png

  • The lower and upper edges of box is determined by the first and 3rd quartiles (2 and 7 in the above example).
    • 2 = median(c(0, 1, 1, 3, 3, 4)) = (1+3)/2
    • 7 = median(c(4, 5, 6, 8, 15, 20)) = (6+8)/2
    • IQR = 7 - 2 = 5
  • The thick dark horizon line is the median (4 in the example).
  • Outliers are defined by (the empty circles in the plot)
    • Observations larger than 3rd quartile + 1.5 * IQR (7+1.5*5=14.5) and
    • smaller than 1st quartile - 1.5 * IQR (2-1.5*5=-5.5).
    • Note that the cutoffs are not shown in the Box plot.
  • Whisker (defined using the cutoffs used to define outliers)
    • Upper whisker is defined by the largest "data" below 3rd quartile + 1.5 * IQR (8 in this example), and
    • Lower whisker is defined by the smallest "data" greater than 1st quartile - 1.5 * IQR (0 in this example).
    • See another example below where we can see the whiskers fall on observations.

Note the wikipedia lists several possible definitions of a whisker. R uses the 2nd method (Tukey boxplot) to define whiskers.

Create boxplots from a list object

Normally we use a vector to create a single boxplot or a formula on a data to create boxplots.

But we can also use split() to create a list and then make boxplots.

Dot-box plot

File:Boxdot.svg

geom_boxplot

Without jitter

ggplot(dfbox, aes(x=sample, y=expr)) +
  geom_boxplot() +
  theme(axis.text.x=element_text(color = "black", angle=30, vjust=.8, 
                                 hjust=0.8, size=6),  
        plot.title = element_text(hjust = 0.5)) +
  labs(title="", y = "", x = "") 

With jitter

ggplot(dfbox, aes(x=sample, y=expr)) +
  geom_boxplot(outlier.shape=NA) + #avoid plotting outliers twice
  geom_jitter(position=position_jitter(width=.2, height=0)) +
  theme(axis.text.x=element_text(color = "black", angle=30, vjust=.8, 
                                 hjust=0.8, size=6),  
        plot.title = element_text(hjust = 0.5)) +
  labs(title="", y = "", x = "") 

Why geom_boxplot identify more outliers than base boxplot?

Other boxplots

File:Lotsboxplot.png

Annotated boxplot

https://stackoverflow.com/a/38032281

stem and leaf plot

stem(). See R Tutorial.

Note that stem plot is useful when there are outliers.

> stem(x)

  The decimal point is 10 digit(s) to the right of the |

   0 | 00000000000000000000000000000000000000000000000000000000000000000000+419
   1 |
   2 |
   3 |
   4 |
   5 |
   6 |
   7 |
   8 |
   9 |
  10 |
  11 |
  12 | 9

> max(x)
[1] 129243100275
> max(x)/1e10
[1] 12.92431

> stem(y)

  The decimal point is at the |

  0 | 014478
  1 | 0
  2 | 1
  3 | 9
  4 | 8

> y
 [1] 3.8667356428 0.0001762708 0.7993462430 0.4181079732 0.9541728562
 [6] 4.7791262101 0.6899313108 2.1381289177 0.0541736818 0.3868776083

> set.seed(1234)
> z <- rnorm(10)*10
> z
 [1] -12.070657   2.774292  10.844412 -23.456977   4.291247   5.060559
 [7]  -5.747400  -5.466319  -5.644520  -8.900378
> stem(z)

  The decimal point is 1 digit(s) to the right of the |

  -2 | 3
  -1 | 2
  -0 | 9665
   0 | 345
   1 | 1

Box-Cox transformation

the Holy Trinity (LRT, Wald, Score tests)

Don't invert that matrix

Different matrix decompositions/factorizations

set.seed(1234)
x <- matrix(rnorm(10*2), nr= 10)
cmat <- cov(x); cmat
# [,1]       [,2]
# [1,]  0.9915928 -0.1862983
# [2,] -0.1862983  1.1392095

# cholesky decom
d1 <- chol(cmat)
t(d1) %*% d1  # equal to cmat
d1  # upper triangle
# [,1]       [,2]
# [1,] 0.9957875 -0.1870864
# [2,] 0.0000000  1.0508131

# svd
d2 <- svd(cmat)
d2$u %*% diag(d2$d) %*% t(d2$v) # equal to cmat
d2$u %*% diag(sqrt(d2$d))
# [,1]      [,2]
# [1,] -0.6322816 0.7692937
# [2,]  0.9305953 0.5226872

Linear Regression

Regression Models for Data Science in R by Brian Caffo

Comic https://xkcd.com/1725/

Different models (in R)

http://www.quantide.com/raccoon-ch-1-introduction-to-linear-models-with-r/

dummy.coef.lm() in R

Extracts coefficients in terms of the original levels of the coefficients rather than the coded variables.

model.matrix, design matrix

ExploreModelMatrix: Explore design matrices interactively with R/Shiny

Contrasts in linear regression

  • Page 147 of Modern Applied Statistics with S (4th ed)
  • https://biologyforfun.wordpress.com/2015/01/13/using-and-interpreting-different-contrasts-in-linear-models-in-r/ This explains the meanings of 'treatment', 'helmert' and 'sum' contrasts.
  • A (sort of) Complete Guide to Contrasts in R by Rose Maier
    mat
    
    ##      constant NLvMH  NvL  MvH
    ## [1,]        1  -0.5  0.5  0.0
    ## [2,]        1  -0.5 -0.5  0.0
    ## [3,]        1   0.5  0.0  0.5
    ## [4,]        1   0.5  0.0 -0.5
    mat <- mat[ , -1]
    
    model7 <- lm(y ~ dose, data=data, contrasts=list(dose=mat) )
    summary(model7)
    
    ## Coefficients:
    ##             Estimate Std. Error t value Pr(>|t|)    
    ## (Intercept)  118.578      1.076 110.187  < 2e-16 ***
    ## doseNLvMH      3.179      2.152   1.477  0.14215    
    ## doseNvL       -8.723      3.044  -2.866  0.00489 ** 
    ## doseMvH       13.232      3.044   4.347 2.84e-05 ***
    
    # double check your contrasts
    attributes(model7$qr$qr)$contrasts
    ## $dose
    ##      NLvMH  NvL  MvH
    ## None  -0.5  0.5  0.0
    ## Low   -0.5 -0.5  0.0
    ## Med    0.5  0.0  0.5
    ## High   0.5  0.0 -0.5
    
    library(dplyr)
    dose.means <- summarize(group_by(data, dose), y.mean=mean(y))
    dose.means
    ## Source: local data frame [4 x 2]
    ## 
    ##   dose   y.mean
    ## 1 None 112.6267
    ## 2  Low 121.3500
    ## 3  Med 126.7839
    ## 4 High 113.5517
    
    # The coefficient estimate for the first contrast (3.18) equals the average of 
    # the last two groups (126.78 + 113.55 /2 = 120.17) minus the average of 
    # the first two groups (112.63 + 121.35 /2 = 116.99).

Multicollinearity

> op <- options(contrasts = c("contr.helmert", "contr.poly"))
> npk.aov <- aov(yield ~ block + N*P*K, npk)
> alias(npk.aov)
Model :
yield ~ block + N * P * K

Complete :
         (Intercept) block1 block2 block3 block4 block5 N1    P1    K1    N1:P1 N1:K1 P1:K1
N1:P1:K1     0           1    1/3    1/6  -3/10   -1/5      0     0     0     0     0     0

> options(op)

Exposure

https://en.mimi.hu/mathematics/exposure_variable.html

Independent variable = predictor = explanatory = exposure variable

Confounders, confounding

Causal inference

Confidence interval vs prediction interval

Confidence intervals tell you about how well you have determined the mean E(Y). Prediction intervals tell you where you can expect to see the next data point sampled. That is, CI is computed using Var(E(Y|X)) and PI is computed using Var(E(Y|X) + e).

Heteroskedasticity

Dealing with heteroskedasticity; regression with robust standard errors using R

Linear regression with Map Reduce

https://freakonometrics.hypotheses.org/53269

Relationship between multiple variables

Visualizing the relationship between multiple variables

Model fitting evaluation

Why Do We Plot Predictions on the x-axis?

Quantile regression

Non- and semi-parametric regression

Mean squared error

Splines

k-Nearest neighbor regression

  • k-NN regression in practice: boundary problem, discontinuities problem.
  • Weighted k-NN regression: want weight to be small when distance is large. Common choices - weight = kernel(xi, x)

Kernel regression

  • Instead of weighting NN, weight ALL points. Nadaraya-Watson kernel weighted average:

[math]\displaystyle{ \hat{y}_q = \sum c_{qi} y_i/\sum c_{qi} = \frac{\sum \text{Kernel}_\lambda(\text{distance}(x_i, x_q))*y_i}{\sum \text{Kernel}_\lambda(\text{distance}(x_i, x_q))} }[/math].

  • Choice of bandwidth [math]\displaystyle{ \lambda }[/math] for bias, variance trade-off. Small [math]\displaystyle{ \lambda }[/math] is over-fitting. Large [math]\displaystyle{ \lambda }[/math] can get an over-smoothed fit. Cross-validation.
  • Kernel regression leads to locally constant fit.
  • Issues with high dimensions, data scarcity and computational complexity.

Principal component analysis

See PCA.

Partial Least Squares (PLS)

[math]\displaystyle{ X = T P^\mathrm{T} + E }[/math]
[math]\displaystyle{ Y = U Q^\mathrm{T} + F }[/math]

where X is an [math]\displaystyle{ n \times m }[/math] matrix of predictors, Y is an [math]\displaystyle{ n \times p }[/math] matrix of responses; T and U are [math]\displaystyle{ n \times l }[/math] matrices that are, respectively, projections of X (the X score, component or factor matrix) and projections of Y (the Y scores); P and Q are, respectively, [math]\displaystyle{ m \times l }[/math] and [math]\displaystyle{ p \times l }[/math] orthogonal loading matrices; and matrices E and F are the error terms, assumed to be independent and identically distributed random normal variables. The decompositions of X and Y are made so as to maximise the covariance between T and U (projection matrices).

PLS, PCR (principal components regression) and ridge regression tend to behave similarly. Ridge regression may be preferred because it shrinks smoothly, rather than in discrete steps.

High dimension

Partial least squares prediction in high-dimensional regression Cook and Forzani, 2019

Feature selection

https://en.wikipedia.org/wiki/Feature_selection

Independent component analysis

ICA is another dimensionality reduction method.

ICA vs PCA

ICS vs FA

Correspondence analysis

https://francoishusson.wordpress.com/2017/07/18/multiple-correspondence-analysis-with-factominer/ and the book Exploratory Multivariate Analysis by Example Using R

Non-negative matrix factorization

Optimization and expansion of non-negative matrix factorization

t-SNE

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a technique for dimensionality reduction that is particularly well suited for the visualization of high-dimensional datasets.

Visualize the random effects

http://www.quantumforest.com/2012/11/more-sense-of-random-effects/

Calibration

  • How to determine calibration accuracy/uncertainty of a linear regression?
  • Linear Regression and Calibration Curves
  • Regression and calibration Shaun Burke
  • calibrate package
  • The index of prediction accuracy: an intuitive measure useful for evaluating risk prediction models by Kattan and Gerds 2018. The following code demonstrates Figure 2.
    # Odds ratio =1 and calibrated model
    set.seed(666)
    x = rnorm(1000)           
    z1 = 1 + 0*x        
    pr1 = 1/(1+exp(-z1))
    y1 = rbinom(1000,1,pr1)  
    mean(y1) # .724, marginal prevalence of the outcome
    dat1 <- data.frame(x=x, y=y1)
    newdat1 <- data.frame(x=rnorm(1000), y=rbinom(1000, 1, pr1))
    
    # Odds ratio =1 and severely miscalibrated model
    set.seed(666)
    x = rnorm(1000)           
    z2 =  -2 + 0*x        
    pr2 = 1/(1+exp(-z2))  
    y2 = rbinom(1000,1,pr2)  
    mean(y2) # .12
    dat2 <- data.frame(x=x, y=y2)
    newdat2 <- data.frame(x=rnorm(1000), y=rbinom(1000, 1, pr2))
    
    library(riskRegression)
    lrfit1 <- glm(y ~ x, data = dat1, family = 'binomial')
    IPA(lrfit1, newdata = newdat1)
    #     Variable     Brier           IPA     IPA.gain
    # 1 Null model 0.1984710  0.000000e+00 -0.003160010
    # 2 Full model 0.1990982 -3.160010e-03  0.000000000
    # 3          x 0.1984800 -4.534668e-05 -0.003114664
    1 - 0.1990982/0.1984710
    # [1] -0.003160159
    
    lrfit2 <- glm(y ~ x, family = 'binomial')
    IPA(lrfit2, newdata = newdat1)
    #     Variable     Brier       IPA     IPA.gain
    # 1 Null model 0.1984710  0.000000 -1.859333763
    # 2 Full model 0.5674948 -1.859334  0.000000000
    # 3          x 0.5669200 -1.856437 -0.002896299
    1 - 0.5674948/0.1984710
    # [1] -1.859334
    From the simulated data, we see IPA = -3.16e-3 for a calibrated model and IPA = -1.86 for a severely miscalibrated model.

ROC curve

See ROC.

NRI (Net reclassification improvement)

Maximum likelihood

Difference of partial likelihood, profile likelihood and marginal likelihood

Generalized Linear Model

Lectures from a course in Simon Fraser University Statistics.

Doing magic and analyzing seasonal time series with GAM (Generalized Additive Model) in R

Link function

Link Functions versus Data Transforms

Quasi Likelihood

Quasi-likelihood is like log-likelihood. The quasi-score function (first derivative of quasi-likelihood function) is the estimating equation.

Plot

https://strengejacke.wordpress.com/2015/02/05/sjplot-package-and-related-online-manuals-updated-rstats-ggplot/

Deviance, stats::deviance() and glmnet::deviance.glmnet() from R

  • It is a generalization of the idea of using the sum of squares of residuals (RSS) in ordinary least squares to cases where model-fitting is achieved by maximum likelihood. See What is Deviance? (specifically in CART/rpart) to manually compute deviance and compare it with the returned value of the deviance() function from a linear regression. Summary: deviance() = RSS in linear models.
  • https://www.rdocumentation.org/packages/stats/versions/3.4.3/topics/deviance
  • Likelihood ratio tests and the deviance http://data.princeton.edu/wws509/notes/a2.pdf#page=6
  • Deviance(y,muhat) = 2*(loglik_saturated - loglik_proposed)
  • Interpreting Residual and Null Deviance in GLM R
    • Null Deviance = 2(LL(Saturated Model) - LL(Null Model)) on df = df_Sat - df_Null. The null deviance shows how well the response variable is predicted by a model that includes only the intercept (grand mean).
    • Residual Deviance = 2(LL(Saturated Model) - LL(Proposed Model)) = [math]\displaystyle{ 2(LL(y|y) - LL(\hat{\mu}|y)) }[/math], df = df_Sat - df_Proposed=n-p. ==> deviance() has returned.
    • Null deviance > Residual deviance. Null deviance df = n-1. Residual deviance df = n-p.
## an example with offsets from Venables & Ripley (2002, p.189)
utils::data(anorexia, package = "MASS")

anorex.1 <- glm(Postwt ~ Prewt + Treat + offset(Prewt),
                family = gaussian, data = anorexia)
summary(anorex.1)

# Call:
#   glm(formula = Postwt ~ Prewt + Treat + offset(Prewt), family = gaussian, 
#       data = anorexia)
# 
# Deviance Residuals: 
#   Min        1Q    Median        3Q       Max  
# -14.1083   -4.2773   -0.5484    5.4838   15.2922  
# 
# Coefficients:
#   Estimate Std. Error t value Pr(>|t|)    
# (Intercept)  49.7711    13.3910   3.717 0.000410 ***
#   Prewt        -0.5655     0.1612  -3.509 0.000803 ***
#   TreatCont    -4.0971     1.8935  -2.164 0.033999 *  
#   TreatFT       4.5631     2.1333   2.139 0.036035 *  
#   ---
#   Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# 
# (Dispersion parameter for gaussian family taken to be 48.69504)
# 
# Null deviance: 4525.4  on 71  degrees of freedom
# Residual deviance: 3311.3  on 68  degrees of freedom
# AIC: 489.97
# 
# Number of Fisher Scoring iterations: 2

deviance(anorex.1)
# [1] 3311.263
  • In glmnet package. The deviance is defined to be 2*(loglike_sat - loglike), where loglike_sat is the log-likelihood for the saturated model (a model with a free parameter per observation). Null deviance is defined to be 2*(loglike_sat -loglike(Null)); The NULL model refers to the intercept model, except for the Cox, where it is the 0 model. Hence dev.ratio=1-deviance/nulldev, and this deviance method returns (1-dev.ratio)*nulldev.
x=matrix(rnorm(100*2),100,2)
y=rnorm(100)
fit1=glmnet(x,y) 
deviance(fit1)  # one for each lambda
#  [1] 98.83277 98.53893 98.29499 98.09246 97.92432 97.78472 97.66883
#  [8] 97.57261 97.49273 97.41327 97.29855 97.20332 97.12425 97.05861
# ...
# [57] 96.73772 96.73770
fit2 <- glmnet(x, y, lambda=.1) # fix lambda
deviance(fit2)
# [1] 98.10212
deviance(glm(y ~ x))
# [1] 96.73762
sum(residuals(glm(y ~ x))^2)
# [1] 96.73762

Saturated model

Simulate data

Density plot

# plot a Weibull distribution with shape and scale
func <- function(x) dweibull(x, shape = 1, scale = 3.38)
curve(func, .1, 10)

func <- function(x) dweibull(x, shape = 1.1, scale = 3.38)
curve(func, .1, 10)

The shape parameter plays a role on the shape of the density function and the failure rate.

  • Shape <=1: density is convex, not a hat shape.
  • Shape =1: failure rate (hazard function) is constant. Exponential distribution.
  • Shape >1: failure rate increases with time

Simulate data from a specified density

Signal to noise ratio

[math]\displaystyle{ \frac{\sigma^2_{signal}}{\sigma^2_{noise}} = \frac{Var(f(X))}{Var(e)} }[/math] if Y = f(X) + e

Some examples of signal to noise ratio

Effect size, Cohen's d and volcano plot

[math]\displaystyle{ \theta = \frac{\mu_1 - \mu_2} \sigma, }[/math]

Multiple comparisons

Take an example, Suppose 550 out of 10,000 genes are significant at .05 level

  1. P-value < .05 ==> Expect .05*10,000=500 false positives
  2. False discovery rate < .05 ==> Expect .05*550 =27.5 false positives
  3. Family wise error rate < .05 ==> The probablity of at least 1 false positive <.05

According to Lifetime Risk of Developing or Dying From Cancer, there is a 39.7% risk of developing a cancer for male during his lifetime (in other words, 1 out of every 2.52 men in US will develop some kind of cancer during his lifetime) and 37.6% for female. So the probability of getting at least one cancer patient in a 3-generation family is 1-.6**3 - .63**3 = 0.95.

Family-Wise Error Rate (FWER)

Multiple Hypothesis Testing in R

False Discovery Rate

Suppose [math]\displaystyle{ p_1 \leq p_2 \leq ... \leq p_n }[/math]. Then

[math]\displaystyle{ \text{FDR}_i = \text{min}(1, n* p_i/i) }[/math].

So if the number of tests ([math]\displaystyle{ n }[/math]) is large and/or the original p value ([math]\displaystyle{ p_i }[/math]) is large, then FDR can hit the value 1.

However, the simple formula above does not guarantee the monotonicity property from the FDR. So the calculation in R is more complicated. See How Does R Calculate the False Discovery Rate.

Below is the histograms of p-values and FDR (BH adjusted) from a real data (Pomeroy in BRB-ArrayTools).

File:Hist bh.svg

And the next is a scatterplot w/ histograms on the margins from a null data.

File:Scatterhist.svg

q-value

https://en.wikipedia.org/wiki/Q-value_(statistics)

q-value is defined as the minimum FDR that can be attained when calling that feature significant (i.e., expected proportion of false positives incurred when calling that feature significant).

If gene X has a q-value of 0.013 it means that 1.3% of genes that show p-values at least as small as gene X are false positives.

Another view: q-value = FDR adjusted p-value. A p-value of 5% means that 5% of all tests will result in false positives. A q-value of 5% means that 5% of significant results will result in false positives. here.

SAM/Significance Analysis of Microarrays

The percentile option is used to define the number of falsely called genes based on 'B' permutations. If we use the 90-th percentile, the number of significant genes will be less than if we use the 50-th percentile/median.

In BRCA dataset, using the 90-th percentile will get 29 genes vs 183 genes if we use median.

Required number of permutations for a permutation-based p-value

Multivariate permutation test

In BRCA dataset, using 80% confidence gives 116 genes vs 237 genes if we use 50% confidence (assuming maximum proportion of false discoveries is 10%). The method is published on EL Korn, JF Troendle, LM McShane and R Simon, Controlling the number of false discoveries: Application to high dimensional genomic data, Journal of Statistical Planning and Inference, vol 124, 379-398 (2004).

The role of the p-value in the multitesting problem

https://www.tandfonline.com/doi/full/10.1080/02664763.2019.1682128

String Permutations Algorithm

https://youtu.be/nYFd7VHKyWQ

coin package

Resampling Statistics

Empirical Bayes Normal Means Problem with Correlated Noise

Solving the Empirical Bayes Normal Means Problem with Correlated Noise Sun 2018

The package cashr and the source code of the paper

Bayes

Bayes factor

Empirical Bayes method

Naive Bayes classifier

Understanding Naïve Bayes Classifier Using R

MCMC

Speeding up Metropolis-Hastings with Rcpp

offset() function

Offset in Poisson regression

  1. We need to model rates instead of counts
  2. More generally, you use offsets because the units of observation are different in some dimension (different populations, different geographic sizes) and the outcome is proportional to that dimension.

An example from here

Y  <- c(15,  7, 36,  4, 16, 12, 41, 15)
N  <- c(4949, 3534, 12210, 344, 6178, 4883, 11256, 7125)
x1 <- c(-0.1, 0, 0.2, 0, 1, 1.1, 1.1, 1)
x2 <- c(2.2, 1.5, 4.5, 7.2, 4.5, 3.2, 9.1, 5.2)

glm(Y ~ offset(log(N)) + (x1 + x2), family=poisson) # two variables
# Coefficients:
# (Intercept)           x1           x2
#     -6.172       -0.380        0.109
#
# Degrees of Freedom: 7 Total (i.e. Null);  5 Residual
# Null Deviance:	    10.56
# Residual Deviance: 4.559 	AIC: 46.69
glm(Y ~ offset(log(N)) + I(x1+x2), family=poisson)  # one variable
# Coefficients:
# (Intercept)   I(x1 + x2)
#   -6.12652      0.04746
#
# Degrees of Freedom: 7 Total (i.e. Null);  6 Residual
# Null Deviance:	    10.56
# Residual Deviance: 8.001 	AIC: 48.13

Offset in Cox regression

An example from biospear::PCAlasso()

coxph(Surv(time, status) ~ offset(off.All), data = data)
# Call:  coxph(formula = Surv(time, status) ~ offset(off.All), data = data)
#
# Null model
#   log likelihood= -2391.736 
#   n= 500 

# versus without using offset()
coxph(Surv(time, status) ~ off.All, data = data)
# Call:
# coxph(formula = Surv(time, status) ~ off.All, data = data)
#
#          coef exp(coef) se(coef)    z    p
# off.All 0.485     1.624    0.658 0.74 0.46
#
# Likelihood ratio test=0.54  on 1 df, p=0.5
# n= 500, number of events= 438 
coxph(Surv(time, status) ~ off.All, data = data)$loglik
# [1] -2391.702 -2391.430    # initial coef estimate, final coef

Offset in linear regression

Overdispersion

https://en.wikipedia.org/wiki/Overdispersion

Var(Y) = phi * E(Y). If phi > 1, then it is overdispersion relative to Poisson. If phi <1, we have under-dispersion (rare).

Heterogeneity

The Poisson model fit is not good; residual deviance/df >> 1. The lack of fit maybe due to missing data, covariates or overdispersion.

Subjects within each covariate combination still differ greatly.

Consider Quasi-Poisson or negative binomial.

Test of overdispersion or underdispersion in Poisson models

https://stats.stackexchange.com/questions/66586/is-there-a-test-to-determine-whether-glm-overdispersion-is-significant

Negative Binomial

The mean of the Poisson distribution can itself be thought of as a random variable drawn from the gamma distribution thereby introducing an additional free parameter.

Binomial

Count data

Zero counts

Bias

Bias in Small-Sample Inference With Count-Data Models Blackburn 2019

Survival data analysis

See Survival data analysis

Logistic regression

Simulate binary data from the logistic model

https://stats.stackexchange.com/questions/46523/how-to-simulate-artificial-data-for-logistic-regression

set.seed(666)
x1 = rnorm(1000)           # some continuous variables 
x2 = rnorm(1000)
z = 1 + 2*x1 + 3*x2        # linear combination with a bias
pr = 1/(1+exp(-z))         # pass through an inv-logit function
y = rbinom(1000,1,pr)      # bernoulli response variable
 
#now feed it to glm:
df = data.frame(y=y,x1=x1,x2=x2)
glm( y~x1+x2,data=df,family="binomial")

Building a Logistic Regression model from scratch

https://www.analyticsvidhya.com/blog/2015/10/basics-logistic-regression

Odds ratio

Calculate the odds ratio from the coefficient estimates; see this post.

require(MASS)
N  <- 100               # generate some data
X1 <- rnorm(N, 175, 7)
X2 <- rnorm(N,  30, 8)
X3 <- abs(rnorm(N, 60, 30))
Y  <- 0.5*X1 - 0.3*X2 - 0.4*X3 + 10 + rnorm(N, 0, 12)

# dichotomize Y and do logistic regression
Yfac   <- cut(Y, breaks=c(-Inf, median(Y), Inf), labels=c("lo", "hi"))
glmFit <- glm(Yfac ~ X1 + X2 + X3, family=binomial(link="logit"))

exp(cbind(coef(glmFit), confint(glmFit)))  

AUC

A small introduction to the ROCR package

       predict.glm()             ROCR::prediction()     ROCR::performance()
glmobj ------------> predictTest -----------------> ROCPPred ---------> AUC
newdata                labels

Medical applications

Subgroup analysis

Other related keywords: recursive partitioning, randomized clinical trials (RCT)

Interaction analysis

Statistical Learning

LDA (Fisher's linear discriminant), QDA

Bagging

Chapter 8 of the book.

  • Bootstrap mean is approximately a posterior average.
  • Bootstrap aggregation or bagging average: Average the prediction over a collection of bootstrap samples, thereby reducing its variance. The bagging estimate is defined by
[math]\displaystyle{ \hat{f}_{bag}(x) = \frac{1}{B}\sum_{b=1}^B \hat{f}^{*b}(x). }[/math]

Where Bagging Might Work Better Than Boosting

CLASSIFICATION FROM SCRATCH, BAGGING AND FORESTS 10/8

Boosting

AdaBoost

AdaBoost.M1 by Freund and Schapire (1997):

The error rate on the training sample is [math]\displaystyle{ \bar{err} = \frac{1}{N} \sum_{i=1}^N I(y_i \neq G(x_i)), }[/math]

Sequentially apply the weak classification algorithm to repeatedly modified versions of the data, thereby producing a sequence of weak classifiers [math]\displaystyle{ G_m(x), m=1,2,\dots,M. }[/math]

The predictions from all of them are combined through a weighted majority vote to produce the final prediction: [math]\displaystyle{ G(x) = sign[\sum_{m=1}^M \alpha_m G_m(x)]. }[/math] Here [math]\displaystyle{ \alpha_1,\alpha_2,\dots,\alpha_M }[/math] are computed by the boosting algorithm and weight the contribution of each respective [math]\displaystyle{ G_m(x) }[/math]. Their effect is to give higher influence to the more accurate classifiers in the sequence.

Dropout regularization

DART: Dropout Regularization in Boosting Ensembles

Gradient boosting

Gradient descent

Gradient descent is a first-order iterative optimization algorithm for finding the minimum of a function (Wikipedia).

The error function from a simple linear regression looks like

[math]\displaystyle{ \begin{align} Err(m,b) &= \frac{1}{N}\sum_{i=1}^n (y_i - (m x_i + b))^2, \\ \end{align} }[/math]

We compute the gradient first for each parameters.

[math]\displaystyle{ \begin{align} \frac{\partial Err}{\partial m} &= \frac{2}{n} \sum_{i=1}^n -x_i(y_i - (m x_i + b)), \\ \frac{\partial Err}{\partial b} &= \frac{2}{n} \sum_{i=1}^n -(y_i - (m x_i + b)) \end{align} }[/math]

The gradient descent algorithm uses an iterative method to update the estimates using a tuning parameter called learning rate.

new_m &= m_current - (learningRate * m_gradient) 
new_b &= b_current - (learningRate * b_gradient) 

After each iteration, derivative is closer to zero. Coding in R for the simple linear regression.

Gradient descent vs Newton's method

Classification and Regression Trees (CART)

Construction of the tree classifier

  • Node proportion
[math]\displaystyle{ p(1|t) + \dots + p(6|t) =1 }[/math] where [math]\displaystyle{ p(j|t) }[/math] define the node proportions (class proportion of class j on node t. Here we assume there are 6 classes.
  • Impurity of node t
[math]\displaystyle{ i(t) }[/math] is a nonnegative function [math]\displaystyle{ \phi }[/math] of the [math]\displaystyle{ p(1|t), \dots, p(6|t) }[/math] such that [math]\displaystyle{ \phi(1/6,1/6,\dots,1/6) }[/math] = maximumm [math]\displaystyle{ \phi(1,0,\dots,0)=0, \phi(0,1,0,\dots,0)=0, \dots, \phi(0,0,0,0,0,1)=0 }[/math]. That is, the node impurity is largest when all classes are equally mixed together in it, and smallest when the node contains only one class.
  • Gini index of impurity
[math]\displaystyle{ i(t) = - \sum_{j=1}^6 p(j|t) \log p(j|t). }[/math]
  • Goodness of the split s on node t
[math]\displaystyle{ \Delta i(s, t) = i(t) -p_Li(t_L) - p_Ri(t_R). }[/math] where [math]\displaystyle{ p_R }[/math] are the proportion of the cases in t go into the left node [math]\displaystyle{ t_L }[/math] and a proportion [math]\displaystyle{ p_R }[/math] go into right node [math]\displaystyle{ t_R }[/math].

A tree was grown in the following way: At the root node [math]\displaystyle{ t_1 }[/math], a search was made through all candidate splits to find that split [math]\displaystyle{ s^* }[/math] which gave the largest decrease in impurity;

[math]\displaystyle{ \Delta i(s^*, t_1) = \max_{s} \Delta i(s, t_1). }[/math]
  • Class character of a terminal node was determined by the plurality rule. Specifically, if [math]\displaystyle{ p(j_0|t)=\max_j p(j|t) }[/math], then t was designated as a class [math]\displaystyle{ j_0 }[/math] terminal node.

R packages

Partially additive (generalized) linear model trees

Supervised Classification, Logistic and Multinomial

Variable selection

Review

Variable selection – A review and recommendations for the practicing statistician by Heinze et al 2018.

Variable selection and variable importance plot

Variable selection and cross-validation

Mallow Cp

Mallows's Cp addresses the issue of overfitting. The Cp statistic calculated on a sample of data estimates the mean squared prediction error (MSPE).

[math]\displaystyle{ E\sum_j (\hat{Y}_j - E(Y_j\mid X_j))^2/\sigma^2, }[/math]

The Cp statistic is defined as

[math]\displaystyle{ C_p={SSE_p \over S^2} - N + 2P. }[/math]
  • https://en.wikipedia.org/wiki/Mallows%27s_Cp
  • Used in Yuan & Lin (2006) group lasso. The degrees of freedom is estimated by the bootstrap or perturbation methods. Their paper mentioned the performance is comparable with that of 5-fold CV but is computationally much faster.

Variable selection for mode regression

http://www.tandfonline.com/doi/full/10.1080/02664763.2017.1342781 Chen & Zhou, Journal of applied statistics ,June 2017

Neural network

Support vector machine (SVM)

Quadratic Discriminant Analysis (qda), KNN

Machine Learning. Stock Market Data, Part 3: Quadratic Discriminant Analysis and KNN

Regularization

Regularization is a process of introducing additional information in order to solve an ill-posed problem or to prevent overfitting

Regularization: Ridge, Lasso and Elastic Net from datacamp.com. Bias and variance trade-off in parameter estimates was used to lead to the discussion.

Ridge regression

Since L2 norm is used in the regularization, ridge regression is also called L2 regularization.

ridge regression with glmnet

Hoerl and Kennard (1970a, 1970b) introduced ridge regression, which minimizes RSS subject to a constraint [math]\displaystyle{ \sum|\beta_j|^2 \le t }[/math]. Note that though ridge regression shrinks the OLS estimator toward 0 and yields a biased estimator [math]\displaystyle{ \hat{\beta} = (X^TX + \lambda X)^{-1} X^T y }[/math] where [math]\displaystyle{ \lambda=\lambda(t) }[/math], a function of t, the variance is smaller than that of the OLS estimator.

The solution exists if [math]\displaystyle{ \lambda \gt 0 }[/math] even if [math]\displaystyle{ n \lt p }[/math].

Ridge regression (L2 penalty) only shrinks the coefficients. In contrast, Lasso method (L1 penalty) tries to shrink some coefficient estimators to exactly zeros. This can be seen from comparing the coefficient path plot from both methods.

Geometrically (contour plot of the cost function), the L1 penalty (the sum of absolute values of coefficients) will incur a probability of some zero coefficients (i.e. some coefficient hitting the corner of a diamond shape in the 2D case). For example, in the 2D case (X-axis=[math]\displaystyle{ \beta_0 }[/math], Y-axis=[math]\displaystyle{ \beta_1 }[/math]), the shape of the L1 penalty [math]\displaystyle{ |\beta_0| + |\beta_1| }[/math] is a diamond shape whereas the shape of the L2 penalty ([math]\displaystyle{ \beta_0^2 + \beta_1^2 }[/math]) is a circle.

Lasso/glmnet, adaptive lasso and FAQs

glmnet

Lasso logistic regression

https://freakonometrics.hypotheses.org/52894

Lagrange Multipliers

A Simple Explanation of Why Lagrange Multipliers Works

How to solve lasso/convex optimization

  • Convex Optimization by Boyd S, Vandenberghe L, Cambridge 2004. It is cited by Zhang & Lu (2007). The interior point algorithm can be used to solve the optimization problem in adaptive lasso.
  • Review of gradient descent:
    • Finding maximum: [math]\displaystyle{ w^{(t+1)} = w^{(t)} + \eta \frac{dg(w)}{dw} }[/math], where [math]\displaystyle{ \eta }[/math] is stepsize.
    • Finding minimum: [math]\displaystyle{ w^{(t+1)} = w^{(t)} - \eta \frac{dg(w)}{dw} }[/math].
    • What is the difference between Gradient Descent and Newton's Gradient Descent? Newton's method requires [math]\displaystyle{ g''(w) }[/math], more smoothness of g(.).
    • Finding minimum for multiple variables (gradient descent): [math]\displaystyle{ w^{(t+1)} = w^{(t)} - \eta \Delta g(w^{(t)}) }[/math]. For the least squares problem, [math]\displaystyle{ g(w) = RSS(w) }[/math].
    • Finding minimum for multiple variables in the least squares problem (minimize [math]\displaystyle{ RSS(w) }[/math]): [math]\displaystyle{ \text{partial}(j) = -2\sum h_j(x_i)(y_i - \hat{y}_i(w^{(t)}), w_j^{(t+1)} = w_j^{(t)} - \eta \; \text{partial}(j) }[/math]
    • Finding minimum for multiple variables in the ridge regression problem (minimize [math]\displaystyle{ RSS(w)+\lambda \|w\|_2^2=(y-Hw)'(y-Hw)+\lambda w'w }[/math]): [math]\displaystyle{ \text{partial}(j) = -2\sum h_j(x_i)(y_i - \hat{y}_i(w^{(t)}), w_j^{(t+1)} = (1-2\eta \lambda) w_j^{(t)} - \eta \; \text{partial}(j) }[/math]. Compared to the closed form approach: [math]\displaystyle{ \hat{w} = (H'H + \lambda I)^{-1}H'y }[/math] where 1. the inverse exists even N<D as long as [math]\displaystyle{ \lambda \gt 0 }[/math] and 2. the complexity of inverse is [math]\displaystyle{ O(D^3) }[/math], D is the dimension of the covariates.
  • Cyclical coordinate descent was used (vignette) in the glmnet package. See also coordinate descent. The reason we call it 'descent' is because we want to 'minimize' an objective function.
    • [math]\displaystyle{ \hat{w}_j = \min_w g(\hat{w}_1, \cdots, \hat{w}_{j-1},w, \hat{w}_{j+1}, \cdots, \hat{w}_D) }[/math]
    • See paper on JSS 2010. The Cox PHM case also uses the cyclical coordinate descent method; see the paper on JSS 2011.
    • Coursera's Machine learning course 2: Regression at 1:42. Soft-thresholding the coefficients is the key for the L1 penalty. The range for the thresholding is controlled by [math]\displaystyle{ \lambda }[/math]. Note to view the videos and all materials in coursera we can enroll to audit the course without starting a trial.
    • No step size is required as in gradient descent.
    • Implementing LASSO Regression with Coordinate Descent, Sub-Gradient of the L1 Penalty and Soft Thresholding in Python
    • Coordinate descent in the least squares problem: [math]\displaystyle{ \frac{\partial}{\partial w_j} RSS(w)= -2 \rho_j + 2 w_j }[/math]; i.e. [math]\displaystyle{ \hat{w}_j = \rho_j }[/math].
    • Coordinate descent in the Lasso problem (for normalized features): [math]\displaystyle{ \hat{w}_j = \begin{cases} \rho_j + \lambda/2, & \text{if }\rho_j \lt -\lambda/2 \\ 0, & \text{if } -\lambda/2 \le \rho_j \le \lambda/2\\ \rho_j- \lambda/2, & \text{if }\rho_j \gt \lambda/2 \end{cases} }[/math]
    • Choosing [math]\displaystyle{ \lambda }[/math] via cross validation tends to favor less sparse solutions and thus smaller [math]\displaystyle{ \lambda }[/math] then optimal choice for feature selection. See "Machine learning: a probabilistic perspective", Murphy 2012.
  • Classical: Least angle regression (LARS) Efron et al 2004.
  • Alternating Direction Method of Multipliers (ADMM). Boyd, 2011. “Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers.” Foundations and Trends in Machine Learning. Vol. 3, No. 1, 2010, pp. 1–122.
  • If some variables in design matrix are correlated, then LASSO is convex or not?
  • Tibshirani. Regression shrinkage and selection via the lasso (free). JRSS B 1996.
  • Convex Optimization in R by Koenker & Mizera 2014.
  • Pathwise coordinate optimization by Friedman et al 2007.
  • Statistical learning with sparsity: the Lasso and generalizations T. Hastie, R. Tibshirani, and M. Wainwright, 2015 (book)
  • Element of Statistical Learning (book)
  • https://youtu.be/A5I1G1MfUmA StatsLearning Lect8h 110913
  • Fu's (1998) shooting algorithm for Lasso (mentioned in the history of coordinate descent) and Zhang & Lu's (2007) modified shooting algorithm for adaptive Lasso.
  • Machine Learning: a Probabilistic Perspective Choosing [math]\displaystyle{ \lambda }[/math] via cross validation tends to favor less sparse solutions and thus smaller [math]\displaystyle{ \lambda }[/math] than optimal choice for feature selection.

Quadratic programming

Constrained optimization

Jaya Package. Jaya Algorithm is a gradient-free optimization algorithm. It can be used for Maximization or Minimization of a function for solving both constrained and unconstrained optimization problems. It does not contain any hyperparameters.

Highly correlated covariates

1. Elastic net

2. Group lasso

Other Lasso

Comparison by plotting

If we are running simulation, we can use the DALEX package to visualize the fitting result from different machine learning methods and the true model. See http://smarterpoland.pl/index.php/2018/05/ml-models-what-they-cant-learn.

UMAP

Imbalanced Classification

Deep Learning

Tensor Flow (tensorflow package)

Biological applications

Machine learning resources

Randomization inference

Bootstrap

Nonparametric bootstrap

This is the most common bootstrap method

The upstrap Crainiceanu & Crainiceanu, Biostatistics 2018

Parametric bootstrap

Cross Validation

R packages:

Difference between CV & bootstrapping

Differences between cross validation and bootstrapping to estimate the prediction error

  • CV tends to be less biased but K-fold CV has fairly large variance.
  • Bootstrapping tends to drastically reduce the variance but gives more biased results (they tend to be pessimistic).
  • The 632 and 632+ rules methods have been adapted to deal with the bootstrap bias
  • Repeated CV does K-fold several times and averages the results similar to regular K-fold

.632 and .632+ bootstrap

[math]\displaystyle{ Err_{.632} = 0.368 \overline{err} + 0.632 Err_{boot(1)} }[/math]
[math]\displaystyle{ \hat{E}^*[\phi_{\mathcal{F}}(S)] = .368 \hat{E}[\phi_{f}(S)] + 0.632 \hat{E}[\phi_{f_b}(S_{-b})] }[/math]
where [math]\displaystyle{ \hat{E}[\phi_{f}(S)] }[/math] is the naive estimate of [math]\displaystyle{ \phi_f }[/math] using the entire dataset.

Create partitions

set.seed(), sample.split(),createDataPartition(), and createFolds() functions.

k-fold cross validation with modelr and broom

h2o package to split the merged training dataset into three parts

Nested resampling

Nested resampling is need when we want to tuning a model by using a grid search. The default settings of a model are likely not optimal for each data set out. So an inner CV has to be performed with the aim to find the best parameter set of a learner for each fold.

See a diagram at https://i.stack.imgur.com/vh1sZ.png

In BRB-ArrayTools -> class prediction with multiple methods, the alpha (significant level of threshold used for gene selection, 2nd option in individual genes) can be viewed as a tuning parameter for the development of a classifier.

Pre-validation

  • Pre-validation and inference in microarrays Tibshirani and Efron, Statistical Applications in Genetics and Molecular Biology, 2002.
  • http://www.stat.columbia.edu/~tzheng/teaching/genetics/papers/tib_efron.pdf#page=5. In each CV, we compute the estimate of the response. This estimate of the response will serve as a new predictor (pre-validated predictor) in the final fitting model.
  • P1101 of Sachs 2016. With pre-validation, instead of computing the statistic [math]\displaystyle{ \phi }[/math] for each of the held-out subsets ([math]\displaystyle{ S_{-b} }[/math] for the bootstrap or [math]\displaystyle{ S_{k} }[/math] for cross-validation), the fitted signature [math]\displaystyle{ \hat{f}(X_i) }[/math] is estimated for [math]\displaystyle{ X_i \in S_{-b} }[/math] where [math]\displaystyle{ \hat{f} }[/math] is estimated using [math]\displaystyle{ S_{b} }[/math]. This process is repeated to obtain a set of pre-validated signature estimates [math]\displaystyle{ \hat{f} }[/math]. Then an association measure [math]\displaystyle{ \phi }[/math] can be calculated using the pre-validated signature estimates and the true outcomes [math]\displaystyle{ Y_i, i = 1, \ldots, n }[/math].
  • In CV, left-out samples = hold-out cases = test set

Custom cross validation

Cross validation vs regularization

When Cross-Validation is More Powerful than Regularization

Cross-validation with confidence (CVC)

JASA 2019 by Jing Lei, pdf, code

Clustering

See Clustering.

Mixed Effect Model

Model selection criteria

Akaike information criterion/AIC

[math]\displaystyle{ \mathrm{AIC} \, = \, 2k - 2\ln(\hat L) }[/math], where k be the number of estimated parameters in the model.
  • Smaller is better
  • Akaike proposed to approximate the expectation of the cross-validated log likelihood [math]\displaystyle{ E_{test}E_{train} [log L(x_{test}| \hat{\beta}_{train})] }[/math] by [math]\displaystyle{ log L(x_{train} | \hat{\beta}_{train})-k }[/math].
  • Leave-one-out cross-validation is asymptotically equivalent to AIC, for ordinary linear regression models.
  • AIC can be used to compare two models even if they are not hierarchically nested.
  • AIC() from the stats package.

BIC

[math]\displaystyle{ \mathrm{BIC} \, = \, \ln(n) \cdot 2k - 2\ln(\hat L) }[/math], where k be the number of estimated parameters in the model.

Overfitting

How to judge if a supervised machine learning model is overfitting or not?

AIC vs AUC

What is the difference in what AIC and c-statistic (AUC) actually measure for model fit?

Roughly speaking:

  • AIC is telling you how good your model fits for a specific mis-classification cost.
  • AUC is telling you how good your model would work, on average, across all mis-classification costs.

Frank Harrell: AUC (C-index) has the advantage of measuring the concordance probability as you stated, aside from cost/utility considerations. To me the bottom line is the AUC should be used to describe discrimination of one model, not to compare 2 models. For comparison we need to use the most powerful measure: deviance and those things derived from deviance: generalized 𝑅2 and AIC.

Variable selection and model estimation

Proper variable selection: Use only training data or full data?

  • training observations to perform all aspects of model-fitting—including variable selection
  • make use of the full data set in order to obtain more accurate coefficient estimates (This statement is arguable)

Entropy

Definition

Entropy is defined by -log2(p) where p is a probability. Higher entropy represents higher unpredictable of an event.

Some examples:

  • Fair 2-side die: Entropy = -.5*log2(.5) - .5*log2(.5) = 1.
  • Fair 6-side die: Entropy = -6*1/6*log2(1/6) = 2.58
  • Weighted 6-side die: Consider pi=.1 for i=1,..,5 and p6=.5. Entropy = -5*.1*log2(.1) - .5*log2(.5) = 2.16 (less unpredictable than a fair 6-side die).

Use

When entropy was applied to the variable selection, we want to select a class variable which gives a largest entropy difference between without any class variable (compute entropy using response only) and with that class variable (entropy is computed by adding entropy in each class level) because this variable is most discriminative and it gives most information gain. For example,

  • entropy (without any class)=.94,
  • entropy(var 1) = .69,
  • entropy(var 2)=.91,
  • entropy(var 3)=.725.

We will choose variable 1 since it gives the largest gain (.94 - .69) compared to the other variables (.94 -.91, .94 -.725).

Why is picking the attribute with the most information gain beneficial? It reduces entropy, which increases predictability. A decrease in entropy signifies an decrease in unpredictability, which also means an increase in predictability.

Consider a split of a continuous variable. Where should we cut the continuous variable to create a binary partition with the highest gain? Suppose cut point c1 creates an entropy .9 and another cut point c2 creates an entropy .1. We should choose c2.

Related

In addition to information gain, gini (dʒiːni) index is another metric used in decision tree. See wikipedia page about decision tree learning.

Ensembles

Bagging

Draw N bootstrap samples and summary the results (averaging for regression problem, majority vote for classification problem). Decrease variance without changing bias. Not help much with underfit or high bias models.

Random forest

Variance importance: if you scramble the values of a variable, and the accuracy of your tree does not change much, then the variable is not very important.

Why is it useful to compute variance importance? So the model's predictions are easier to interpret (not improve the prediction performance).

Random forest has advantages of easier to run in parallel and suitable for small n large p problems.

Random forest versus logistic regression: a large-scale benchmark experiment by Raphael Couronné, BMC Bioinformatics 2018

Arborist: Parallelized, Extensible Random Forests

On what to permute in test-based approaches for variable importance measures in Random Forests

Boosting

Instead of selecting data points randomly with the boostrap, it favors the misclassified points.

Algorithm:

  • Initialize the weights
  • Repeat
    • resample with respect to weights
    • retrain the model
    • recompute weights

Since boosting requires computation in iterative and bagging can be run in parallel, bagging has an advantage over boosting when the data is very large.

Time series

Ensemble learning for time series forecasting in R

p-values

p-values

Distribution of p values in medical abstracts

nominal p-value and Empirical p-values

  • Nominal p-values are based on asymptotic null distributions
  • Empirical p-values are computed from simulations/permutations

(nominal) alpha level

Conventional methodology for statistical testing is, in advance of undertaking the test, to set a NOMINAL ALPHA CRITERION LEVEL (often 0.05). The outcome is classified as showing STATISTICAL SIGNIFICANCE if the actual ALPHA (probability of the outcome under the null hypothesis) is no greater than this NOMINAL ALPHA CRITERION LEVEL.

Normality assumption

Violating the normality assumption may be the lesser of two evils

T-statistic

See T-statistic.

ANOVA

See ANOVA.

Goodness of fit

Chi-square tests

Fitting distribution

Fitting distributions with R

Contingency Tables

Odds ratio and Risk ratio

The ratio of the odds of an event occurring in one group to the odds of it occurring in another group

         drawn   | not drawn | 
-------------------------------------
white |   A      |   B       | Wh
-------------------------------------
black |   C      |   D       | Bk
  • Odds Ratio = (A / C) / (B / D) = (AD) / (BC)
  • Risk Ratio = (A / Wh) / (C / Bk)

Hypergeometric, One-tailed Fisher exact test

         drawn   | not drawn | 
-------------------------------------
white |   x      |           | m
-------------------------------------
black |  k-x     |           | n
-------------------------------------
      |   k      |           | m+n

For example, k=100, m=100, m+n=1000,

> 1 - phyper(10, 100, 10^3-100, 100, log.p=F)
[1] 0.4160339
> a <- dhyper(0:10, 100, 10^3-100, 100)
> cumsum(rev(a))
  [1] 1.566158e-140 1.409558e-135 3.136408e-131 3.067025e-127 1.668004e-123 5.739613e-120 1.355765e-116
  [8] 2.325536e-113 3.018276e-110 3.058586e-107 2.480543e-104 1.642534e-101  9.027724e-99  4.175767e-96
 [15]  1.644702e-93  5.572070e-91  1.638079e-88  4.210963e-86  9.530281e-84  1.910424e-81  3.410345e-79
 [22]  5.447786e-77  7.821658e-75  1.013356e-72  1.189000e-70  1.267638e-68  1.231736e-66  1.093852e-64
 [29]  8.900857e-63  6.652193e-61  4.576232e-59  2.903632e-57  1.702481e-55  9.240350e-54  4.650130e-52
 [36]  2.173043e-50  9.442985e-49  3.820823e-47  1.441257e-45  5.074077e-44  1.669028e-42  5.134399e-41
 [43]  1.478542e-39  3.989016e-38  1.009089e-36  2.395206e-35  5.338260e-34  1.117816e-32  2.200410e-31
 [50]  4.074043e-30  7.098105e-29  1.164233e-27  1.798390e-26  2.617103e-25  3.589044e-24  4.639451e-23
 [57]  5.654244e-22  6.497925e-21  7.042397e-20  7.198582e-19  6.940175e-18  6.310859e-17  5.412268e-16
 [64]  4.377256e-15  3.338067e-14  2.399811e-13  1.626091e-12  1.038184e-11  6.243346e-11  3.535115e-10
 [71]  1.883810e-09  9.442711e-09  4.449741e-08  1.970041e-07  8.188671e-07  3.193112e-06  1.167109e-05
 [78]  3.994913e-05  1.279299e-04  3.828641e-04  1.069633e-03  2.786293e-03  6.759071e-03  1.525017e-02
 [85]  3.196401e-02  6.216690e-02  1.120899e-01  1.872547e-01  2.898395e-01  4.160339e-01  5.550192e-01
 [92]  6.909666e-01  8.079129e-01  8.953150e-01  9.511926e-01  9.811343e-01  9.942110e-01  9.986807e-01
 [99]  9.998018e-01  9.999853e-01  1.000000e+00

# Density plot
plot(0:100, dhyper(0:100, 100, 10^3-100, 100), type='h')

File:Dhyper.svg

Moreover,

  1 - phyper(q=10, m, n, k) 
= 1 - sum_{x=0}^{x=10} phyper(x, m, n, k)
= 1 - sum(a[1:11]) # R's index starts from 1.

Another example is the data from the functional annotation tool in DAVID.

               | gene list | not gene list | 
-------------------------------------------------------
pathway        |   3  (q)  |               | 40 (m)
-------------------------------------------------------
not in pathway |  297      |               | 29960 (n)
-------------------------------------------------------
               |  300 (k)  |               | 30000

The one-tailed p-value from the hypergeometric test is calculated as 1 - phyper(3-1, 40, 29960, 300) = 0.0074.

Fisher's exact test

Following the above example from the DAVID website, the following R command calculates the Fisher exact test for independence in 2x2 contingency tables.

> fisher.test(matrix(c(3, 40, 297, 29960), nr=2)) #  alternative = "two.sided" by default

        Fisher's Exact Test for Count Data

data:  matrix(c(3, 40, 297, 29960), nr = 2)
p-value = 0.008853
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
  1.488738 23.966741
sample estimates:
odds ratio
  7.564602

> fisher.test(matrix(c(3, 40, 297, 29960), nr=2), alternative="greater")

        Fisher's Exact Test for Count Data

data:  matrix(c(3, 40, 297, 29960), nr = 2)
p-value = 0.008853
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
 1.973   Inf
sample estimates:
odds ratio
  7.564602

> fisher.test(matrix(c(3, 40, 297, 29960), nr=2), alternative="less")

        Fisher's Exact Test for Count Data

data:  matrix(c(3, 40, 297, 29960), nr = 2)
p-value = 0.9991
alternative hypothesis: true odds ratio is less than 1
95 percent confidence interval:
  0.00000 20.90259
sample estimates:
odds ratio
  7.564602

From the documentation of fisher.test

Usage:
     fisher.test(x, y = NULL, workspace = 200000, hybrid = FALSE,
                 control = list(), or = 1, alternative = "two.sided",
                 conf.int = TRUE, conf.level = 0.95,
                 simulate.p.value = FALSE, B = 2000)
  • For 2 by 2 cases, p-values are obtained directly using the (central or non-central) hypergeometric distribution.
  • For 2 by 2 tables, the null of conditional independence is equivalent to the hypothesis that the odds ratio equals one.
  • The alternative for a one-sided test is based on the odds ratio, so ‘alternative = "greater"’ is a test of the odds ratio being bigger than ‘or’.
  • Two-sided tests are based on the probabilities of the tables, and take as ‘more extreme’ all tables with probabilities less than or equal to that of the observed table, the p-value being the sum of such probabilities.

Chi-square independence test

Exploring the underlying theory of the chi-square test through simulation - part 2

The result of Fisher exact test and chi-square test can be quite different.

# https://myweb.uiowa.edu/pbreheny/7210/f15/notes/9-24.pdf#page=4
R> Job <- matrix(c(16,48,67,21,0,19,53,88), nr=2, byrow=T)
R> dimnames(Job) <- list(A=letters[1:2],B=letters[1:4])
R> fisher.test(Job)

	Fisher's Exact Test for Count Data

data:  Job
p-value < 2.2e-16
alternative hypothesis: two.sided

R> chisq.test(c(16,48,67,21), c(0,19,53,88))

	Pearson's Chi-squared test

data:  c(16, 48, 67, 21) and c(0, 19, 53, 88)
X-squared = 12, df = 9, p-value = 0.2133

Warning message:
In chisq.test(c(16, 48, 67, 21), c(0, 19, 53, 88)) :
  Chi-squared approximation may be incorrect

GSEA

Determines whether an a priori defined set of genes shows statistically significant, concordant differences between two biological states

Two categories of GSEA procedures:

  • Competitive: compare genes in the test set relative to all other genes.
  • Self-contained: whether the gene-set is more DE than one were to expect under the null of no association between two phenotype conditions (without reference to other genes in the genome). For example the method by Jiang & Gentleman Bioinformatics 2007

McNemar’s test on paired nominal data

https://en.wikipedia.org/wiki/McNemar%27s_test

Confidence vs Credibility Intervals

http://freakonometrics.hypotheses.org/18117

Power analysis/Sample Size determination

See Power.

Common covariance/correlation structures

See psu.edu. Assume covariance [math]\displaystyle{ \Sigma = (\sigma_{ij})_{p\times p} }[/math]

  • Diagonal structure: [math]\displaystyle{ \sigma_{ij} = 0 }[/math] if [math]\displaystyle{ i \neq j }[/math].
  • Compound symmetry: [math]\displaystyle{ \sigma_{ij} = \rho }[/math] if [math]\displaystyle{ i \neq j }[/math].
  • First-order autoregressive AR(1) structure: [math]\displaystyle{ \sigma_{ij} = \rho^{|i - j|} }[/math].
    rho <- .8
    p <- 5
    blockMat <- rho ^ abs(matrix(1:p, p, p, byrow=T) - matrix(1:p, p, p))
  • Banded matrix: [math]\displaystyle{ \sigma_{ii}=1, \sigma_{i,i+1}=\sigma_{i+1,i} \neq 0, \sigma_{i,i+2}=\sigma_{i+2,i} \neq 0 }[/math] and [math]\displaystyle{ \sigma_{ij}=0 }[/math] for [math]\displaystyle{ |i-j| \ge 3 }[/math].
  • Spatial Power
  • Unstructured Covariance
  • Toeplitz structure

To create blocks of correlation matrix, use the "%x%" operator. See kronecker().

covMat <- diag(n.blocks) %x% blockMat

Counter/Special Examples

Correlated does not imply independence

Suppose X is a normally-distributed random variable with zero mean. Let Y = X^2. Clearly X and Y are not independent: if you know X, you also know Y. And if you know Y, you know the absolute value of X.

The covariance of X and Y is

  Cov(X,Y) = E(XY) - E(X)E(Y) = E(X^3) - 0*E(Y) = E(X^3)
           = 0, 

because the distribution of X is symmetric around zero. Thus the correlation r(X,Y) = Cov(X,Y)/Sqrt[Var(X)Var(Y)] = 0, and we have a situation where the variables are not independent, yet have (linear) correlation r(X,Y) = 0.

This example shows how a linear correlation coefficient does not encapsulate anything about the quadratic dependence of Y upon X.

Spearman vs Pearson correlation

Pearson benchmarks linear relationship, Spearman benchmarks monotonic relationship. https://stats.stackexchange.com/questions/8071/how-to-choose-between-pearson-and-spearman-correlation

x=(1:100);  
y=exp(x);                        
cor(x,y, method='spearman') # 1
cor(x,y, method='pearson')  # .25

Spearman vs Wilcoxon

By this post

  • Wilcoxon used to compare categorical versus non-normal continuous variable
  • Spearman's rho used to compare two continuous (including ordinal) variables that one or both aren't normally distributed

Spearman vs Kendall correlation

  • Kendall's tau coefficient (after the Greek letter τ), is a statistic used to measure the ordinal association between two measured quantities.
  • Kendall Tau or Spearman's rho?

Anscombe quartet

Four datasets have almost same properties: same mean in X, same mean in Y, same variance in X, (almost) same variance in Y, same correlation in X and Y, same linear regression.

File:Anscombe quartet 3.svg

The real meaning of spurious correlations

https://nsaunders.wordpress.com/2017/02/03/the-real-meaning-of-spurious-correlations/

library(ggplot2)
 
set.seed(123)
spurious_data <- data.frame(x = rnorm(500, 10, 1),
                            y = rnorm(500, 10, 1),
                            z = rnorm(500, 30, 3))
cor(spurious_data$x, spurious_data$y)
# [1] -0.05943856
spurious_data %>% ggplot(aes(x, y)) + geom_point(alpha = 0.3) + 
theme_bw() + labs(title = "Plot of y versus x for 500 observations with N(10, 1)")

cor(spurious_data$x / spurious_data$z, spurious_data$y / spurious_data$z)
# [1] 0.4517972
spurious_data %>% ggplot(aes(x/z, y/z)) + geom_point(aes(color = z), alpha = 0.5) +
 theme_bw() + geom_smooth(method = "lm") + 
scale_color_gradientn(colours = c("red", "white", "blue")) + 
labs(title = "Plot of y/z versus x/z for 500 observations with x,y N(10, 1); z N(30, 3)")

spurious_data$z <- rnorm(500, 30, 6)
cor(spurious_data$x / spurious_data$z, spurious_data$y / spurious_data$z)
# [1] 0.8424597
spurious_data %>% ggplot(aes(x/z, y/z)) + geom_point(aes(color = z), alpha = 0.5) + 
theme_bw() + geom_smooth(method = "lm") + 
scale_color_gradientn(colours = c("red", "white", "blue")) + 
labs(title = "Plot of y/z versus x/z for 500 observations with x,y N(10, 1); z N(30, 6)")

Time series

Structural change

Structural Changes in Global Warming

AR(1) processes and random walks

Spurious correlations and random walks

Measurement Error model

Dictionary

Books

Social

JSM

Following