Statistics: Difference between revisions

From 太極
Jump to navigation Jump to search
 
(539 intermediate revisions by 2 users not shown)
Line 5: Line 5:
* [https://en.wikipedia.org/wiki/Egon_Pearson Egon Pearson] (1895-1980): son of Karl Pearson
* [https://en.wikipedia.org/wiki/Egon_Pearson Egon Pearson] (1895-1980): son of Karl Pearson
* [https://en.wikipedia.org/wiki/Jerzy_Neyman Jerzy Neyman] (1894-1981): type 1 error
* [https://en.wikipedia.org/wiki/Jerzy_Neyman Jerzy Neyman] (1894-1981): type 1 error
* [https://www.youtube.com/playlist?list=PLt_pNkbycxqahVksaNnjz3M6759xHIZ-r Ten Statistical Ideas that Changed the World]


= Statistics for biologists =
== The most important statistical ideas of the past 50 years ==
http://www.nature.com/collections/qghhqm
[https://arxiv.org/pdf/2012.00174.pdf What are the most important statistical ideas of the past 50 years?], [https://www.tandfonline.com/doi/full/10.1080/01621459.2021.1938081 JASA 2021]


= Transform sample values to their percentiles =
= Some Advice =
https://stackoverflow.com/questions/21219447/calculating-percentile-of-dataset-column
* [http://www.nature.com/collections/qghhqm Statistics for biologists]
<syntaxhighlight lang='bash'>
* [https://www.bmj.com/content/379/bmj-2022-072883 On the 12th Day of Christmas, a Statistician Sent to Me . . .], [https://tinyurl.com/yzpv2uu6 The abridged 1-page print version].
set.seed(1234)
x <- rnorm(10)
x
# [1] -1.2070657  0.2774292  1.0844412 -2.3456977  0.4291247  0.5060559
# [7] -0.5747400 -0.5466319 -0.5644520 -0.8900378
ecdf(x)(x)
# [1] 0.2 0.7 1.0 0.1 0.8 0.9 0.4 0.6 0.5 0.3


rank(x)
= Data =
# [1]  2  7 10  1  8  9  4  6  5  3
</syntaxhighlight>


= Box(Box and whisker) plot in R =
== Rules for initial data analysis ==
See
[https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009819 Ten simple rules for initial data analysis]
* https://en.wikipedia.org/wiki/Box_plot
* https://owi.usgs.gov/blog/boxplots/ (ggplot2 is used)
* https://flowingdata.com/2008/02/15/how-to-read-and-use-a-box-and-whisker-plot/
* [https://en.wikipedia.org/wiki/Quartile Quartile] from Wikipedia. The quartiles returned from R are the same as the method defined by Method 2 described in Wikipedia.


An example for a graphical explanation.
== Types of probabilities ==
<syntaxhighlight lang='rsplus'>
See this [https://twitter.com/5_utr/status/1688730481171279872?s=20 illustration]
> x=c(0,4,15, 1, 6, 3, 20, 5, 8, 1, 3)
> summary(x)
  Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
      0      2      4      6      7      20  
> sort(x)
[1] 0  1  1  3  3  4  5  6  8 15 20
> boxplot(x, col = 'grey')


# https://en.wikipedia.org/wiki/Quartile#Example_1
== Exploratory Analysis (EDA) ==
> summary(c(6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49))
* [https://soroosj.netlify.app/2020/09/26/penguins-cluster/ Kmeans Clustering of Penguins]
  Min. 1st Qu. Median    Mean 3rd Qu.    Max.  
* [https://cran.r-project.org/web/packages/skimr/index.html skimr] package
  6.00  25.50  40.00  33.18  42.50  49.00
** [https://github.com/agstn/dataxray dataxray] package - An interactive table interface (of skimr) for data summaries. [https://www.r-bloggers.com/2023/01/cut-your-eda-time-into-5-minutes-with-exploratory-dataxray-analysis-edxa/ Cut your EDA time into 5 minutes with Exploratory DataXray Analysis (EDXA)]
</syntaxhighlight>
* [https://medium.com/@jchen001/20-useful-r-packages-you-may-not-know-about-54d57fe604f3 20 Useful R Packages You May Not Know Of]
[[:File:Boxplot.svg]]
* [https://twitter.com/ItaiYanai/status/1612627199332433922 12 guidelines for data exploration and analysis with the right attitude for discovery]


* The lower and upper edges of box is determined by the first and 3rd '''quartiles''' (2 and 7 in the above example).
== Kurtosis ==
** 2 = median(c(0,  1,  1,  3,  3,  4)) = (1+3)/2
[https://finnstats.com/index.php/2021/06/08/kurtosis-in-r/ Kurtosis in R-What do you understand by Kurtosis?]
** 7 = median(c(4,  5,  6,  8, 15, 20)) = (6+8)/2
** IQR = 7 - 2 = 5
* The thick dark horizon line is the '''median''' (4 in the example).
* '''Outliers''' are defined by (the empty circles in the plot)
** Observations larger than 3rd quartile + 1.5 * IQR (7+1.5*5=14.5) and
** smaller than 1st quartile - 1.5 * IQR (2-1.5*5=-5.5). 
** Note that ''the cutoffs are not shown in the Box plot''.
* Whisker (defined using the cutoffs used to define outliers)
** '''Upper whisker''' is defined by '''the largest "data" below 3rd quartile + 1.5 * IQR''' (8 in this example), and
** '''Lower whisker''' is defined by '''the smallest "data" greater than 1st quartile - 1.5 * IQR''' (0 in this example).
** See another example below where we can see the whiskers fall on observations.


Note the [http://en.wikipedia.org/wiki/Box_plot wikipedia] lists several possible definitions of a whisker. R uses the 2nd method (Tukey boxplot) to define whiskers.
== Phi coefficient ==
<ul>
<li>[https://en.wikipedia.org/wiki/Phi_coefficient Phi coefficient]. Its values is [-1, 1]. A value of zero means that the binary variables are not positively or negatively associated.
* [https://finnstats.com/index.php/2021/07/24/how-to-calculate-phi-coefficient-in-r/ How to Calculate Phi Coefficient in R]. It is a measurement of the degree of association between two binary variables.


== Create boxplots from a list object ==
<li>[https://en.wikipedia.org/wiki/Cram%C3%A9r%27s_V Cramér’s V]. Its value is [0, 1]. A value of zero indicates that there is no association between the two variables. This means that knowing the value of one variable does not help predict the value of the other variable.
Normally we use a vector to create a single boxplot or a formula on a data to create boxplots.
* [https://www.statology.org/interpret-cramers-v/ How to Interpret Cramer’s V (With Examples)]
<pre>
library(vcd)
cramersV <- assocstats(table(x, y))$cramer
</pre>
</ul>


But we can also use [https://www.rdocumentation.org/packages/base/versions/3.5.1/topics/split split()] to create a list and then make boxplots.
== Coefficient of variation (CV) ==
Motivating the coefficient of variation (CV) for beginners:


== Dot-box plot ==
* Boss: Measure it 5 times.
* http://civilstat.com/2012/09/the-grammar-of-graphics-notes-on-first-reading/
* You: 8, 8, 9, 6, and 8''
* http://www.r-graph-gallery.com/89-box-and-scatter-plot-with-ggplot2/
* B: SD=1. Make it three times more precise!
* http://www.sthda.com/english/wiki/ggplot2-box-plot-quick-start-guide-r-software-and-data-visualization
* Y: 0.20 0.20 0.23 0.15 0.20 meters. SD=0.3!
* [https://designdatadecisions.wordpress.com/2015/06/09/graphs-in-r-overlaying-data-summaries-in-dotplots/ Graphs in R – Overlaying Data Summaries in Dotplots]. Note that for some reason, the boxplot will cover the dots when we save the plot to an svg or a png file. So an alternative solution is to change the order <syntaxhighlight lang='rsplus'>
* B: All you did was change to meters! Report the CV instead!
par(cex.main=0.9,cex.lab=0.8,font.lab=2,cex.axis=0.8,font.axis=2,col.axis="grey50")
* Y: Damn it.
boxplot(weight ~ feed, data = chickwts, range=0, whisklty = 0, staplelty = 0)
<pre>
par(new = TRUE)
R> sd(c(8, 8, 9, 6, 8))
stripchart(weight ~ feed, data = chickwts, xlim=c(0.5,6.5), vertical=TRUE, method="stack", offset=0.8, pch=19,
[1] 1.095445
main = "Chicken weights after six weeks", xlab = "Feed Type", ylab = "Weight (g)")
R> sd(c(8, 8, 9, 6, 8)*2.54/100)
</syntaxhighlight>
[1] 0.02782431
</pre>


[[:File:Boxdot.svg]]
== Agreement ==


== Other boxplots ==
=== Pitfalls ===
[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5654219/ Common pitfalls in statistical analysis: Measures of agreement] 2017


[[:File:Lotsboxplot.png]]
=== Cohen's Kappa statistic (2-class) ===
* [https://en.wikipedia.org/wiki/Cohen%27s_kappa Cohen's kappa]. Cohen's kappa measures the agreement between two raters who each classify N items into C mutually exclusive categories.
* [https://stats.stackexchange.com/a/437418 Fleiss kappa vs Cohen kappa].
* Cohen’s kappa is calculated based on the '''confusion matrix'''. However, in contrast to calculating overall accuracy, Cohen’s kappa takes '''imbalance''' in class distribution into account and can therefore be more complex to interpret.
** [https://towardsdatascience.com/cohens-kappa-what-it-is-when-to-use-it-and-how-to-avoid-its-pitfalls-e42447962bbc Cohen’s Kappa: What it is, when to use it, and how to avoid its pitfalls]
** [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7019105/ Normalization Methods on Single-Cell RNA-seq Data: An Empirical Survey] Lytal 2020


= stem and leaf plot =
=== Fleiss Kappa statistic (more than two raters) ===
[https://stat.ethz.ch/R-manual/R-devel/library/graphics/html/stem.html stem()]. See [http://www.r-tutor.com/elementary-statistics/quantitative-data/stem-and-leaf-plot R Tutorial].
* https://en.wikipedia.org/wiki/Fleiss%27_kappa
* Fleiss kappa (more than two raters) to test interrater reliability or to evaluate the repeatability and stability of models ('''robustness'''). This was used by [https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-03791-0 Cancer prognosis prediction] of Zheng 2020. '' "In our case, each trained model is designed to be a rater to assign the affiliation of each variable (gene or pathway). We conducted 20 replications of fivefold cross validation. As such, we had 100 trained models, or 100 raters in total, among which the agreement was measured by the Fleiss kappa..." ''
* [https://www.datanovia.com/en/lessons/fleiss-kappa-in-r-for-multiple-categorical-variables/ Fleiss’ Kappa in R: For Multiple Categorical Variables]. '''irr::kappam.fleiss()''' was used.
* Kappa statistic vs ICC
** [https://stats.stackexchange.com/a/64997 ICC and Kappa totally disagree]
** [https://www.sciencedirect.com/science/article/pii/S1556086415318876 Measures of Interrater Agreement] by Mandrekar 2011. '' "In certain clinical studies, agreement between the raters is assessed for a clinical outcome that is measured on a continuous scale. In such instances, intraclass correlation is calculated as a measure of agreement between the raters. Intraclass correlation is equivalent to weighted kappa under certain conditions, see the study by Fleiss and Cohen6, 7 for details." ''


Note that stem plot is useful when there are outliers.
=== ICC: intra-class correlation ===
<syntaxhighlight lang='rsplus'>
See [[ICC|ICC]]
> stem(x)


  The decimal point is 10 digit(s) to the right of the |
=== Compare two sets of p-values ===
https://stats.stackexchange.com/q/155407
 
== Computing different kinds of correlations ==
[https://github.com/easystats/correlation correlation] package


  0 | 00000000000000000000000000000000000000000000000000000000000000000000+419
== Association is not causation ==
  1 |
* [https://rafalab.github.io/dsbook/association-is-not-causation.html Association is not causation]
  2 |
* [https://www.statology.org/correlation-does-not-imply-causation-examples/ Correlation Does Not Imply Causation: 5 Real-World Examples]
  3 |
  4 |
  5 |
  6 |
  7 |
  8 |
  9 |
  10 |
  11 |
  12 | 9


> max(x)
== Predictive power score ==
[1] 129243100275
* https://cran.r-project.org/web/packages/ppsr/index.html
> max(x)/1e10
* [https://paulvanderlaken.com/2021/03/02/ppsr-live-on-cran/ ppsr live on CRAN!]
[1] 12.92431


> stem(y)
== Transform sample values to their percentiles ==
<ul>
<li>[https://stat.ethz.ch/R-manual/R-devel/library/stats/html/ecdf.html ecdf()]
<li>[https://stat.ethz.ch/R-manual/R-devel/library/stats/html/quantile.html quantile()]
* An [https://github.com/cran/TreatmentSelection/blob/master/R/evaluate.trtsel.R  example] from the TreatmentSelection package where "type = 1" was used.
{{Pre}}
R> x <- c(1,2,3,4,4.5,6,7)
R> Fn <- ecdf(x)
R> Fn    # a *function*
Empirical CDF
Call: ecdf(x)
x[1:7] =      1,      2,      3,  ...,      6,      7
R> Fn(x)  # returns the percentiles for x
[1] 0.1428571 0.2857143 0.4285714 0.5714286 0.7142857 0.8571429 1.0000000
R> diff(Fn(x))
[1] 0.1428571 0.1428571 0.1428571 0.1428571 0.1428571 0.1428571
R> quantile(x, Fn(x))
14.28571% 28.57143% 42.85714% 57.14286% 71.42857% 85.71429%      100%
1.857143  2.714286  3.571429  4.214286  4.928571  6.142857  7.000000
R> quantile(x, Fn(x), type = 1)  
14.28571% 28.57143% 42.85714% 57.14286% 71.42857% 85.71429%      100%
      1.0      2.0      3.0      4.0      4.5      6.0      7.0


  The decimal point is at the |
R> x <- c(2, 6, 8, 10, 20)
R> Fn <- ecdf(x)
R> Fn(x)
[1] 0.2 0.4 0.6 0.8 1.0
</pre>
<li>[https://www.thoughtco.com/what-is-a-percentile-3126238 Definition of a Percentile in Statistics and How to Calculate It]
<li>https://en.wikipedia.org/wiki/Percentile
<li>[https://www.statology.org/percentile-vs-quartile-vs-quantile/ Percentile vs. Quartile vs. Quantile: What’s the Difference?]
* Percentiles: Range from 0 to 100.
* Quartiles: Range from 0 to 4.
* Quantiles: Range from any value to any other value.
</ul>


  0 | 014478
== Standardization ==
  1 | 0
[https://davidlindelof.com/feature-standardization-considered-harmful/ Feature standardization considered harmful]
  2 | 1
  3 | 9
  4 | 8


> y
== Eleven quick tips for finding research data ==
[1] 3.8667356428 0.0001762708 0.7993462430 0.4181079732 0.9541728562
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006038
[6] 4.7791262101 0.6899313108 2.1381289177 0.0541736818 0.3868776083


> set.seed(1234)
== An archive of 1000+ datasets distributed with R ==
> z <- rnorm(10)*10
https://vincentarelbundock.github.io/Rdatasets/
> z
[1] -12.070657  2.774292  10.844412 -23.456977  4.291247  5.060559
[7]  -5.747400  -5.466319  -5.644520  -8.900378
> stem(z)


  The decimal point is 1 digit(s) to the right of the |
== Data and global ==
* Age Structure from [https://ourworldindata.org/age-structure One Data in World]. '''Our World in Data''' is a non-profit organization that provides free and open access to data and insights on how the world is changing across 115 topics.


  -2 | 3
= Box(Box, whisker & outlier) =
  -1 | 2
* https://en.wikipedia.org/wiki/Box_plot, [https://en.wikipedia.org/wiki/Box_plot#/media/File:Boxplot_vs_PDF.svg Boxplot and a probability density function (pdf) of a Normal Population] for a good annotation.
  -0 | 9665
* https://owi.usgs.gov/blog/boxplots/ (ggplot2 is used, graph-assisting explanation)
  0 | 345
* https://flowingdata.com/2008/02/15/how-to-read-and-use-a-box-and-whisker-plot/
  1 | 1
* [https://en.wikipedia.org/wiki/Quartile Quartile] from Wikipedia. The quartiles returned from R are the same as the method defined by Method 2 described in Wikipedia.
</syntaxhighlight>
* [https://www.rforecology.com/post/2022-04-06-how-to-make-a-boxplot-in-r/ How to make a boxplot in R]. The '''whiskers''' of a box and whisker plot are the dotted lines outside of the grey box. These end at the minimum and maximum values of your data set, '''excluding outliers'''.


= Box-Cox transformation =
An example for a graphical explanation. [[:File:Boxplot.svg]], [[:File:Geom boxplot.png]]
* [https://en.wikipedia.org/wiki/Power_transform#Box%E2%80%93Cox_transformation Power transformation]
{{Pre}}
* [http://denishaine.wordpress.com/2013/03/11/veterinary-epidemiologic-research-linear-regression-part-3-box-cox-and-matrix-representation/ Finding transformation for normal distribution]
> x=c(0,4,15, 1, 6, 3, 20, 5, 8, 1, 3)
> summary(x)
  Min. 1st Qu.  Median    Mean 3rd Qu.   Max.  
      0      2      4      6      7      20
> sort(x)
[1]  0  1  1  3  3  4  5  6  8 15 20
> y <- boxplot(x, col = 'grey')
> t(y$stats)
    [,1] [,2] [,3] [,4] [,5]
[1,]    0    2    4    7    8
# the extreme of the lower whisker, the lower hinge, the median,
# the upper hinge and the extreme of the upper whisker


= the Holy Trinity (LRT, Wald, Score tests) =
# https://en.wikipedia.org/wiki/Quartile#Example_1
* https://en.wikipedia.org/wiki/Likelihood_function which includes '''profile likelihood''' and '''partial likelihood'''
> summary(c(6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49))
* [http://data.princeton.edu/wws509/notes/a1.pdf Review of the likelihood theory]
  Min. 1st Qu. Median    Mean 3rd Qu.   Max.  
* [http://www.tandfonline.com/doi/full/10.1080/00031305.2014.955212#abstract?ai=rv&mi=3be122&af=R The “Three Plus One” Likelihood-Based Test Statistics: Unified Geometrical and Graphical Interpretations]
  6.00  25.50  40.00  33.18  42.50  49.00
* [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5969114/ Variable selection – A review and recommendations for the practicing statistician] by Heinze et al 2018.
</pre>
** Score test is step-up. Score test is typically used in forward steps to screen covariates currently not included in a model for their ability to improve model.
** Wald test is step-down. Wald test starts at the full model. It evaluate the significance of a variable by comparing the ratio of its estimate and its standard error with an appropriate t distribution (for linear models) or standard normal distribution (for logistic or Cox regression).  
** Likelihood ratio tests provide the best control over nuisance parameters by maximizing the likelihood over them both in H0 model and H1 model. In particular, if several coefficients are being tested simultaneously, LRTs for model comparison are preferred over Wald or score tests.
* R packages
** lmtest package, [https://www.rdocumentation.org/packages/lmtest/versions/0.9-37/topics/waldtest waldtest()] and [https://www.rdocumentation.org/packages/lmtest/versions/0.9-37/topics/lrtest lrtest()].


= Don't invert that matrix =
* The lower and upper edges of box (also called the lower/upper '''hinge''') is determined by the first and 3rd '''quartiles''' (2 and 7 in the above example).
* http://www.johndcook.com/blog/2010/01/19/dont-invert-that-matrix/
** 2 = median(c(0,  1,  1,  3,  3, 4)) = (1+3)/2
* http://civilstat.com/2015/07/dont-invert-that-matrix-why-and-how/
** 7 = median(c(4,  5,  6,  8, 15, 20)) = (6+8)/2
** IQR = 7 - 2 = 5
* The thick dark horizon line is the '''median''' (4 in the example).
* '''Outliers''' are defined by (the empty circles in the plot)
** Observations larger than 3rd quartile + 1.5 * IQR (7+1.5*5=14.5) and
** smaller than 1st quartile - 1.5 * IQR (2-1.5*5=-5.5). 
** Note that ''the cutoffs are not shown in the Box plot''.
* Whisker (defined using the cutoffs used to define outliers)
** '''Upper whisker''' is defined by '''the largest "data" below 3rd quartile + 1.5 * IQR''' (8 in this example). Note Upper whisker is NOT defined as 3rd quartile + 1.5 * IQR.
** '''Lower whisker''' is defined by '''the smallest "data" greater than 1st quartile - 1.5 * IQR''' (0 in this example). Note lower whisker is NOT defined as 1st quartile - 1.5 * IQR.
** See another example below where we can see the whiskers fall on observations.


== Different matrix decompositions/factorizations ==
Note the [http://en.wikipedia.org/wiki/Box_plot wikipedia] lists several possible definitions of a whisker. R uses the 2nd method (Tukey boxplot) to define whiskers.


* [https://en.wikipedia.org/wiki/QR_decomposition QR decomposition], [https://www.rdocumentation.org/packages/base/versions/3.5.1/topics/qr qr()]
== Create boxplots from a list object ==
* [https://en.wikipedia.org/wiki/LU_decomposition LU decomposition], [https://www.rdocumentation.org/packages/Matrix/versions/1.2-14/topics/lu lu()] from the 'Matrix' package
Normally we use a vector to create a single boxplot or a formula on a data to create boxplots.  
* [https://en.wikipedia.org/wiki/Cholesky_decomposition Cholesky decomposition], [https://www.rdocumentation.org/packages/base/versions/3.5.1/topics/chol chol()]
* [https://en.wikipedia.org/wiki/Singular-value_decomposition Singular value decomposition], [https://www.rdocumentation.org/packages/base/versions/3.5.1/topics/svd svd()]


<syntaxhighlight lang='rsplus'>
But we can also use [https://www.rdocumentation.org/packages/base/versions/3.5.1/topics/split split()] to create a list and then make boxplots.
set.seed(1234)
x <- matrix(rnorm(10*2), nr= 10)
cmat <- cov(x); cmat
# [,1]      [,2]
# [1,]  0.9915928 -0.1862983
# [2,] -0.1862983  1.1392095


# cholesky decom
== Dot-box plot ==
d1 <- chol(cmat)
* http://civilstat.com/2012/09/the-grammar-of-graphics-notes-on-first-reading/
t(d1) %*% d1  # equal to cmat
* http://www.r-graph-gallery.com/89-box-and-scatter-plot-with-ggplot2/
d1  # upper triangle
* http://www.sthda.com/english/wiki/ggplot2-box-plot-quick-start-guide-r-software-and-data-visualization
# [,1]       [,2]
* [https://designdatadecisions.wordpress.com/2015/06/09/graphs-in-r-overlaying-data-summaries-in-dotplots/ Graphs in R – Overlaying Data Summaries in Dotplots]. Note that for some reason, the boxplot will cover the dots when we save the plot to an svg or a png file. So an alternative solution is to change the order <syntaxhighlight lang='rsplus'>
# [1,] 0.9957875 -0.1870864
par(cex.main=0.9,cex.lab=0.8,font.lab=2,cex.axis=0.8,font.axis=2,col.axis="grey50")
# [2,] 0.0000000  1.0508131
boxplot(weight ~ feed, data = chickwts, range=0, whisklty = 0, staplelty = 0)
 
par(new = TRUE)
# svd
stripchart(weight ~ feed, data = chickwts, xlim=c(0.5,6.5), vertical=TRUE, method="stack", offset=0.8, pch=19,
d2 <- svd(cmat)
main = "Chicken weights after six weeks", xlab = "Feed Type", ylab = "Weight (g)")
d2$u %*% diag(d2$d) %*% t(d2$v) # equal to cmat
d2$u %*% diag(sqrt(d2$d))
# [,1]      [,2]
# [1,] -0.6322816 0.7692937
# [2,]  0.9305953 0.5226872
</syntaxhighlight>
</syntaxhighlight>


= Linear Regression =
[[:File:Boxdot.svg]]
[https://leanpub.com/regmods Regression Models for Data Science in R] by Brian Caffo


Comic https://xkcd.com/1725/
== geom_boxplot ==
Note the geom_boxplot() does not create crossbars. See
[https://community.rstudio.com/t/how-to-generate-a-boxplot-graph-with-whisker-by-ggplot/15619/4 How to generate a boxplot graph with whisker by ggplot] or [https://stackoverflow.com/a/13003038 this]. A trick is to add the  '''stat_boxplot'''() function.


== Different models (in R) ==
Without jitter
http://www.quantide.com/raccoon-ch-1-introduction-to-linear-models-with-r/
<pre>
ggplot(dfbox, aes(x=sample, y=expr)) +
  geom_boxplot() +
  theme(axis.text.x=element_text(color = "black", angle=30, vjust=.8,
                                hjust=0.8, size=6), 
        plot.title = element_text(hjust = 0.5)) +
  labs(title="", y = "", x = "")
</pre>


== dummy.coef.lm() in R ==
With jitter
Extracts coefficients in terms of the original levels of the coefficients rather than the coded variables.
<pre>
ggplot(dfbox, aes(x=sample, y=expr)) +
  geom_boxplot(outlier.shape=NA) + #avoid plotting outliers twice
  geom_jitter(position=position_jitter(width=.2, height=0)) +
  theme(axis.text.x=element_text(color = "black", angle=30, vjust=.8,
                                hjust=0.8, size=6), 
        plot.title = element_text(hjust = 0.5)) +
  labs(title="", y = "", x = "")
</pre>


== model.matrix, design matrix ==
[https://stackoverflow.com/a/21794246 Why geom_boxplot identify more outliers than base boxplot?]
[https://github.com/csoneson/ExploreModelMatrix ExploreModelMatrix]: Explore design matrices interactively with R/Shiny


== Contrasts in linear regression ==
[https://stackoverflow.com/a/7267364 What do hjust and vjust do when making a plot using ggplot?] The value of hjust and vjust are only defined between 0 and 1: 0 means left-justified, 1 means right-justified.
* Page 147 of Modern Applied Statistics with S (4th ed)
* https://biologyforfun.wordpress.com/2015/01/13/using-and-interpreting-different-contrasts-in-linear-models-in-r/ This explains the meanings of 'treatment', 'helmert' and 'sum' contrasts.
* [http://rstudio-pubs-static.s3.amazonaws.com/65059_586f394d8eb84f84b1baaf56ffb6b47f.html A (sort of) Complete Guide to Contrasts in R] by Rose Maier <syntaxhighlight lang='rsplus'>
mat


##      constant NLvMH  NvL  MvH
== Other boxplots ==
## [1,]        1  -0.5  0.5  0.0
## [2,]        1  -0.5 -0.5  0.0
## [3,]        1  0.5  0.0  0.5
## [4,]        1  0.5  0.0 -0.5
mat <- mat[ , -1]


model7 <- lm(y ~ dose, data=data, contrasts=list(dose=mat) )
[[:File:Lotsboxplot.png]]
summary(model7)


## Coefficients:
== Annotated boxplot ==
##            Estimate Std. Error t value Pr(>|t|)   
https://stackoverflow.com/a/38032281
## (Intercept)  118.578      1.076 110.187  < 2e-16 ***
## doseNLvMH      3.179      2.152  1.477  0.14215   
## doseNvL      -8.723      3.044  -2.866  0.00489 **
## doseMvH      13.232      3.044  4.347 2.84e-05 ***


# double check your contrasts
= stem and leaf plot =
attributes(model7$qr$qr)$contrasts
[https://stat.ethz.ch/R-manual/R-devel/library/graphics/html/stem.html stem()]. See [http://www.r-tutor.com/elementary-statistics/quantitative-data/stem-and-leaf-plot R Tutorial].
## $dose
##      NLvMH  NvL  MvH
## None  -0.5  0.5  0.0
## Low  -0.5 -0.5  0.0
## Med    0.5  0.0  0.5
## High  0.5  0.0 -0.5


library(dplyr)
Note that stem plot is useful when there are outliers.
dose.means <- summarize(group_by(data, dose), y.mean=mean(y))
{{Pre}}
dose.means
> stem(x)
## Source: local data frame [4 x 2]
##
##  dose  y.mean
## 1 None 112.6267
## 2  Low 121.3500
## 3  Med 126.7839
## 4 High 113.5517


# The coefficient estimate for the first contrast (3.18) equals the average of
  The decimal point is 10 digit(s) to the right of the |
# the last two groups (126.78 + 113.55 /2 = 120.17) minus the average of  
# the first two groups (112.63 + 121.35 /2 = 116.99).
</syntaxhighlight>


== Multicollinearity ==
  0 | 00000000000000000000000000000000000000000000000000000000000000000000+419
* [https://datascienceplus.com/multicollinearity-in-r/ Multicollinearity in R]
  1 |
* [https://www.rdocumentation.org/packages/stats/versions/3.5.1/topics/alias alias]: Find Aliases (Dependencies) In A Model
  2 |
<syntaxhighlight lang='rsplus'>
  3 |
> op <- options(contrasts = c("contr.helmert", "contr.poly"))
  4 |
> npk.aov <- aov(yield ~ block + N*P*K, npk)
  5 |
> alias(npk.aov)
  6 |
Model :
  7 |
yield ~ block + N * P * K
  8 |
  9 |
  10 |
  11 |
  12 | 9


Complete :
> max(x)
        (Intercept) block1 block2 block3 block4 block5 N1    P1    K1    N1:P1 N1:K1 P1:K1
[1] 129243100275
N1:P1:K1    0          1    1/3    1/6  -3/10  -1/5      0    0    0    0    0    0
> max(x)/1e10
[1] 12.92431


> options(op)
> stem(y)
</syntaxhighlight>


== Exposure ==
  The decimal point is at the |
https://en.mimi.hu/mathematics/exposure_variable.html


Independent variable = predictor = explanatory = exposure variable
  0 | 014478
  1 | 0
  2 | 1
  3 | 9
  4 | 8


== Confounders, confounding ==
> y
* https://en.wikipedia.org/wiki/Confounding
[1] 3.8667356428 0.0001762708 0.7993462430 0.4181079732 0.9541728562
** [https://academic.oup.com/jamia/article/21/2/308/723853 A method for controlling complex confounding effects in the detection of adverse drug reactions using electronic health records]. It provides a rule to identify a confounder.
[6] 4.7791262101 0.6899313108 2.1381289177 0.0541736818 0.3868776083
* http://anythingbutrbitrary.blogspot.com/2016/01/how-to-create-confounders-with.html (R example)
* [http://www.cantab.net/users/filimon/cursoFCDEF/will/logistic_confound.pdf Logistic Regression: Confounding and Colinearity]
* [https://stats.stackexchange.com/questions/192591/identifying-a-confounder?rq=1 Identifying a confounder]
* [https://stats.stackexchange.com/questions/38326/is-it-possible-to-have-a-variable-that-acts-as-both-an-effect-modifier-and-a-con Is it possible to have a variable that acts as both an effect modifier and a confounder?]
* [https://stats.stackexchange.com/questions/34644/which-test-to-use-to-check-if-a-possible-confounder-impacts-a-0-1-result Which test to use to check if a possible confounder impacts a 0 / 1 result?]
* [https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1700-9 Addressing confounding artifacts in reconstruction of gene co-expression networks] Parsana 2019


== Causal inference ==
> set.seed(1234)
* https://en.wikipedia.org/wiki/Causal_inference
> z <- rnorm(10)*10
* [http://www.rebeccabarter.com/blog/2017-07-05-confounding/ Confounding in causal inference: what is it, and what to do about it?]
> z
[1] -12.070657  2.774292  10.844412 -23.456977  4.291247  5.060559
[7]  -5.747400  -5.466319  -5.644520  -8.900378
> stem(z)


== Confidence interval vs prediction interval ==
  The decimal point is 1 digit(s) to the right of the |
Confidence intervals tell you about how well you have determined the mean E(Y). Prediction intervals tell you where you can expect to see the next data point sampled. That is, CI is computed using Var(E(Y|X)) and PI is computed using Var(E(Y|X) + e).


* http://www.graphpad.com/support/faqid/1506/
  -2 | 3
* http://en.wikipedia.org/wiki/Prediction_interval
  -1 | 2
* http://robjhyndman.com/hyndsight/intervals/
  -0 | 9665
* https://stat.duke.edu/courses/Fall13/sta101/slides/unit7lec3H.pdf
  0 | 345
* https://datascienceplus.com/prediction-interval-the-wider-sister-of-confidence-interval/
  1 | 1
</pre>


== Heteroskedasticity ==
= Box-Cox transformation =
[http://www.brodrigues.co/blog/2018-07-08-rob_stderr/ Dealing with heteroskedasticity; regression with robust standard errors using R]
* [https://en.wikipedia.org/wiki/Power_transform#Box%E2%80%93Cox_transformation Power transformation]
* [http://denishaine.wordpress.com/2013/03/11/veterinary-epidemiologic-research-linear-regression-part-3-box-cox-and-matrix-representation/ Finding transformation for normal distribution]


== Linear regression with Map Reduce ==
= CLT/Central limit theorem =
https://freakonometrics.hypotheses.org/53269
[https://en.wikipedia.org/wiki/Central_limit_theorem Central limit theorem]


= Quantile regression =
== Delta method ==
* https://en.wikipedia.org/wiki/Quantile_regression
[[Delta|Delta]]
* [https://insightr.wordpress.com/2019/08/13/basic-quantile-regression/ Basic Quantile Regression]


= Non- and semi-parametric regression =
= the Holy Trinity (LRT, Wald, Score tests) =
* [https://mathewanalytics.com/2018/03/05/semiparametric-regression-in-r/ Semiparametric Regression in R]
* https://en.wikipedia.org/wiki/Likelihood_function which includes '''profile likelihood''' and '''partial likelihood'''
* https://socialsciences.mcmaster.ca/jfox/Courses/Oxford-2005/R-nonparametric-regression.html
* [http://data.princeton.edu/wws509/notes/a1.pdf Review of the likelihood theory]
* [http://www.tandfonline.com/doi/full/10.1080/00031305.2014.955212#abstract?ai=rv&mi=3be122&af=R The “Three Plus One” Likelihood-Based Test Statistics: Unified Geometrical and Graphical Interpretations]
* [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5969114/ Variable selection – A review and recommendations for the practicing statistician] by Heinze et al 2018.
** [https://en.wikipedia.org/wiki/Score_test '''Score test'''] is step-up. Score test is typically used in forward steps to screen covariates currently not included in a model for their ability to improve model.
** [https://en.wikipedia.org/wiki/Wald_test '''Wald test'''] is step-down. Wald test starts at the full model. It evaluate the significance of a variable by comparing the ratio of its estimate and its standard error with an appropriate '''T distribution (for linear models)''' or '''standard normal distribution (for logistic or Cox regression)'''.
** [https://en.wikipedia.org/wiki/Likelihood-ratio_test '''Likelihood ratio tests'''] provide the best control over nuisance parameters by maximizing the likelihood over them both in H0 model and H1 model. In particular, if several coefficients are being tested simultaneously, LRTs for model comparison are preferred over Wald or score tests.


== Mean squared error ==
* R packages
[https://www.statworx.com/de/blog/simulating-the-bias-variance-tradeoff-in-r/ Simulating the bias-variance tradeoff in R]
** [https://cran.r-project.org/web/packages/lmtest/ lmtest] package, [https://www.rdocumentation.org/packages/lmtest/versions/0.9-37/topics/waldtest waldtest()] and [https://www.rdocumentation.org/packages/lmtest/versions/0.9-37/topics/lrtest lrtest()]. [https://finnstats.com/index.php/2021/11/24/likelihood-ratio-test-in-r/ Likelihood Ratio Test in R with Example]
** [https://cran.r-project.org/web/packages/aod/index.html aod] package. [https://www.statology.org/wald-test-in-r/ How to Perform a Wald Test in R]
** [https://cran.r-project.org/web/packages/survey/index.html survey] package. regTermTest()
** [https://cran.r-project.org/web/packages/nlWaldTest/index.html nlWaldTest] package.


== Splines ==
* [https://stats.stackexchange.com/a/503720 Likelihood ratio test multiplying by 2]. Hint: Approximate the log-likelihood for the '''true value of the parameter''' using the Taylor expansion around the '''MLE'''.
* https://en.wikipedia.org/wiki/B-spline
* [https://www.r-bloggers.com/cubic-and-smoothing-splines-in-r/ Cubic and Smoothing Splines in R]. '''bs()''' is for cubic spline and '''smooth.spline()''' is for smoothing spline.
* [https://www.rdatagen.net/post/generating-non-linear-data-using-b-splines/ Can we use B-splines to generate non-linear data?]
* [https://stats.stackexchange.com/questions/29400/spline-fitting-in-r-how-to-force-passing-two-data-points How to force passing two data points?] ([https://cran.r-project.org/web/packages/cobs/index.html cobs] package)
* https://www.rdocumentation.org/packages/cobs/versions/1.3-3/topics/cobs


== k-Nearest neighbor regression ==
= Don't invert that matrix  =
* k-NN regression in practice: boundary problem, discontinuities problem.
* http://www.johndcook.com/blog/2010/01/19/dont-invert-that-matrix/
* Weighted k-NN regression: want weight to be small when distance is large. Common choices - weight = kernel(xi, x)
* http://civilstat.com/2015/07/dont-invert-that-matrix-why-and-how/


== Kernel regression ==
== Different matrix decompositions/factorizations ==
* Instead of weighting NN, weight ALL points. Nadaraya-Watson kernel weighted average:
<math>\hat{y}_q = \sum c_{qi} y_i/\sum c_{qi} = \frac{\sum \text{Kernel}_\lambda(\text{distance}(x_i, x_q))*y_i}{\sum \text{Kernel}_\lambda(\text{distance}(x_i, x_q))} </math>.
* Choice of bandwidth <math>\lambda</math> for bias, variance trade-off. Small <math>\lambda</math> is over-fitting. Large <math>\lambda</math> can get an over-smoothed fit. '''Cross-validation'''.
* Kernel regression leads to locally constant fit.
* Issues with high dimensions, data scarcity and computational complexity.


= Principal component analysis =
* [https://en.wikipedia.org/wiki/QR_decomposition QR decomposition], [https://www.rdocumentation.org/packages/base/versions/3.5.1/topics/qr qr()]
== R source code ==
* [https://en.wikipedia.org/wiki/LU_decomposition LU decomposition], [https://www.rdocumentation.org/packages/Matrix/versions/1.2-14/topics/lu lu()] from the 'Matrix' package
<pre>
* [https://en.wikipedia.org/wiki/Cholesky_decomposition Cholesky decomposition], [https://www.rdocumentation.org/packages/base/versions/3.5.1/topics/chol chol()]
> stats:::prcomp.default
* [https://en.wikipedia.org/wiki/Singular-value_decomposition Singular value decomposition], [https://www.rdocumentation.org/packages/base/versions/3.5.1/topics/svd svd()]
function (x, retx = TRUE, center = TRUE, scale. = FALSE, tol = NULL,
    ...)
{
    x <- as.matrix(x)
    x <- scale(x, center = center, scale = scale.)
    cen <- attr(x, "scaled:center")
    sc <- attr(x, "scaled:scale")
    if (any(sc == 0))
        stop("cannot rescale a constant/zero column to unit variance")
    s <- svd(x, nu = 0)
    s$d <- s$d/sqrt(max(1, nrow(x) - 1))
    if (!is.null(tol)) {
        rank <- sum(s$d > (s$d[1L] * tol))
        if (rank < ncol(x)) {
            s$v <- s$v[, 1L:rank, drop = FALSE]
            s$d <- s$d[1L:rank]
        }
    }
    dimnames(s$v) <- list(colnames(x), paste0("PC", seq_len(ncol(s$v))))
    r <- list(sdev = s$d, rotation = s$v, center = if (is.null(cen)) FALSE else cen,
        scale = if (is.null(sc)) FALSE else sc)
    if (retx)
        r$x <- x %*% s$v
    class(r) <- "prcomp"
    r
}
<bytecode: 0x000000003296c7d8>
<environment: namespace:stats>
</pre>


== R example ==
{{Pre}}
http://genomicsclass.github.io/book/pages/pca_svd.html
set.seed(1234)
<syntaxhighlight lang='rsplus'>
x <- matrix(rnorm(10*2), nr= 10)
pc <- prcomp(x)
cmat <- cov(x); cmat
group <- as.numeric(tab$Tissue)
# [,1]       [,2]
plot(pc$x[, 1], pc$x[, 2], col = group, main = "PCA", xlab = "PC1", ylab = "PC2")
# [1,]  0.9915928 -0.1862983
</syntaxhighlight>
# [2,] -0.1862983  1.1392095
The meaning of colors can be found by '''palette()'''.  


# black
# cholesky decom
# red
d1 <- chol(cmat)
# green3
t(d1) %*% d1  # equal to cmat
# blue
d1  # upper triangle
# cyan
# [,1]      [,2]
# magenta
# [1,] 0.9957875 -0.1870864
# yellow
# [2,] 0.0000000  1.0508131
# gray


== PCA and SVD ==
# svd
Using the SVD to perform PCA makes much better sense numerically than forming the covariance matrix to begin with, since the formation of <math>X X^T</math> can cause loss of precision.
d2 <- svd(cmat)
d2$u %*% diag(d2$d) %*% t(d2$v) # equal to cmat
d2$u %*% diag(sqrt(d2$d))
# [,1]      [,2]
# [1,] -0.6322816 0.7692937
# [2,]  0.9305953 0.5226872
</pre>


http://math.stackexchange.com/questions/3869/what-is-the-intuitive-relationship-between-svd-and-pca
= Model Estimation with R =
[https://m-clark.github.io/models-by-example/ Model Estimation by Example] Demonstrations with R. Michael Clark


=== AIC/BIC in estimating the number of components ===
= Regression =
[https://projecteuclid.org/euclid.aos/1525313075 Consistency of AIC and BIC in estimating the number of significant components in high-dimensional principal component analysis]
[[Regression|Regression]]


== Related to Factor Analysis ==
= Non- and semi-parametric regression =
* http://www.aaronschlegel.com/factor-analysis-introduction-principal-component-method-r/.
* [https://mathewanalytics.com/2018/03/05/semiparametric-regression-in-r/ Semiparametric Regression in R]
* http://support.minitab.com/en-us/minitab/17/topic-library/modeling-statistics/multivariate/principal-components-and-factor-analysis/differences-between-pca-and-factor-analysis/
* https://socialsciences.mcmaster.ca/jfox/Courses/Oxford-2005/R-nonparametric-regression.html


In short,
== Mean squared error ==
# In Principal Components Analysis, the components are calculated as linear combinations of the original variables. In Factor Analysis, the original variables are defined as linear combinations of the factors.
* [https://www.statworx.com/de/blog/simulating-the-bias-variance-tradeoff-in-r/ Simulating the bias-variance tradeoff in R]
# In Principal Components Analysis, the goal is to explain as much of the total variance in the variables as possible. The goal in Factor Analysis is to explain the covariances or correlations between the variables.
* [https://alemorales.info/post/variance-estimators/ Estimating variance: should I use n or n - 1? The answer is not what you think]
# Use Principal Components Analysis to reduce the data into a smaller number of components. Use Factor Analysis to understand what constructs underlie the data.


== Calculated by Hand ==
== Splines ==
http://strata.uga.edu/software/pdf/pcaTutorial.pdf
* https://en.wikipedia.org/wiki/B-spline
* [https://www.r-bloggers.com/cubic-and-smoothing-splines-in-r/ Cubic and Smoothing Splines in R]. '''bs()''' is for cubic spline and '''smooth.spline()''' is for smoothing spline.
* [https://www.rdatagen.net/post/generating-non-linear-data-using-b-splines/ Can we use B-splines to generate non-linear data?]
* [https://stats.stackexchange.com/questions/29400/spline-fitting-in-r-how-to-force-passing-two-data-points How to force passing two data points?] ([https://cran.r-project.org/web/packages/cobs/index.html cobs] package)
* https://www.rdocumentation.org/packages/cobs/versions/1.3-3/topics/cobs


== Do not scale your matrix ==
== k-Nearest neighbor regression ==
https://privefl.github.io/blog/(Linear-Algebra)-Do-not-scale-your-matrix/
* [https://www.rdocumentation.org/packages/class/versions/7.3-21/topics/knn class::knn()]
* k-NN regression in practice: boundary problem, discontinuities problem.
* Weighted k-NN regression: want weight to be small when distance is large. Common choices - weight = kernel(xi, x)


== Visualization ==
== Kernel regression ==
* [http://oracledmt.blogspot.com/2007/06/way-cooler-pca-and-visualization-linear.html PCA and Visualization]
* Instead of weighting NN, weight ALL points. Nadaraya-Watson kernel weighted average:
* Scree plots from the [http://www.sthda.com/english/wiki/factominer-and-factoextra-principal-component-analysis-visualization-r-software-and-data-mining FactoMineR] package (based on ggplot2)
<math>\hat{y}_q = \sum c_{qi} y_i/\sum c_{qi} = \frac{\sum \text{Kernel}_\lambda(\text{distance}(x_i, x_q))*y_i}{\sum \text{Kernel}_\lambda(\text{distance}(x_i, x_q))} </math>.
* Choice of bandwidth <math>\lambda</math> for bias, variance trade-off. Small <math>\lambda</math> is over-fitting. Large <math>\lambda</math> can get an over-smoothed fit. '''Cross-validation'''.
* Kernel regression leads to locally constant fit.
* Issues with high dimensions, data scarcity and computational complexity.


== What does it do if we choose center=FALSE in prcomp()? ==
= Principal component analysis =
 
See [[PCA|PCA]].
In USArrests data, use center=FALSE gives a better scatter plot of the first 2 PCA components.
<pre>
x1 = prcomp(USArrests)
x2 = prcomp(USArrests, center=F)
plot(x1$x[,1], x1$x[,2])  # looks random
windows(); plot(x2$x[,1], x2$x[,2]) # looks good in some sense
</pre>
 
== Relation to [http://en.wikipedia.org/wiki/Multidimensional_scaling Multidimensional scaling/MDS] ==
With no missing data, classical MDS (Euclidean distance metric) is the same as PCA.
 
Comparisons are [http://www.sequentix.de/gelquest/help/principal_coordinates_analysis.htm here].
 
Differences are asked/answered on [http://stats.stackexchange.com/questions/14002/whats-the-difference-between-principal-components-analysis-and-multidimensional stackexchange.com]. The post also answered the question when these two are the same.
 
[https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/isoMDS.html isoMDS] (Non-metric)
 
[https://stat.ethz.ch/R-manual/R-devel/library/stats/html/cmdscale.html cmdscale] (Metric)
 
== Matrix factorization methods ==
http://joelcadwell.blogspot.com/2015/08/matrix-factorization-comes-in-many.html Review of principal component analysis (PCA), K-means clustering, nonnegative matrix factorization (NMF) and archetypal analysis (AA).
 
== Number of components ==
[https://statisticaloddsandends.wordpress.com/2018/10/15/obtaining-the-number-of-components-from-cross-validation-of-principal-components-regression/ Obtaining the number of components from cross validation of principal components regression]


= Partial Least Squares (PLS) =
= Partial Least Squares (PLS) =
* [https://twitter.com/slavov_n/status/1642570040737402881 Accounting for measurement errors with total least squares]. Demonstrate the bias of the PLS.
* https://en.wikipedia.org/wiki/Partial_least_squares_regression. The general underlying model of multivariate PLS is
* https://en.wikipedia.org/wiki/Partial_least_squares_regression. The general underlying model of multivariate PLS is
:<math>X = T P^\mathrm{T} + E</math>
:<math>X = T P^\mathrm{T} + E</math>
:<math>Y = U Q^\mathrm{T} + F</math>
:<math>Y = U Q^\mathrm{T} + F</math>
where {{mvar|X}} is an <math>n \times m</math> matrix of predictors, {{mvar|Y}} is an <math>n \times p</math> matrix of responses; {{mvar|T}} and {{mvar|U}} are <math>n \times l</math> matrices that are, respectively, '''projections''' of {{mvar|X}} (the X '''score''', ''component'' or '''factor matrix''') and projections of {{mvar|Y}} (the ''Y scores''); {{mvar|P}} and {{mvar|Q}} are, respectively, <math>m \times l</math> and <math>p \times l</math> orthogonal '''loading matrices'''; and matrices {{mvar|E}} and {{mvar|F}} are the error terms, assumed to be independent and identically distributed random normal variables. The decompositions of {{mvar|X}} and {{mvar|Y}} are made so as to maximise the '''covariance''' between {{mvar|T}} and {{mvar|U}} (projection matrices).
:where {{mvar|X}} is an <math>n \times m</math> matrix of predictors, {{mvar|Y}} is an <math>n \times p</math> matrix of responses; {{mvar|T}} and {{mvar|U}} are <math>n \times l</math> matrices that are, respectively, '''projections''' of {{mvar|X}} (the X '''score''', ''component'' or '''factor matrix''') and projections of {{mvar|Y}} (the ''Y scores''); {{mvar|P}} and {{mvar|Q}} are, respectively, <math>m \times l</math> and <math>p \times l</math> orthogonal '''loading matrices'''; and matrices {{mvar|E}} and {{mvar|F}} are the error terms, assumed to be independent and identically distributed random normal variables. The decompositions of {{mvar|X}} and {{mvar|Y}} are made so as to maximise the '''covariance''' between {{mvar|T}} and {{mvar|U}} (projection matrices).
* [https://www.gokhanciflikli.com/post/learning-brexit/ Supervised vs. Unsupervised Learning: Exploring Brexit with PLS and PCA]
* [https://www.gokhanciflikli.com/post/learning-brexit/ Supervised vs. Unsupervised Learning: Exploring Brexit with PLS and PCA]
* [https://cran.r-project.org/web/packages/pls/index.html pls] R package
* [https://cran.r-project.org/web/packages/pls/index.html pls] R package
* [https://cran.r-project.org/web/packages/plsRcox/index.html plsRcox] R package (archived). See [[R#install_a_tar.gz_.28e.g._an_archived_package.29_from_a_local_directory|here]] for the installation.
* [https://cran.r-project.org/web/packages/plsRcox/index.html plsRcox] R package (archived). See [[R#install_a_tar.gz_.28e.g._an_archived_package.29_from_a_local_directory|here]] for the installation.
* [https://web.stanford.edu/~hastie/ElemStatLearn//printings/ESLII_print12.pdf#page=101 PLS, PCR (principal components regression) and ridge regression tend to behave similarly]. Ridge regression may be preferred because it shrinks smoothly, rather than in discrete steps.
* [https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3310-7 So you think you can PLS-DA?]. Compare PLS with PCA.
* [https://cran.r-project.org/web/packages/plsRglm/index.html plsRglm] package - Partial Least Squares Regression for Generalized Linear Models


[https://web.stanford.edu/~hastie/ElemStatLearn//printings/ESLII_print12.pdf#page=101 PLS, PCR (principal components regression) and ridge regression tend to behave similarly]. Ridge regression may be preferred because it shrinks smoothly, rather than in discrete steps.
= High dimension =
* [https://projecteuclid.org/euclid.aos/1547197242 Partial least squares prediction in high-dimensional regression] Cook and Forzani, 2019
* [https://arxiv.org/pdf/1912.06667v1.pdf#:~:text=Patient-derived High dimensional precision medicine from patient-derived xenografts] JASA 2020
 
== dimRed package ==
[https://cran.r-project.org/web/packages/dimRed/index.html dimRed] package
 
== Feature selection ==
* https://en.wikipedia.org/wiki/Feature_selection
* [https://seth-dobson.github.io/a-feature-preprocessing-workflow/ A Feature Preprocessing Workflow]
* [https://doi.org/10.1080/01621459.2020.1783274 Model-Free Feature Screening and FDR Control With Knockoff Features] and [https://arxiv.org/pdf/1908.06597v2.pdf pdf]. The proposed method is based on the '''projection correlation''' which measures the dependence between two random vectors.


= High dimension =
== Goodness-of-fit ==
[https://projecteuclid.org/euclid.aos/1547197242 Partial least squares prediction in high-dimensional regression] Cook and Forzani, 2019
* [https://onlinelibrary.wiley.com/doi/10.1002/sim.8968 A simple yet powerful test for assessing goodness‐of‐fit of high‐dimensional linear models] Zhang 2021
* [https://www.tandfonline.com/doi/full/10.1080/02664763.2021.2017413 Pearson's goodness-of-fit tests for sparse distributions] Chang 2021


= [https://en.wikipedia.org/wiki/Independent_component_analysis Independent component analysis] =
= [https://en.wikipedia.org/wiki/Independent_component_analysis Independent component analysis] =
Line 464: Line 437:


== ICS vs FA ==
== ICS vs FA ==
== Robust independent component analysis ==
[https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-022-05043-9 robustica: customizable robust independent component analysis] 2022
= Canonical correlation analysis =
* https://en.wikipedia.org/wiki/Canonical_correlation. If we have two vectors ''X''&nbsp;=&nbsp;(''X''<sub>1</sub>,&nbsp;...,&nbsp;''X''<sub>''n''</sub>) and ''Y''&nbsp;=&nbsp;(''Y''<sub>1</sub>,&nbsp;...,&nbsp;''Y''<sub>''m''</sub>)  of random variables, and there are correlations among the variables, then canonical-correlation analysis will find linear combinations of ''X'' and ''Y'' which have maximum correlation with each other.
* [https://stats.idre.ucla.edu/r/dae/canonical-correlation-analysis/ R data analysis examples]
* [https://online.stat.psu.edu/stat505/book/export/html/682 Canonical Correlation Analysis] from psu.edu
* see the [https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/cancor cancor] function in base R; canocor in the [https://cran.r-project.org/web/packages/calibrate/ calibrate] package; and the [https://cran.r-project.org/web/packages/CCA/index.html CCA] package.
* [https://cmdlinetips.com/2020/12/canonical-correlation-analysis-in-r/ Introduction to Canonical Correlation Analysis (CCA) in R]
== Non-negative CCA ==
* https://cran.r-project.org/web/packages/nscancor/
* [https://www.mdpi.com/2076-3417/12/13/6596/html Pan-Cancer Analysis for Immune Cell Infiltration and Mutational Signatures Using Non-Negative Canonical Correlation Analysis] 2022. Non-negative constraints that force all input elements and coefficients to be zero or positive values.


= [https://en.wikipedia.org/wiki/Correspondence_analysis Correspondence analysis] =
= [https://en.wikipedia.org/wiki/Correspondence_analysis Correspondence analysis] =
https://francoishusson.wordpress.com/2017/07/18/multiple-correspondence-analysis-with-factominer/ and the book [https://www.crcpress.com/Exploratory-Multivariate-Analysis-by-Example-Using-R-Second-Edition/Husson-Le-Pages/p/book/9781138196346?tab=rev Exploratory Multivariate Analysis by Example Using R]
* [https://en.wikipedia.org/wiki/Principal_component_analysis#Correspondence_analysis Relationship of PCA and Correspondence analysis]
* [http://www.sthda.com/english/articles/31-principal-component-methods-in-r-practical-guide/113-ca-correspondence-analysis-in-r-essentials/ CA - Correspondence Analysis in R: Essentials]
* [https://www.displayr.com/math-correspondence-analysis/ Understanding the Math of Correspondence Analysis], [https://www.displayr.com/interpret-correspondence-analysis-plots-probably-isnt-way-think/ How to Interpret Correspondence Analysis Plots]
* https://francoishusson.wordpress.com/2017/07/18/multiple-correspondence-analysis-with-factominer/ and the book [https://www.crcpress.com/Exploratory-Multivariate-Analysis-by-Example-Using-R-Second-Edition/Husson-Le-Pages/p/book/9781138196346?tab=rev Exploratory Multivariate Analysis by Example Using R]
 
= Non-negative matrix factorization =
[https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3312-5 Optimization and expansion of non-negative matrix factorization]
 
= Nonlinear dimension reduction =
[https://www.biorxiv.org/content/10.1101/2021.08.25.457696v1 The Specious Art of Single-Cell Genomics] by Chari 2021


= t-SNE =
== t-SNE ==
t-Distributed Stochastic Neighbor Embedding (t-SNE) is a technique for dimensionality reduction that is particularly well suited for the visualization of high-dimensional datasets.  
'''t-Distributed Stochastic Neighbor Embedding''' (t-SNE) is a technique for dimensionality reduction that is particularly well suited for the visualization of high-dimensional datasets.  


* https://distill.pub/2016/misread-tsne/
* [https://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction#t-distributed_stochastic_neighbor_embedding Wikipedia]
* [https://youtu.be/NEaUSP4YerM StatQuest: t-SNE, Clearly Explained]
* https://lvdmaaten.github.io/tsne/
* https://lvdmaaten.github.io/tsne/
* [https://rpubs.com/Saskia/520216 Workshop: Dimension reduction with R] Saskia Freytag
* Application to [http://amp.pharm.mssm.edu/archs4/data.html ARCHS4]
* Application to [http://amp.pharm.mssm.edu/archs4/data.html ARCHS4]
* [https://www.codeproject.com/tips/788739/visualization-of-high-dimensional-data-using-t-sne Visualization of High Dimensional Data using t-SNE with R]
* [https://www.codeproject.com/tips/788739/visualization-of-high-dimensional-data-using-t-sne Visualization of High Dimensional Data using t-SNE with R]
* http://blog.thegrandlocus.com/2018/08/a-tutorial-on-t-sne-1
* http://blog.thegrandlocus.com/2018/08/a-tutorial-on-t-sne-1
* [https://intobioinformatics.wordpress.com/2019/05/30/quick-and-easy-t-sne-analysis-in-r/ Quick and easy t-SNE analysis in R]
* [https://intobioinformatics.wordpress.com/2019/05/30/quick-and-easy-t-sne-analysis-in-r/ Quick and easy t-SNE analysis in R]. [https://bioconductor.org/packages/devel/bioc/html/M3C.html M3C] package was used.
* [https://link.springer.com/protocol/10.1007%2F978-1-0716-0301-7_8 Visualization of Single Cell RNA-Seq Data Using t-SNE in R]. [https://cran.r-project.org/web/packages/Seurat/index.html Seurat] (both Seurat and M3C call [https://cran.r-project.org/web/packages/Rtsne/index.html Rtsne]) package was used.
* [https://github.com/berenslab/rna-seq-tsne The art of using t-SNE for single-cell transcriptomics]
* [https://www.frontiersin.org/articles/10.3389/fgene.2020.00041/full Normalization Methods on Single-Cell RNA-seq Data: An Empirical Survey]
* [https://github.com/jdonaldson/rtsne An R package for t-SNE (pure R implementation)]
* [https://pair-code.github.io/understanding-umap/ Understanding UMAP] by Andy Coenen, Adam Pearce. Note that the Fashion MNIST data was used to explain what a global structure means (it means similar categories (such as sandal, sneaker, and ankle boot)).
*#  Hyperparameters really matter
*# Cluster sizes in a UMAP plot mean nothing
*# Distances between clusters might not mean anything
*# Random noise doesn’t always look random.
*# You may need more than one plot
 
=== Perplexity parameter ===
* Balance attention between local and global aspects of the dataset
* A guess about the number of close neighbors
* In a real setting is important to try different values
* Must be lower than the number of input records
* [https://jef.works/tsne-online/ Interactive t-SNE ? Online]. We see in addition to '''perplexity''' there are '''learning rate''' and '''max iterations'''.


= Visualize the random effects =
=== Classifying digits with t-SNE: MNIST data ===
http://www.quantumforest.com/2012/11/more-sense-of-random-effects/


= [https://en.wikipedia.org/wiki/Calibration_(statistics) Calibration] =
Below is an example from datacamp [https://learn.datacamp.com/courses/advanced-dimensionality-reduction-in-r Advanced Dimensionality Reduction in R].
* [https://stats.stackexchange.com/questions/43053/how-to-determine-calibration-accuracy-uncertainty-of-a-linear-regression How to determine calibration accuracy/uncertainty of a linear regression?]
* [https://chem.libretexts.org/Textbook_Maps/Analytical_Chemistry/Book%3A_Analytical_Chemistry_2.0_(Harvey)/05_Standardizing_Analytical_Methods/5.4%3A_Linear_Regression_and_Calibration_Curves Linear Regression and Calibration Curves]
* [https://www.webdepot.umontreal.ca/Usagers/sauves/MonDepotPublic/CHM%203103/LCGC%20Eur%20Burke%202001%20-%202%20de%204.pdf Regression and calibration] Shaun Burke
* [https://cran.r-project.org/web/packages/calibrate calibrate] package
* [https://diagnprognres.biomedcentral.com/articles/10.1186/s41512-018-0029-2 The index of prediction accuracy: an intuitive measure useful for evaluating risk prediction models] by Kattan and Gerds 2018. The following code demonstrates Figure 2. <syntaxhighlight lang='rsplus'>
# Odds ratio =1 and calibrated model
set.seed(666)
x = rnorm(1000)         
z1 = 1 + 0*x       
pr1 = 1/(1+exp(-z1))
y1 = rbinom(1000,1,pr1) 
mean(y1) # .724, marginal prevalence of the outcome
dat1 <- data.frame(x=x, y=y1)
newdat1 <- data.frame(x=rnorm(1000), y=rbinom(1000, 1, pr1))


# Odds ratio =1 and severely miscalibrated model
The mnist_sample is very small 200x785. Here ([http://varianceexplained.org/r/digit-eda/ Exploring handwritten digit classification: a tidy analysis of the MNIST dataset]) is a large data with 60k records (60000 x 785).
set.seed(666)
 
x = rnorm(1000)          
<ol>
z2 =  -2 + 0*x       
<li>Generating t-SNE features
pr2 = 1/(1+exp(-z2))
<pre>
y2 = rbinom(1000,1,pr2)
library(readr)
mean(y2) # .12
library(dplyr)
dat2 <- data.frame(x=x, y=y2)
 
newdat2 <- data.frame(x=rnorm(1000), y=rbinom(1000, 1, pr2))
# 104MB
mnist_raw <- read_csv("https://pjreddie.com/media/files/mnist_train.csv", col_names = FALSE)
mnist_10k <- mnist_raw[1:10000, ]
colnames(mnist_10k) <- c("label", paste0("pixel", 0:783))


library(riskRegression)
library(ggplot2)
lrfit1 <- glm(y ~ x, data = dat1, family = 'binomial')
library(Rtsne)
IPA(lrfit1, newdata = newdat1)
#    Variable    Brier          IPA    IPA.gain
# 1 Null model 0.1984710  0.000000e+00 -0.003160010
# 2 Full model 0.1990982 -3.160010e-03  0.000000000
# 3          x 0.1984800 -4.534668e-05 -0.003114664
1 - 0.1990982/0.1984710
# [1] -0.003160159


lrfit2 <- glm(y ~ x, family = 'binomial')
tsne <- Rtsne(mnist_10k[, -1], perplexity = 5)
IPA(lrfit2, newdata = newdat1)
tsne_plot <- data.frame(tsne_x= tsne$Y[1:5000,1],
#    Variable    Brier      IPA    IPA.gain
                        tsne_y = tsne$Y[1:5000,2],
# 1 Null model 0.1984710  0.000000 -1.859333763
                        digit = as.factor(mnist_10k[1:5000,]$label))
# 2 Full model 0.5674948 -1.859334  0.000000000
# visualize obtained embedding
# 3          x 0.5669200 -1.856437 -0.002896299
ggplot(tsne_plot, aes(x= tsne_x, y = tsne_y, color = digit)) +
1 - 0.5674948/0.1984710
  ggtitle("MNIST embedding of the first 5K digits") +
# [1] -1.859334
  geom_text(aes(label = digit)) + theme(legend.position= "none")
</syntaxhighlight> From the simulated data, we see IPA = -3.16e-3 for a calibrated model and IPA = -1.86 for a severely miscalibrated model.
</pre></li>
 
<li>Computing centroids
= ROC curve and Brier score =
<pre>
* Binary case:
library(data.table)
** Y = true '''positive''' rate = sensitivity,  
# Get t-SNE coordinates
** X = false '''positive''' rate = 1-specificity
centroids <- as.data.table(tsne$Y[1:5000,])
* Area under the curve AUC from the [https://en.wikipedia.org/wiki/Receiver_operating_characteristic wikipedia]: the probability that a classifier will rank a randomly chosen positive instance higher than a randomly chosen negative one (assuming 'positive' ranks higher than 'negative').
setnames(centroids, c("X", "Y"))
:<math> A = \int_{\infty}^{-\infty} \mbox{TPR}(T) \mbox{FPR}'(T) \, dT = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} I(T'>T)f_1(T') f_0(T) \, dT' \, dT = P(X_1 > X_0) </math>
centroids[, label := as.factor(mnist_10k[1:5000,]$label)]
where <math> X_1 </math> is the score for a positive instance and <math> X_0 </math> is the score for a negative instance, and <math>f_0</math> and <math>f_1</math> are probability densities as defined in previous section.
# Compute centroids
* [https://datascienceplus.com/interpretation-of-the-auc/ Interpretation of the AUC]. A small toy example (n=12=4+8) was used to calculate the exact probability <math>P(X_1 > X_0) </math> (4*8=32 all combinations).
centroids[, mean_X := mean(X), by = label]
** It is a discrimination measure which tells us how well we can classify patients in two groups: those with and those without the outcome of interest.
centroids[, mean_Y := mean(Y), by = label]
** Since the measure is based on ranks, it is not sensitive to systematic errors in the calibration of the quantitative tests.
centroids <- unique(centroids, by = "label")
** The AUC can be defined as '''The probability that a randomly selected case will have a higher test result than a randomly selected control'''.
# visualize centroids
** Plot of sensitivity/specificity (y-axis) vs cutoff points of the biomarker
ggplot(centroids, aes(x= mean_X, y = mean_Y, color = label)) +
** The Mann-Whitney U test statistic (or Wilcoxon or Kruskall-Wallis test statistic) is equivalent to the AUC (Mason, 2002)
  ggtitle("Centroids coordinates") + geom_text(aes(label = label)) +
** The p-value of the Mann-Whitney U test can thus safely be used to test whether the AUC differs significantly from 0.5 (AUC of an uninformative test).
  theme(legend.position = "none")
* [https://stackoverflow.com/questions/4903092/calculate-auc-in-r Calculate AUC by hand]. AUC is equal to the '''probability that a true positive is scored greater than a true negative.'''
</pre></li>
* [https://stats.stackexchange.com/questions/145566/how-to-calculate-area-under-the-curve-auc-or-the-c-statistic-by-hand How to calculate Area Under the Curve (AUC), or the c-statistic, by hand or by R]
<li>Classifying new digits
* Introduction to the [https://hopstat.wordpress.com/2014/12/19/a-small-introduction-to-the-rocr-package/ ROCR] package. [https://datascienceplus.com/machine-learning-logistic-regression-for-credit-modelling-in-r/ Add threshold labels]  
<pre>
* http://freakonometrics.hypotheses.org/9066, http://freakonometrics.hypotheses.org/20002
# Get new examples of digits 4 and 9
* [http://www.joyofdata.de/blog/illustrated-guide-to-roc-and-auc/ Illustrated Guide to ROC and AUC]
distances <- as.data.table(tsne$Y[5001:10000,])
* [http://blog.revolutionanalytics.com/2016/08/roc-curves-in-two-lines-of-code.html ROC Curves in Two Lines of R Code]
setnames(distances, c("X" , "Y"))
* [https://staesthetic.wordpress.com/2014/04/14/gini-roc-auc-and-accuracy/ Gini and AUC]. Gini = 2*AUC-1.
distances[, label := mnist_10k[5001:10000,]$label]
* Generally, an AUC value over 0.7 is indicative of a model that can distinguish between the two outcomes well. An AUC of 0.5 tells us that the model is a random classifier, and it cannot distinguish between the two outcomes.
distances <- distances[label == 4 | label == 9]
 
# Compute the distance to the centroids
== Survival data ==
distances[, dist_4 := sqrt(((X - centroids[label==4,]$mean_X) +
'Survival Model Predictive Accuracy and ROC Curves' by Heagerty & Zheng 2005
                            (Y - centroids[label==4,]$mean_Y))^2)]
* Recall '''Sensitivity=''' <math>P(\hat{p_i} > c | Y_i=1)</math>, '''Specificity=''' <math>P(\hat{p}_i \le c | Y_i=0</math>), <math>Y_i</math> is binary outcomes, <math>\hat{p}_i</math> is a prediction, <math>c</math> is a criterion for classifying the prediction as positive (<math>\hat{p}_i > c</math>) or negative (<math>\hat{p}_i \le c </math>).
dim(distances)
* For survival data, we need to use a fixed time/horizon (''t'') to classify the data as either a case or a control. Following Heagerty and Zheng's definition (Incident/dynamic), '''Sensitivity(c, t)=''' <math>P(M_i > c | T_i = t)</math>, '''Specificity=''' <math>P(M_i \le c | T_i > 0</math>) where ''' ''M'' ''' is a marker value or <math>Z^T \beta</math>. Here sensitivity measures the expected fraction of subjects with a marker greater than ''c'' among the subpopulation of individuals who die at time ''t'', while specificity measures the fraction of subjects with a marker less than or equal to ''c'' among those who survive beyond time t.
# [1] 928  4
* The AUC measures the '''probability that the marker value for a randomly selected case exceeds the marker value for a randomly selected control'''
distances[1:3, ]
* ROC curves are useful for comparing the discriminatory capacity of different potential biomarkers.
#            X        Y label  dist_4
# 1: -15.90171 27.62270    4 1.494578
# 2: -33.66668 35.69753    9 8.195562
# 3: -16.55037 18.64792    9 8.128860


== Confusion matrix, Sensitivity/Specificity/Accuracy ==
# Plot distance to each centroid
ggplot(distances, aes(x=dist_4, fill = as.factor(label))) +
  geom_histogram(binwidth=5, alpha=.5, position="identity", show.legend = F)
</pre></li>
</ol>


{| border="1" style="border-collapse:collapse; text-align:center;"
=== Fashion MNIST data ===
|-
* fashion_mnist is only 500x785
|                    ||  || colspan="2" | Predict  ||
* [https://tensorflow.rstudio.com/reference/keras/dataset_fashion_mnist/ keras] has 60k x 785. Miniconda is required when we want to use the package.
|-
|                    ||  ||  1      ||    0      ||
|-
| rowspan="2" | True || 1 ||  TP    ||    FN    || Sens=TP/(TP+FN)=Recall <br/> FNR=FN/(TP+FN)
|-
|    0              ||  FP    ||    TN    || Spec=TN/(FP+TN)
|-
|                    ||    ||  PPV=TP/(TP+FP) <br/> FDR=FP/(TP+FP)||  NPV=TN/(FN+TN) ||  N = TP + FP + FN + TN
|}


* Sensitivity = TP / (TP + FN) = Recall
=== tSNE vs PCA ===
* Specificity = TN / (TN + FP)
* [https://medium.com/analytics-vidhya/pca-vs-t-sne-17bcd882bf3d PCA vs t-SNE: which one should you use for visualization]. This uses MNIST dataset for a comparison.
* Accuracy = (TP + TN) / N
* [https://www.subioplatform.com/info_casestudy/338/why-pca-on-bulk-rna-seq-and-t-sne-on-scrna-seq Why PCA on bulk RNA-Seq and t-SNE on scRNA-Seq?]
* False discovery rate FDR = FP / (TP + FP)
* [https://support.bioconductor.org/p/97594/ What to use: PCA or tSNE dimension reduction in DESeq2 analysis?] (with discussion)
* False negative rate FNR = FN / (TP + FN)
* [https://stats.stackexchange.com/a/249520 Are there cases where PCA is more suitable than t-SNE?]
* [https://en.wikipedia.org/wiki/Positive_and_negative_predictive_values Positive predictive value (PPV)] = TP / # positive calls = TP / (TP + FP) = 1 - FDR
* [https://stats.stackexchange.com/a/502392 How to interpret data not separated by PCA but by T-sne/UMAP]
* Negative predictive value (NPV) = TN / # negative calls = TN / (FN + TN)
* [https://towardsdatascience.com/dimensionality-reduction-for-data-visualization-pca-vs-tsne-vs-umap-be4aa7b1cb29 Dimensionality Reduction for Data Visualization: PCA vs TSNE vs UMAP vs LDA]
* Prevalence = (TP + FN) / N.
* Note that PPV & NPV can also be computed from sensitivity, specificity, and prevalence:
** [https://en.wikipedia.org/wiki/Positive_and_negative_predictive_values#cite_note-AltmanBland1994-2 PPV is directly proportional to the prevalence of the disease or condition.].
** For example, in the extreme case if the prevalence =1, then PPV is always 1.
::<math> \text{PPV} = \frac{\text{sensitivity} \times \text{prevalence}}{\text{sensitivity} \times \text{prevalence}+(1-\text{specificity}) \times (1-\text{prevalence})} </math>
::<math> \text{NPV} = \frac{\text{specificity} \times (1-\text{prevalence})}{(1-\text{sensitivity}) \times \text{prevalence}+\text{specificity} \times (1-\text{prevalence})} </math>


== Precision recall curve ==
=== Two groups example ===
* [https://en.wikipedia.org/wiki/Precision_and_recall Precision and recall]
* [http://www.bioconductor.org/packages/release/bioc/vignettes/splatter/inst/doc/splatter.html#61_Simulating_groups Simulating groups]
** Y-axis: Precision = tp/(tp + fp) = PPV, large is better
** X-axis: Recall = tp/(tp + fn) = Sensitivity, large is better
* [http://pages.cs.wisc.edu/~jdavis/davisgoadrichcamera2.pdf The Relationship Between Precision-Recall and ROC Curves]. Remember ROC is defined as
** Y-axis: Sensitivity = tp/(tp + fn) = Recall
** X-axis: 1-Specificity = fp/(fp + tn)
 
== Incidence, Prevalence ==
https://www.health.ny.gov/diseases/chronic/basicstat.htm
 
== Calculate area under curve by hand (using trapezoid), relation to concordance measure and the Wilcoxon–Mann–Whitney test ==
* https://stats.stackexchange.com/a/146174
* [https://pubs.rsna.org/doi/pdf/10.1148/radiology.143.1.7063747 The meaning and use of the area under a receiver operating characteristic (ROC) curve] J A Hanley, B J McNeil 1982
 
== genefilter package and rowpAUCs function ==
* [https://books.google.com/books?id=F3tAehmRHSwC&pg=PA99&lpg=PA99&dq=%22rowpAUCs%22+genefilter&source=bl&ots=QYRYDc45Dp&sig=6b29AsNivFPdyvcU1z3Okn121OU&hl=en&sa=X&ei=mFvCVN35NdaSsQSUqIKYCg&ved=0CE8Q6AEwCTgK#v=onepage&q=%22rowpAUCs%22%20genefilter&f=false rowpAUCs] function in genefilter package. The aim is to find potential biomarkers whose expression level is able to distinguish between two groups.
<pre>
<pre>
# source("http://www.bioconductor.org/biocLite.R")
suppressPackageStartupMessages({
# biocLite("genefilter")
  library(splatter)
library(Biobase) # sample.ExpressionSet data
  library(scater)
data(sample.ExpressionSet)
})


library(genefilter)
sim.groups <- splatSimulate(group.prob = c(0.5, 0.5), method = "groups",
r2 = rowpAUCs(sample.ExpressionSet, "sex", p=0.1)
                            verbose = FALSE)
plot(r2[1]) # first gene, asking specificity = .9
sim.groups <- logNormCounts(sim.groups)
sim.groups <- runPCA(sim.groups)
plotPCA(sim.groups, colour_by = "Group") # 2 groups separated in PC1


r2 = rowpAUCs(sample.ExpressionSet, "sex", p=1.0)
sim.groups <- runTSNE(sim.groups)
plot(r2[1]) # it won't show pAUC
plotTSNE(sim.groups, colour_by = "Group") # 2 groups separated in TSNE2
 
r2 = rowpAUCs(sample.ExpressionSet, "sex", p=.999)
plot(r2[1]) # pAUC is very close to AUC now
</pre>
</pre>


== Use and Misuse of the Receiver Operating Characteristic Curve in Risk Prediction ==
== UMAP ==
http://circ.ahajournals.org/content/115/7/928
* [https://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction#Uniform_manifold_approximation_and_projection Uniform manifold approximation and projection]
* https://cran.r-project.org/web/packages/umap/index.html
* [https://intobioinformatics.wordpress.com/2019/06/08/running-umap-for-data-visualisation-in-r/ Running UMAP for data visualisation in R]
* [https://juliasilge.com/blog/cocktail-recipes-umap/ PCA and UMAP with tidymodels]
* https://arxiv.org/abs/1802.03426
* https://www.biorxiv.org/content/early/2018/04/10/298430
* [https://poissonisfish.com/2020/11/14/umap-clustering-in-python/ UMAP clustering in Python]
* [https://juliasilge.com/blog/un-voting/ Dimensionality reduction of #TidyTuesday United Nations voting patterns], [https://juliasilge.com/blog/billboard-100/ Dimensionality reduction for #TidyTuesday Billboard Top 100 songs]. The [https://cran.r-project.org/web/packages/embed/index.html embed] package was used.
* [https://tonyelhabr.rbind.io/post/dimensionality-reduction-and-clustering/ Tired: PCA + kmeans, Wired: UMAP + GMM]
* [https://www.nature.com/articles/s41596-020-00409-w Tutorial: guidelines for the computational analysis of single-cell RNA sequencing data] Andrews 2020.
**  One shortcoming of both t-SNE and UMAP is that they both require a user-defined hyperparameter, and the result can be sensitive to the value chosen. Moreover, the methods are stochastic, and providing a good initialization can significantly improve the results of both algorithms.
** '''Neither visualization algorithm preserves cell-cell distances, so the resulting embedding should not be used directly by downstream analysis methods such as clustering or pseudotime inference'''.
* [https://youtu.be/eN0wFzBA4Sc?t=53 UMAP Dimension Reduction, Main Ideas!!!], [https://youtu.be/jth4kEvJ3P8 UMAP: Mathematical Details (clearly explained!!!)]
* [https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668 How Exactly UMAP Works] (open it in an incognito window]
* [https://statquest.gumroad.com/l/nixkdy t-SNE and UMAP Study Guide]
* [https://twitter.com/lpachter/status/1440696798218100753 UMAP monkey]


== Performance evaluation ==
== GECO ==
* [https://onlinelibrary.wiley.com/doi/epdf/10.1002/sim.5727 Testing for improvement in prediction model performance] by Pepe et al 2013.
[https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-03951-2 GECO: gene expression clustering optimization app for non-linear data visualization of patterns]


== Some R packages ==
= Visualize the random effects =
* [https://rviews.rstudio.com/2019/03/01/some-r-packages-for-roc-curves/ Some R Packages for ROC Curves]
http://www.quantumforest.com/2012/11/more-sense-of-random-effects/
* [https://github.com/dariyasydykova/open_projects/tree/master/ROC_animation ROC animation]


== Comparison of two AUCs ==
= [https://en.wikipedia.org/wiki/Calibration_(statistics) Calibration] =
* [https://statcompute.wordpress.com/2018/12/25/statistical-assessments-of-auc/ Statistical Assessments of AUC]. This is using the '''pROC::roc.test''' function.


= [https://en.wikipedia.org/wiki/Net_reclassification_improvement NRI] (Net reclassification improvement) =
* Search by image: graphical explanation of calibration problem
 
* Does calibrating classification models improve prediction?
= Maximum likelihood =
** Calibrating a classification model can improve the reliability and accuracy of the '''predicted probabilities''', but it may not necessarily improve the '''overall prediction performance of the model''' in terms of metrics such as accuracy, precision, or recall.
[http://stats.stackexchange.com/questions/622/what-is-the-difference-between-a-partial-likelihood-profile-likelihood-and-marg Difference of partial likelihood, profile likelihood and marginal likelihood]
** Calibration is about ensuring that the predicted probabilities from a model match the observed proportions of outcomes in the data. This can be important when the predicted probabilities are used to make decisions or when they are presented to users as a measure of confidence or uncertainty.
** However, calibrating a model does not change its ability to discriminate between positive and negative outcomes. In other words, calibration does not affect how well the model separates the classes, but rather how accurately it estimates the probabilities of class membership.
** In some cases, calibrating a model may improve its overall prediction performance by making the predicted probabilities more accurate. However, this is not always the case, and the impact of calibration on prediction performance may vary depending on the specific needs and goals of the analysis.


= Generalized Linear Model =
* A real-world example of calibration in machine learning is in the field of fraud detection. In this case, it might be desirable to have the model '''predict probabilities''' of data belonging to each possible '''class''' instead of crude class labels. Gaining access to '''probabilities''' is useful for a richer interpretation of the responses, analyzing the model shortcomings, or presenting the uncertainty to the end-users ². [https://wttech.blog/blog/2021/a-guide-to-model-calibration/ A guide to model calibration | Wunderman Thompson Technology].
Lectures from a course in [http://people.stat.sfu.ca/~raltman/stat851.html Simon Fraser University Statistics].  


[https://petolau.github.io/Analyzing-double-seasonal-time-series-with-GAM-in-R/ Doing magic and analyzing seasonal time series with GAM (Generalized Additive Model) in R]
* Another example where calibration is more important than prediction on new samples is in the field of medical diagnosis. In this case, it is important to have well-calibrated probabilities for the presence of a disease, so that doctors can make informed decisions about treatment. For example, if a diagnostic test predicts an 80% chance that a patient has a certain disease, doctors would expect that 80% of the time when such a prediction is made, the patient actually has the disease. This example does not mean that prediction on new samples is not feasible or not a concern, but rather that having well-calibrated probabilities is crucial for making accurate predictions and informed decisions.


== Link function ==
* [https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-019-1466-7 Calibration: the Achilles heel of predictive analytics] Calster 2019
[http://www.win-vector.com/blog/2019/07/link-functions-versus-data-transforms/ Link Functions versus Data Transforms]
* https://www.itl.nist.gov/div898/handbook/pmd/section1/pmd133.htm Calibration and '''calibration curve'''.
** Y=voltage (''observed''), X=temperature (''true/ideal''). The calibration curve for a thermocouple is often constructed by comparing thermocouple ''(observed)output'' to relatively ''(true)precise'' thermometer data.
** when a new temperature is measured with the thermocouple, the voltage is converted to temperature terms by plugging the observed voltage into the regression equation and solving for temperature.
** It is important to note that the thermocouple measurements, made on the ''secondary measurement scale'', are treated as the response variable and the more precise thermometer results, on the ''primary scale'', are treated as the predictor variable because this best satisfies the '''underlying assumptions''' (Y=observed, X=true) of the analysis.
** '''Calibration interval'''
** In almost all calibration applications the ultimate quantity of interest is the true value of the primary-scale measurement method associated with a measurement made on the secondary scale.
** It seems the x-axis and y-axis have similar ranges in many application.
* An Exercise in the Real World of Design and Analysis, Denby, Landwehr, and Mallows 2001. Inverse regression
* [https://stats.stackexchange.com/questions/43053/how-to-determine-calibration-accuracy-uncertainty-of-a-linear-regression How to determine calibration accuracy/uncertainty of a linear regression?]
* [https://chem.libretexts.org/Textbook_Maps/Analytical_Chemistry/Book%3A_Analytical_Chemistry_2.0_(Harvey)/05_Standardizing_Analytical_Methods/5.4%3A_Linear_Regression_and_Calibration_Curves Linear Regression and Calibration Curves]
* [https://www.webdepot.umontreal.ca/Usagers/sauves/MonDepotPublic/CHM%203103/LCGC%20Eur%20Burke%202001%20-%202%20de%204.pdf Regression and calibration] Shaun Burke
* [https://cran.r-project.org/web/packages/calibrate calibrate] package
* [https://cran.r-project.org/web/packages/investr/index.html investr]: An R Package for Inverse Estimation. [https://journal.r-project.org/archive/2014-1/greenwell-kabban.pdf Paper]
* [https://diagnprognres.biomedcentral.com/articles/10.1186/s41512-018-0029-2 The index of prediction accuracy: an intuitive measure useful for evaluating risk prediction models] by Kattan and Gerds 2018. The following code demonstrates Figure 2. <syntaxhighlight lang='rsplus'>
# Odds ratio =1 and calibrated model
set.seed(666)
x = rnorm(1000)         
z1 = 1 + 0*x       
pr1 = 1/(1+exp(-z1))
y1 = rbinom(1000,1,pr1) 
mean(y1) # .724, marginal prevalence of the outcome
dat1 <- data.frame(x=x, y=y1)
newdat1 <- data.frame(x=rnorm(1000), y=rbinom(1000, 1, pr1))


== Quasi Likelihood ==
# Odds ratio =1 and severely miscalibrated model
Quasi-likelihood is like log-likelihood. The quasi-score function (first derivative of quasi-likelihood function) is the estimating equation.
set.seed(666)
x = rnorm(1000)         
z2 = -2 + 0*x       
pr2 = 1/(1+exp(-z2)) 
y2 = rbinom(1000,1,pr2) 
mean(y2) # .12
dat2 <- data.frame(x=x, y=y2)
newdat2 <- data.frame(x=rnorm(1000), y=rbinom(1000, 1, pr2))


* [http://www.stat.uchicago.edu/~pmcc/pubs/paper6.pdf Original paper] by Peter McCullagh.
library(riskRegression)
* [http://people.stat.sfu.ca/~raltman/stat851/851L20.pdf Lecture 20] from SFU.
lrfit1 <- glm(y ~ x, data = dat1, family = 'binomial')
* [http://courses.washington.edu/b571/lectures/notes131-181.pdf U. Washington] and [http://faculty.washington.edu/heagerty/Courses/b571/handouts/OverdispQL.pdf another lecture] focuses on overdispersion.
IPA(lrfit1, newdata = newdat1)
* [http://www.maths.usyd.edu.au/u/jchan/GLM/QuasiLikelihood.pdf This lecture] contains a table of quasi likelihood from common distributions.
#    Variable    Brier          IPA    IPA.gain
# 1 Null model 0.1984710  0.000000e+00 -0.003160010
# 2 Full model 0.1990982 -3.160010e-03  0.000000000
# 3          x 0.1984800 -4.534668e-05 -0.003114664
1 - 0.1990982/0.1984710
# [1] -0.003160159
 
lrfit2 <- glm(y ~ x, family = 'binomial')
IPA(lrfit2, newdata = newdat1)
#    Variable    Brier      IPA    IPA.gain
# 1 Null model 0.1984710  0.000000 -1.859333763
# 2 Full model 0.5674948 -1.859334 0.000000000
# 3          x 0.5669200 -1.856437 -0.002896299
1 - 0.5674948/0.1984710
# [1] -1.859334
</syntaxhighlight> From the simulated data, we see IPA = -3.16e-3 for a calibrated model and IPA = -1.86 for a severely miscalibrated model.


== Plot ==
= ROC curve =
https://strengejacke.wordpress.com/2015/02/05/sjplot-package-and-related-online-manuals-updated-rstats-ggplot/
See [[ROC|ROC]].


== [https://en.wikipedia.org/wiki/Deviance_(statistics) Deviance], stats::deviance() and glmnet::deviance.glmnet() from R ==
= [https://en.wikipedia.org/wiki/Net_reclassification_improvement NRI] (Net reclassification improvement) =
* '''It is a generalization of the idea of using the sum of squares of residuals (RSS) in ordinary least squares''' to cases where model-fitting is achieved by maximum likelihood. See [https://stats.stackexchange.com/questions/6581/what-is-deviance-specifically-in-cart-rpart What is Deviance? (specifically in CART/rpart)] to manually compute deviance and compare it with the returned value of the '''deviance()''' function from a linear regression. Summary: deviance() = RSS in linear models.
 
* https://www.rdocumentation.org/packages/stats/versions/3.4.3/topics/deviance
= Maximum likelihood =
* Likelihood ratio tests and the deviance http://data.princeton.edu/wws509/notes/a2.pdf#page=6
[http://stats.stackexchange.com/questions/622/what-is-the-difference-between-a-partial-likelihood-profile-likelihood-and-marg Difference of partial likelihood, profile likelihood and marginal likelihood]
* Deviance(y,muhat) = 2*(loglik_saturated - loglik_proposed)
 
* [https://stats.stackexchange.com/questions/108995/interpreting-residual-and-null-deviance-in-glm-r Interpreting Residual and Null Deviance in GLM R]
== EM Algorithm ==
** Null Deviance = 2(LL(Saturated Model) - LL(Null Model)) on df = df_Sat - df_Null. The '''null deviance''' shows how well the response variable is predicted by a model that includes only the intercept (grand mean).
* https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm
** '''Residual Deviance = 2(LL(Saturated Model) - LL(Proposed Model)) = <math>2(LL(y|y) - LL(\hat{\mu}|y))</math>, df = df_Sat - df_Proposed=n-p'''. ==> deviance() has returned.
* [https://stephens999.github.io/fiveMinuteStats/intro_to_em.html Introduction to EM: Gaussian Mixture Models]
** Null deviance > Residual deviance. Null deviance df = n-1. Residual deviance df = n-p.
 
<syntaxhighlight lang='rsplus'>
== Mixture model ==
## an example with offsets from Venables & Ripley (2002, p.189)
[https://cran.r-project.org/web/packages/mixComp/ mixComp]: Estimation of the Order of Mixture Distributions
utils::data(anorexia, package = "MASS")
 
== MLE ==
[https://cimentadaj.github.io/blog/2020-11-26-maximum-likelihood-distilled/maximum-likelihood-distilled/ Maximum Likelihood Distilled]
 
== Efficiency of an estimator ==
[https://stats.stackexchange.com/a/350362 What does it mean by more “efficient” estimator]


anorex.1 <- glm(Postwt ~ Prewt + Treat + offset(Prewt),
== Inference ==
                family = gaussian, data = anorexia)
[https://www.tidyverse.org/blog/2021/08/infer-1-0-0/ infer] package
summary(anorex.1)


# Call:
= Generalized Linear Model =
#  glm(formula = Postwt ~ Prewt + Treat + offset(Prewt), family = gaussian,
* Lectures from a course in [http://people.stat.sfu.ca/~raltman/stat851.html Simon Fraser University Statistics].  
#      data = anorexia)
* [https://myweb.uiowa.edu/pbreheny/uk/teaching/760-s13/index.html Advanced Regression] from Patrick Breheny.
#
* [https://petolau.github.io/Analyzing-double-seasonal-time-series-with-GAM-in-R/ Doing magic and analyzing seasonal time series with GAM (Generalized Additive Model) in R]
# Deviance Residuals:  
 
#  Min        1Q    Median        3Q      Max 
== Link function ==
# -14.1083  -4.2773  -0.5484    5.4838  15.2922 
[http://www.win-vector.com/blog/2019/07/link-functions-versus-data-transforms/ Link Functions versus Data Transforms]
#
# Coefficients:
#  Estimate Std. Error t value Pr(>|t|)   
# (Intercept)  49.7711    13.3910  3.717 0.000410 ***
#  Prewt        -0.5655    0.1612  -3.509 0.000803 ***
#  TreatCont    -4.0971    1.8935  -2.164 0.033999 * 
#  TreatFT      4.5631    2.1333  2.139 0.036035 * 
---
#  Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# (Dispersion parameter for gaussian family taken to be 48.69504)
#
# Null deviance: 4525.4  on 71  degrees of freedom
# Residual deviance: 3311.3  on 68  degrees of freedom
# AIC: 489.97
#
# Number of Fisher Scoring iterations: 2


deviance(anorex.1)
== Extract coefficients, z, p-values ==
# [1] 3311.263
Use '''coef(summary(glmObject))'''
</syntaxhighlight>
<pre>
* In glmnet package. The deviance is defined to be 2*(loglike_sat - loglike), where loglike_sat is the log-likelihood for the saturated model (a model with a free parameter per observation). Null deviance is defined to be 2*(loglike_sat -loglike(Null)); The NULL model refers to the intercept model, except for the Cox, where it is the 0 model. Hence dev.ratio=1-deviance/nulldev, and this deviance method returns (1-dev.ratio)*nulldev.
> coef(summary(glm.D93))
** [https://stats.stackexchange.com/questions/134694/what-deviance-is-glmnet-using-to-compare-values-of-lambda What deviance is glmnet using to compare values of λ?]
                Estimate Std. Error      z value    Pr(>|z|)
<syntaxhighlight lang='rsplus'>
(Intercept3.044522e+00  0.1708987 1.781478e+01 5.426767e-71
x=matrix(rnorm(100*2),100,2)
outcome2    -4.542553e-01  0.2021708 -2.246889e+00 2.464711e-02
y=rnorm(100)
outcome3    -2.929871e-01 0.1927423 -1.520097e+00 1.284865e-01
fit1=glmnet(x,y)  
treatment2  1.337909e-15  0.2000000  6.689547e-15 1.000000e+00
deviance(fit1# one for each lambda
treatment3  1.421085e-15  0.2000000  7.105427e-15 1.000000e+00
# [1] 98.83277 98.53893 98.29499 98.09246 97.92432 97.78472 97.66883
</pre>
# [8] 97.57261 97.49273 97.41327 97.29855 97.20332 97.12425 97.05861
# ...
# [57] 96.73772 96.73770
fit2 <- glmnet(x, y, lambda=.1) # fix lambda
deviance(fit2)
# [1] 98.10212
deviance(glm(y ~ x))
# [1] 96.73762
sum(residuals(glm(y ~ x))^2)
# [1] 96.73762
</syntaxhighlight>


== Saturated model ==
== Quasi Likelihood ==
* The saturated model always has n parameters where n is the sample size.
Quasi-likelihood is like log-likelihood. The quasi-score function (first derivative of quasi-likelihood function) is the estimating equation.
* [https://stats.stackexchange.com/questions/114073/logistic-regression-how-to-obtain-a-saturated-model Logistic Regression : How to obtain a saturated model]


= Simulate data =
* [http://www.stat.uchicago.edu/~pmcc/pubs/paper6.pdf Original paper] by Peter McCullagh.
== Density plot ==
* [http://people.stat.sfu.ca/~raltman/stat851/851L20.pdf Lecture 20] from SFU.
<syntaxhighlight lang='rsplus'>
* [http://courses.washington.edu/b571/lectures/notes131-181.pdf U. Washington] and [http://faculty.washington.edu/heagerty/Courses/b571/handouts/OverdispQL.pdf another lecture] focuses on overdispersion.
# plot a Weibull distribution with shape and scale
* [http://www.maths.usyd.edu.au/u/jchan/GLM/QuasiLikelihood.pdf This lecture] contains a table of quasi likelihood from common distributions.
func <- function(x) dweibull(x, shape = 1, scale = 3.38)
curve(func, .1, 10)


func <- function(x) dweibull(x, shape = 1.1, scale = 3.38)
== IRLS ==
curve(func, .1, 10)
* [https://statisticaloddsandends.wordpress.com/2020/05/14/glmnet-v4-0-generalizing-the-family-parameter/ glmnet v4.0: generalizing the family parameter]
</syntaxhighlight>
* [https://bwlewis.github.io/GLM/ Generalized linear models, abridged] (include algorithm and code)


The shape parameter plays a role on the shape of the density function and the failure rate.
== Plot ==
https://strengejacke.wordpress.com/2015/02/05/sjplot-package-and-related-online-manuals-updated-rstats-ggplot/


* Shape <=1: density is convex, not a hat shape.  
== [https://en.wikipedia.org/wiki/Deviance_(statistics) Deviance], stats::deviance() and glmnet::deviance.glmnet() from R ==
* Shape =1: failure rate (hazard function) is constant. [https://en.wikipedia.org/wiki/Exponential_distribution Exponential distribution].
* '''It is a generalization of the idea of using the sum of squares of residuals (RSS) in ordinary least squares''' to cases where model-fitting is achieved by maximum likelihood. See [https://stats.stackexchange.com/questions/6581/what-is-deviance-specifically-in-cart-rpart What is Deviance? (specifically in CART/rpart)] to manually compute deviance and compare it with the returned value of the '''deviance()''' function from a linear regression. Summary: deviance() = RSS in linear models.
* Shape >1: failure rate increases with time
* [https://www.datascienceblog.net/post/machine-learning/interpreting_generalized_linear_models/ Interpreting Generalized Linear Models]
* [https://statisticaloddsandends.wordpress.com/2019/03/27/what-is-deviance/ What is deviance?] You can think of the deviance of a model as twice the negative log likelihood plus a constant.
* https://www.rdocumentation.org/packages/stats/versions/3.4.3/topics/deviance
* Likelihood ratio tests and the deviance http://data.princeton.edu/wws509/notes/a2.pdf#page=6
* Deviance(y,muhat) = 2*(loglik_saturated - loglik_proposed)
* [http://r.qcbs.ca/workshop06/book-en/binomial-glm.html Binomial GLM] and the [https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/ls objects()] function that seems to be the same as str(, max=1).
* [https://stats.stackexchange.com/questions/108995/interpreting-residual-and-null-deviance-in-glm-r Interpreting Residual and Null Deviance in GLM R]
** Null Deviance = 2(LL(Saturated Model) - LL(Null Model)) on df = df_Sat - df_Null. The '''null deviance''' shows how well the response variable is predicted by a model that includes only the intercept (grand mean).
** '''Residual Deviance = 2(LL(Saturated Model) - LL(Proposed Model)) = <math>2(LL(y|y) - LL(\hat{\mu}|y))</math>, df = df_Sat - df_Proposed=n-p'''. ==> deviance() has returned.
** Null deviance > Residual deviance. Null deviance df = n-1. Residual deviance df = n-p.
<syntaxhighlight lang='rsplus'>
## an example with offsets from Venables & Ripley (2002, p.189)
utils::data(anorexia, package = "MASS")


== Simulate data from a specified density ==
anorex.1 <- glm(Postwt ~ Prewt + Treat + offset(Prewt),
* http://stackoverflow.com/questions/16134786/simulate-data-from-non-standard-density-function
                family = gaussian, data = anorexia)
summary(anorex.1)


== Signal to noise ratio ==
# Call:
* https://en.wikipedia.org/wiki/Signal-to-noise_ratio
#  glm(formula = Postwt ~ Prewt + Treat + offset(Prewt), family = gaussian,
* https://stats.stackexchange.com/questions/31158/how-to-simulate-signal-noise-ratio
#      data = anorexia)
: <math>\frac{\sigma^2_{signal}}{\sigma^2_{noise}} = \frac{Var(f(X))}{Var(e)} </math> if Y = f(X) + e
#
* Page 401 of ESLII (https://web.stanford.edu/~hastie/ElemStatLearn//) 12th print.
# Deviance Residuals:  
 
#  Min        1Q    Median        3Q      Max 
Some examples of signal to noise ratio
# -14.1083  -4.2773  -0.5484    5.4838  15.2922 
* ESLII_print12.pdf: .64, 5, 4
#
* Yuan and Lin 2006: 1.8, 3
# Coefficients:
* [https://academic.oup.com/biostatistics/article/19/3/263/4093306#123138354 A framework for estimating and testing qualitative interactions with applications to predictive biomarkers] Roth, Biostatistics, 2018
#  Estimate Std. Error t value Pr(>|t|)  
 
# (Intercept) 49.7711    13.3910  3.717 0.000410 ***
== Effect size, Cohen's d and volcano plot ==
#  Prewt        -0.5655    0.1612  -3.509 0.000803 ***
* https://en.wikipedia.org/wiki/Effect_size (See also the estimation by the [[#Two_sample_test_assuming_equal_variance|pooled sd]])
#  TreatCont    -4.0971    1.8935  -2.164 0.033999 * 
#  TreatFT      4.5631    2.1333  2.139 0.036035 * 
#  ---
#  Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# (Dispersion parameter for gaussian family taken to be 48.69504)
#
# Null deviance: 4525.4  on 71  degrees of freedom
# Residual deviance: 3311.3  on 68  degrees of freedom
# AIC: 489.97
#
# Number of Fisher Scoring iterations: 2


: <math>\theta = \frac{\mu_1 - \mu_2} \sigma,</math>
deviance(anorex.1)
 
# [1] 3311.263
* [https://learningstatisticswithr.com/book/hypothesistesting.html#effectsize Effect size, sample size and power] from Learning statistics with R: A tutorial for psychology students and other beginners.
</syntaxhighlight>
* [https://en.wikipedia.org/wiki/Effect_size#t-test_for_mean_difference_between_two_independent_groups t-statistic and Cohen's d] for the case of mean difference between two independent groups
* In glmnet package. The deviance is defined to be 2*(loglike_sat - loglike), where loglike_sat is the log-likelihood for the saturated model (a model with a free parameter per observation). Null deviance is defined to be 2*(loglike_sat -loglike(Null)); The NULL model refers to the intercept model, except for the Cox, where it is the 0 model. Hence dev.ratio=1-deviance/nulldev, and this deviance method returns (1-dev.ratio)*nulldev.
* [http://www.win-vector.com/blog/2019/06/cohens-d-for-experimental-planning/ Cohen’s D for Experimental Planning]
** [https://stats.stackexchange.com/questions/134694/what-deviance-is-glmnet-using-to-compare-values-of-lambda What deviance is glmnet using to compare values of λ?]
* [https://en.wikipedia.org/wiki/Volcano_plot_(statistics) Volcano plot]
<syntaxhighlight lang='rsplus'>
** Y-axis: -log(p)
x=matrix(rnorm(100*2),100,2)
** X-axis: log2 fold change OR effect size (Cohen's D). [https://twitter.com/biobenkj/status/1072141825568329728 An example] from RNA-Seq data.
y=rnorm(100)
fit1=glmnet(x,y)
deviance(fit1)  # one for each lambda
#  [1] 98.83277 98.53893 98.29499 98.09246 97.92432 97.78472 97.66883
[8] 97.57261 97.49273 97.41327 97.29855 97.20332 97.12425 97.05861
# ...
# [57] 96.73772 96.73770
fit2 <- glmnet(x, y, lambda=.1) # fix lambda
deviance(fit2)
# [1] 98.10212
deviance(glm(y ~ x))
# [1] 96.73762
sum(residuals(glm(y ~ x))^2)
# [1] 96.73762
</syntaxhighlight>


= Multiple comparisons =
== Saturated model ==
* If you perform experiments over and over, you's bound to find something. So significance level must be adjusted down when performing multiple hypothesis tests.
* The saturated model always has n parameters where n is the sample size.
* http://www.gs.washington.edu/academics/courses/akey/56008/lecture/lecture10.pdf
* [https://stats.stackexchange.com/questions/114073/logistic-regression-how-to-obtain-a-saturated-model Logistic Regression : How to obtain a saturated model]
* Book 'Multiple Comparison Using R' by Bretz, Hothorn and Westfall, 2011.
 
* [http://varianceexplained.org/statistics/interpreting-pvalue-histogram/ Plot a histogram of p-values], a post from varianceexplained.org. The anti-conservative histogram (tail on the RHS) is what we have typically seen in e.g. microarray gene expression data.
== Testing ==
* [http://statistic-on-air.blogspot.com/2015/01/adjustment-for-multiple-comparison.html Comparison of different ways of multiple-comparison] in R.
* [https://rss.onlinelibrary.wiley.com/doi/full/10.1111/rssb.12369?campaign=wolearlyview Robust testing in generalized linear models by sign flipping score contributions]
* [https://rss.onlinelibrary.wiley.com/doi/full/10.1111/rssb.12371?campaign=wolearlyview Goodness‐of‐fit testing in high dimensional generalized linear models]
 
== Generalized Additive Models ==
* [https://www.seascapemodels.org/rstats/2021/03/27/common-GAM-problems.html How to solve common problems with GAMs]
* [https://www.mzes.uni-mannheim.de/socialsciencedatalab/article/gam/ Generalized Additive Models: Allowing for some wiggle room in your models]
* [https://www.rdatagen.net/post/2022-08-09-simulating-data-from-a-non-linear-function-by-specifying-some-points-on-the-curve/ Simulating data from a non-linear function by specifying a handful of points]
* [https://www.rdatagen.net/post/2022-11-01-modeling-secular-trend-in-crt-using-gam/ Modeling the secular trend in a cluster randomized trial using very flexible models]


Take an example, Suppose 550 out of 10,000 genes are significant at .05 level
= Simulate data =
# P-value < .05 ==> Expect .05*10,000=500 false positives
* [https://rviews.rstudio.com/2020/09/09/fake-data-with-r/ Fake Data with R]
# False discovery rate < .05 ==> Expect .05*550 =27.5 false positives
* Understanding statistics through programming: [https://twitter.com/domliebl/status/1469347307267182601?s=20 You don’t really understand a stochastic process until you know how to simulate it] - D.G. Kendall.
# Family wise error rate < .05 ==> The probablity of at least 1 false positive <.05
 
== Density plot ==
{{Pre}}
# plot a Weibull distribution with shape and scale
func <- function(x) dweibull(x, shape = 1, scale = 3.38)
curve(func, .1, 10)


According to [https://www.cancer.org/cancer/cancer-basics/lifetime-probability-of-developing-or-dying-from-cancer.html Lifetime Risk of Developing or Dying From Cancer], there is a 39.7% risk of developing a cancer for male during his lifetime (in other words, 1 out of every 2.52 men in US will develop some kind of cancer during his lifetime) and 37.6% for female. So the probability of getting at least one cancer patient in a 3-generation family is 1-.6**3 - .63**3 = 0.95.
func <- function(x) dweibull(x, shape = 1.1, scale = 3.38)
curve(func, .1, 10)
</pre>


== False Discovery Rate ==
The shape parameter plays a role on the shape of the density function and the failure rate.
* https://en.wikipedia.org/wiki/False_discovery_rate
* Paper [http://www.stat.purdue.edu/~doerge/BIOINFORM.D/FALL06/Benjamini%20and%20Y%20FDR.pdf Definition] by Benjamini and Hochberg in JRSS B 1995.
* A [http://xkcd.com/882/ comic]
* P-value vs false discovery rate vs family wise error rate. See [http://jtleek.com/talks 10 statistics tip] or [http://www.biostat.jhsph.edu/~jleek/teaching/2011/genomics/mt140688.pdf#page=14 Statistics for Genomics (140.688)] from Jeff Leek. Suppose 550 out of 10,000 genes are significant at .05 level
** P-value < .05 implies expecting .05*10000 = 500 false positives
** False discovery rate < .05 implies expecting .05*550 = 27.5 false positives
** Family wise error rate (P (# of false positives ≥ 1)) < .05. See [https://riffyn.com/riffyn-blog/2017/10/29/family-wise-error-rate Understanding Family-Wise Error Rate]
* [http://www.pnas.org/content/100/16/9440.full Statistical significance for genomewide studies] by Storey and Tibshirani.
* [http://www.nicebread.de/whats-the-probability-that-a-significant-p-value-indicates-a-true-effect/ What’s the probability that a significant p-value indicates a true effect?]
* http://onetipperday.sterding.com/2015/12/my-note-on-multiple-testing.html
* [https://www.biorxiv.org/content/early/2018/10/31/458786 A practical guide to methods controlling false discoveries in computational biology] by Korthauer, et al 2018, [https://rdcu.be/bFEt2 BMC Genome Biology] 2019
* [https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btz191/5380770 onlineFDR]: an R package to control the false discovery rate for growing data repositories


Suppose <math>p_1 \leq p_2 \leq ... \leq p_n</math>. Then
* Shape <=1: density is convex, not a hat shape.  
: <math>
* Shape =1: failure rate (hazard function) is constant. [https://en.wikipedia.org/wiki/Exponential_distribution Exponential distribution].
\text{FDR}_i = \text{min}(1, n* p_i/i)
* Shape >1: failure rate increases with time
</math>.  
So if the number of tests (<math>n</math>) is large and/or the original p value (<math>p_i</math>) is large, then FDR can hit the value 1.


However, the simple formula above does not guarantee the monotonicity property from the FDR. So the calculation in R is more complicated. See [https://stackoverflow.com/questions/29992944/how-does-r-calculate-the-false-discovery-rate How Does R Calculate the False Discovery Rate].
== Simulate data from a specified density ==
* http://stackoverflow.com/questions/16134786/simulate-data-from-non-standard-density-function


Below is the histograms of p-values and FDR (BH adjusted) from a real data (Pomeroy in BRB-ArrayTools).
=== Permuted block randomization ===
[https://www.rdatagen.net/post/permuted-block-randomization-using-simstudy/ Permuted block randomization using simstudy]


[[:File:Hist bh.svg]]  
== Correlated data ==
<ul>
<li> [https://predictivehacks.com/how-to-generate-correlated-data-in-r/ How To Generate Correlated Data In R]
<li> [https://www.r-bloggers.com/2023/02/flexible-correlation-generation-an-update-to-gencormat-in-simstudy/ Flexible correlation generation: an update to genCorMat in simstudy]
<li> [https://en.wikipedia.org/wiki/Cholesky_decomposition#Monte_Carlo_simulation Cholesky decomposition]
<pre>
set.seed(1)
n <- 1000
R <- matrix(c(1, 0.75, 0.75, 1), nrow=2)
M <- matrix(rnorm(2 * n), ncol=2)
M <- M %*% chol(R) # chol(R) is an upper triangular matrix
x <- M[, 1] # First correlated vector
y <- M[, 2]  
cor(x, y)
# 0.7502607
</pre>
</ul>


And the next is a scatterplot w/ histograms on the margins from a null data.
== Clustered data with marginal correlations ==
[https://www.rdatagen.net/post/2022-11-22-generating-cluster-data-with-marginal-correlations/ Generating clustered data with marginal correlations]


[[:File:Scatterhist.svg]]
== Signal to noise ratio/SNR ==
* https://en.wikipedia.org/wiki/Signal-to-noise_ratio
* https://stats.stackexchange.com/questions/31158/how-to-simulate-signal-noise-ratio
: <math>SNR = \frac{\sigma^2_{signal}}{\sigma^2_{noise}} = \frac{Var(f(X))}{Var(e)} </math> if Y = f(X) + e
* The SNR is related to the correlation of Y and f(X). Assume X and e are independent (<math>X \perp e </math>):
: <math>
\begin{align}
Cor(Y, f(X)) &= Cor(f(X)+e, f(X)) \\
          &= \frac{Cov(f(X)+e, f(X))}{\sqrt{Var(f(X)+e) Var(f(X))}} \\
          &= \frac{Var(f(X))}{\sqrt{Var(f(X)+e) Var(f(X))}} \\
          &= \frac{\sqrt{Var(f(X))}}{\sqrt{Var(f(X)) + Var(e))}} = \frac{\sqrt{SNR}}{\sqrt{SNR + 1}} \\
          &= \frac{1}{\sqrt{1 + Var(e)/Var(f(X))}} = \frac{1}{\sqrt{1 + SNR^{-1}}}
\end{align}
</math> [[File:SnrVScor.png|200px]]
: Or <math>SNR = \frac{Cor^2}{1-Cor^2} </math>
* Page 401 of ESLII (https://web.stanford.edu/~hastie/ElemStatLearn//) 12th print.


== q-value ==
Some examples of signal to noise ratio
q-value is defined as the minimum FDR that can be attained when calling that '''feature''' significant (i.e., expected proportion of false positives incurred when calling that feature significant).
* ESLII_print12.pdf: .64, 5, 4
* Yuan and Lin 2006: 1.8, 3
* [https://academic.oup.com/biostatistics/article/19/3/263/4093306#123138354 A framework for estimating and testing qualitative interactions with applications to predictive biomarkers] Roth, Biostatistics, 2018
* [https://stackoverflow.com/a/47232502 Matlab: computing signal to noise ratio (SNR) of two highly correlated time domain signals]


If gene X has a q-value of 0.013 it means that 1.3% of genes that show p-values at least as small as gene X are false positives.
== Effect size, Cohen's d and volcano plot ==
* https://en.wikipedia.org/wiki/Effect_size (See also the estimation by the [[#Two_sample_test_assuming_equal_variance|pooled sd]])


== SAM/Significance Analysis of Microarrays ==
: <math>\theta = \frac{\mu_1 - \mu_2} \sigma,</math>
The percentile option is used to define the number of falsely called genes based on 'B' permutations. If we use the 90-th percentile, the number of significant genes will be less than if we use the 50-th percentile/median.


In BRCA dataset, using the 90-th percentile will get 29 genes vs 183 genes if we use median.
* [https://learningstatisticswithr.com/book/hypothesistesting.html#effectsize Effect size, sample size and power] from ebook '''[https://learningstatisticswithr.com/book/ Learning statistics with R]''': A tutorial for psychology students and other beginners.
* [https://en.wikipedia.org/wiki/Effect_size#t-test_for_mean_difference_between_two_independent_groups t-statistic and Cohen's d] for the case of mean difference between two independent groups
* [http://www.win-vector.com/blog/2019/06/cohens-d-for-experimental-planning/ Cohen’s D for Experimental Planning]
* [https://en.wikipedia.org/wiki/Volcano_plot_(statistics) Volcano plot]
** Y-axis: -log(p)
** X-axis: log2 fold change OR effect size (Cohen's D). [https://twitter.com/biobenkj/status/1072141825568329728 An example] from RNA-Seq data.


== Multivariate permutation test ==
== Treatment/control ==
In BRCA dataset, using 80% confidence gives 116 genes vs 237 genes if we use 50% confidence (assuming maximum proportion of false discoveries is 10%). The method is published on [http://www.sciencedirect.com/science/article/pii/S0378375803002118 EL Korn, JF Troendle, LM McShane and R Simon, ''Controlling the number of false discoveries: Application to high dimensional genomic data'', Journal of Statistical Planning and Inference, vol 124, 379-398 (2004)].
* [https://github.com/cran/biospear/blob/master/R/simdata.R simdata()] from [https://cran.r-project.org/web/packages/biospear/index.html biospear] package
* [https://github.com/cran/ROCSI/blob/master/R/ROCSI.R#L598 data.gen()] from [https://cran.r-project.org/web//packages/ROCSI/index.html ROCSI] package. The response contains continuous, binary and survival outcomes. The input include prevalence of predictive biomarkers, effect size (beta) for prognostic biomarker, etc.


== String Permutations Algorithm ==
== Cauchy distribution has no expectation ==
https://youtu.be/nYFd7VHKyWQ
https://en.wikipedia.org/wiki/Cauchy_distribution


== Empirical Bayes Normal Means Problem with Correlated Noise ==
<pre>
[https://arxiv.org/abs/1812.07488 Solving the Empirical Bayes Normal Means Problem with Correlated Noise] Sun 2018
replicate(10, mean(rcauchy(10000)))
</pre>


The package [https://github.com/LSun/cashr cashr] and the [https://github.com/LSun/cashr_paper source code of the paper]
== Dirichlet distribution ==
* [https://en.wikipedia.org/wiki/Dirichlet_distribution Dirichlet distribution]
** It is a multivariate generalization of the '''beta''' distribution
** The Dirichlet distribution is the conjugate prior of the categorical distribution and '''multinomial distribution'''.
* [https://cran.r-project.org/web/packages/dirmult/ dirmult]::rdirichlet()


= Bayes =
== Relationships among probability distributions ==
== Bayes factor ==
https://en.wikipedia.org/wiki/Relationships_among_probability_distributions
* http://www.nicebread.de/what-does-a-bayes-factor-feel-like/


== Empirical Bayes method ==
== What is the probability that two persons have the same initials ==
* http://en.wikipedia.org/wiki/Empirical_Bayes_method
[https://www.r-bloggers.com/2023/12/what-is-the-probability-that-two-persons-have-the-same-initials/ The post]. The probability that at least two persons have the same initials depends on the size of the group. For a team of 8 people, simulations suggest that the probability is close to 4.1%. This probability increases with the size of the group. If there are 1000 people in the room, [https://www.numerade.com/ask/question/whats-the-probability-that-someone-else-in-a-room-full-of-people-has-the-exact-same-3-initials-in-their-name-thats-in-another-persons-name-a-038-b-333-c-0057-d-0064/ the probability is almost 100%]. [https://math.stackexchange.com/a/606272 How many people do you need to guarantee that two of them have the same initals?]
* [http://varianceexplained.org/r/empirical-bayes-book/ Introduction to Empirical Bayes: Examples from Baseball Statistics]


== Naive Bayes classifier ==
= Multiple comparisons =
[http://r-posts.com/understanding-naive-bayes-classifier-using-r/ Understanding Naïve Bayes Classifier Using R]
* If you perform experiments over and over, you's bound to find something. So significance level must be adjusted down when performing multiple hypothesis tests.
* http://www.gs.washington.edu/academics/courses/akey/56008/lecture/lecture10.pdf
* Book 'Multiple Comparison Using R' by Bretz, Hothorn and Westfall, 2011.
* [http://varianceexplained.org/statistics/interpreting-pvalue-histogram/ Plot a histogram of p-values], a post from varianceexplained.org. The anti-conservative histogram (tail on the RHS) is what we have typically seen in e.g. microarray gene expression data.
* [http://statistic-on-air.blogspot.com/2015/01/adjustment-for-multiple-comparison.html Comparison of different ways of multiple-comparison] in R.
* [https://peerj.com/articles/10387/ Comparing multiple comparisons: practical guidance for choosing the best multiple comparisons test] Midway 2020
 
Take an example, Suppose 550 out of 10,000 genes are significant at .05 level
# P-value < .05 ==> Expect .05*10,000=500 false positives
# False discovery rate < .05 ==> Expect .05*550 =27.5 false positives
# Family wise error rate < .05 ==> The probablity of at least 1 false positive <.05


== MCMC ==
According to [https://www.cancer.org/cancer/cancer-basics/lifetime-probability-of-developing-or-dying-from-cancer.html Lifetime Risk of Developing or Dying From Cancer], there is a 39.7% risk of developing a cancer for male during his lifetime (in other words, 1 out of every 2.52 men in US will develop some kind of cancer during his lifetime) and 37.6% for female. So the probability of getting at least one cancer patient in a 3-generation family is 1-.6**3 - .63**3 = 0.95.
[https://stablemarkets.wordpress.com/2018/03/16/speeding-up-metropolis-hastings-with-rcpp/ Speeding up Metropolis-Hastings with Rcpp]


= offset() function =
== Flexible method ==
* An '''offset''' is a term to be added to a linear predictor, such as in a generalised linear model, with known coefficient 1 rather than an estimated coefficient.
[https://rdrr.io/bioc/GSEABenchmarkeR/man/runDE.html ?GSEABenchmarkeR::runDE]. Unadjusted (too few DE genes), FDR, and Bonferroni (too many DE genes) are applied depending on the proportion of DE genes.
* https://www.rdocumentation.org/packages/stats/versions/3.5.0/topics/offset


== Offset in Poisson regression ==
== Family-Wise Error Rate (FWER) ==
* http://rfunction.com/archives/223
* https://en.wikipedia.org/wiki/Family-wise_error_rate
* https://stats.stackexchange.com/questions/11182/when-to-use-an-offset-in-a-poisson-regression
* [https://www.statology.org/family-wise-error-rate/ How to Estimate the Family-wise Error Rate]
* [https://rviews.rstudio.com/2019/10/02/multiple-hypothesis-testing/ Multiple Hypothesis Testing in R]


# We need to model '''rates''' instead of '''counts'''
== Bonferroni ==
# More generally, you use offsets because the '''units''' of observation are different in some dimension (different populations, different geographic sizes) and the outcome is proportional to that dimension.
* https://en.wikipedia.org/wiki/Bonferroni_correction
* This correction method is the most conservative of all and due to its strict filtering, potentially increases the false negative rate which simply means rejecting true positives among false positives.


An example from [http://rfunction.com/archives/223 here]
== False Discovery Rate/FDR ==
<syntaxhighlight lang='rsplus'>
* https://en.wikipedia.org/wiki/False_discovery_rate
<- c(15,  7, 36,  4, 16, 12, 41, 15)
* Paper [http://www.stat.purdue.edu/~doerge/BIOINFORM.D/FALL06/Benjamini%20and%20Y%20FDR.pdf Definition] by Benjamini and Hochberg in JRSS B 1995.
N  <- c(4949, 3534, 12210, 344, 6178, 4883, 11256, 7125)
* [https://youtu.be/K8LQSvtjcEo False Discovery Rates, FDR, clearly explained] by StatQuest
x1 <- c(-0.1, 0, 0.2, 0, 1, 1.1, 1.1, 1)
* A [http://xkcd.com/882/ comic]
x2 <- c(2.2, 1.5, 4.5, 7.2, 4.5, 3.2, 9.1, 5.2)
* [http://www.nonlinear.com/support/progenesis/comet/faq/v2.0/pq-values.aspx A p-value of 0.05 implies that 5% of all tests will result in false positives. An FDR adjusted p-value (or q-value) of 0.05 implies that 5% of significant tests will result in false positives. The latter will result in fewer false positives].
* [https://stats.stackexchange.com/a/456087 How to interpret False Discovery Rate?]
* P-value vs false discovery rate vs family wise error rate. See [http://jtleek.com/talks 10 statistics tip] or [http://www.biostat.jhsph.edu/~jleek/teaching/2011/genomics/mt140688.pdf#page=14 Statistics for Genomics (140.688)] from Jeff Leek. Suppose 550 out of 10,000 genes are significant at .05 level
** P-value < .05 implies expecting .05*10000 = 500 false positives  (if we consider 50 hallmark genesets, 50*.05=2.5)
** False discovery rate < .05 implies expecting .05*550 = 27.5 false positives
** Family wise error rate (P (# of false positives ≥ 1)) < .05. See [https://riffyn.com/riffyn-blog/2017/10/29/family-wise-error-rate Understanding Family-Wise Error Rate]
* [http://www.pnas.org/content/100/16/9440.full Statistical significance for genomewide studies] by Storey and Tibshirani.
* [http://www.nicebread.de/whats-the-probability-that-a-significant-p-value-indicates-a-true-effect/ What’s the probability that a significant p-value indicates a true effect?]
* http://onetipperday.sterding.com/2015/12/my-note-on-multiple-testing.html
* [https://www.biorxiv.org/content/early/2018/10/31/458786 A practical guide to methods controlling false discoveries in computational biology] by Korthauer, et al 2018, [https://rdcu.be/bFEt2 BMC Genome Biology] 2019
* [https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btz191/5380770 onlineFDR]: an R package to control the false discovery rate for growing data repositories
* [https://academic.oup.com/biostatistics/article/15/1/1/244509#2869827 An estimate of the science-wise false discovery rate and application to the top medical literature] Jager & Leek 2021
* The adjusted p-value (also known as the False Discovery Rate or FDR) and the raw p-value can be close under certain conditions. [https://stats.stackexchange.com/a/51159 study on multiple outcomes- do I adjust or not adjust p-values?]
** '''The number of tests is small''': When performing multiple hypothesis tests, the adjustment for multiple comparisons (like Bonferroni or Benjamini-Hochberg procedures) can have a smaller impact if the number of tests is small. This is because these adjustments are less stringent when fewer tests are conducted.
** '''The p-values are very small''': If the raw p-values are very small to begin with, then even after adjustment, they may still remain small. This is especially true for methods that control the FDR, like the Benjamini-Hochberg procedure, which tend to be less conservative than methods controlling the Family-Wise Error Rate (FWER), like the Bonferroni correction.
** '''The tests are not independent''': Some p-value adjustment methods assume that the tests are independent. If this assumption is violated, the adjusted p-values may not be accurate.
* [https://predictivehacks.com/the-benjamini-hochberg-procedure-fdr-and-p-value-adjusted-explained/ The Benjamini-Hochberg Procedure (FDR) And P-Value Adjusted Explained]
 
Suppose <math>p_1 \leq p_2 \leq ... \leq p_n</math>. Then
: <math>
\text{FDR}_i = \text{min}(1, n* p_i/i)
</math>.  
So if the number of tests (<math>n</math>) is large and/or the original p value (<math>p_i</math>) is large, then FDR can hit the value 1.


glm(Y ~ offset(log(N)) + (x1 + x2), family=poisson) # two variables
However, the simple formula above does not guarantee the monotonicity property from the FDR. So the calculation in R is more complicated. See [https://stackoverflow.com/questions/29992944/how-does-r-calculate-the-false-discovery-rate How Does R Calculate the False Discovery Rate].
# Coefficients:
 
# (Intercept)          x1          x2
Below is the histograms of p-values and FDR (BH adjusted) from a real data (Pomeroy in BRB-ArrayTools).
#    -6.172      -0.380        0.109
 
#
[[:File:Hist bh.svg]]
# Degrees of Freedom: 7 Total (i.e. Null);  5 Residual
# Null Deviance:     10.56
# Residual Deviance: 4.559 AIC: 46.69
glm(Y ~ offset(log(N)) + I(x1+x2), family=poisson)  # one variable
# Coefficients:
# (Intercept)  I(x1 + x2)
#  -6.12652      0.04746
#
# Degrees of Freedom: 7 Total (i.e. Null);  6 Residual
# Null Deviance:     10.56
# Residual Deviance: 8.001 AIC: 48.13
</syntaxhighlight>


== Offset in Cox regression ==
And the next is a scatterplot w/ histograms on the margins from a null data. The curve looks like f(x)=log(x).
An example from [https://github.com/cran/biospear/blob/master/R/PCAlasso.R biospear::PCAlasso()]
<syntaxhighlight lang='rsplus'>
coxph(Surv(time, status) ~ offset(off.All), data = data)
# Call:  coxph(formula = Surv(time, status) ~ offset(off.All), data = data)
#
# Null model
#  log likelihood= -2391.736
#  n= 500


# versus without using offset()
[[:File:Scatterhist.svg]]
coxph(Surv(time, status) ~ off.All, data = data)
# Call:
# coxph(formula = Surv(time, status) ~ off.All, data = data)
#
#          coef exp(coef) se(coef)    z    p
# off.All 0.485    1.624    0.658 0.74 0.46
#
# Likelihood ratio test=0.54  on 1 df, p=0.5
# n= 500, number of events= 438
coxph(Surv(time, status) ~ off.All, data = data)$loglik
# [1] -2391.702 -2391.430    # initial coef estimate, final coef
</syntaxhighlight>


== Offset in linear regression ==
== q-value ==
* https://www.rdocumentation.org/packages/stats/versions/3.5.1/topics/lm
* https://en.wikipedia.org/wiki/Q-value_(statistics)
* https://stackoverflow.com/questions/16920628/use-of-offset-in-lm-regression-r
* [https://divingintogeneticsandgenomics.rbind.io/post/understanding-p-value-multiple-comparisons-fdr-and-q-value/ Understanding p value, multiple comparisons, FDR and q value]


= Overdispersion =
q-value is defined as the minimum FDR that can be attained when calling that '''feature''' significant (i.e., expected proportion of false positives incurred when calling that feature significant).
https://en.wikipedia.org/wiki/Overdispersion


Var(Y) = phi * E(Y). If phi > 1, then it is overdispersion relative to Poisson. If phi <1, we have under-dispersion (rare).
If gene X has a q-value of 0.013 it means that 1.3% of genes that show p-values at least as small as gene X are false positives.


== Heterogeneity ==
Another view: q-value = FDR adjusted p-value. A p-value of 5% means that 5% of all tests will result in false positives. A q-value of 5% means that 5% of significant results will result in false positives. [https://www.statisticshowto.datasciencecentral.com/q-value/ here].
The Poisson model fit is not good; residual deviance/df >> 1. The lack of fit maybe due to missing data, covariates or overdispersion.


Subjects within each covariate combination still differ greatly.
== Double dipping ==
[[Heatmap#Double_dipping|Double dipping]]


*https://onlinecourses.science.psu.edu/stat504/node/169.
== SAM/Significance Analysis of Microarrays ==
* https://onlinecourses.science.psu.edu/stat504/node/162
The percentile option is used to define the number of falsely called genes based on 'B' permutations. If we use the 90-th percentile, the number of significant genes will be less than if we use the 50-th percentile/median.


Consider Quasi-Poisson or negative binomial.
In BRCA dataset, using the 90-th percentile will get 29 genes vs 183 genes if we use median.
 
== Required number of permutations for a permutation-based p-value ==
* [https://en.wikipedia.org/wiki/Resampling_(statistics)#Permutation_tests Permutation tests]
* https://stats.stackexchange.com/a/80879


== Test of overdispersion or underdispersion in Poisson models ==
== Multivariate permutation test ==
https://stats.stackexchange.com/questions/66586/is-there-a-test-to-determine-whether-glm-overdispersion-is-significant
In BRCA dataset, using 80% confidence gives 116 genes vs 237 genes if we use 50% confidence (assuming maximum proportion of false discoveries is 10%). The method is published on [http://www.sciencedirect.com/science/article/pii/S0378375803002118 EL Korn, JF Troendle, LM McShane and R Simon, ''Controlling the number of false discoveries: Application to high dimensional genomic data'', Journal of Statistical Planning and Inference, vol 124, 379-398 (2004)].


== Negative Binomial ==
== The role of the p-value in the multitesting problem ==
The mean of the Poisson distribution can itself be thought of as a random variable drawn from the gamma distribution thereby introducing an additional free parameter.
https://www.tandfonline.com/doi/full/10.1080/02664763.2019.1682128


== Binomial ==
== String Permutations Algorithm ==
* [https://www.rdatagen.net/post/overdispersed-binomial-data/ Generating and modeling over-dispersed binomial data]
https://youtu.be/nYFd7VHKyWQ
* [https://cran.r-project.org/web/packages/simstudy/index.html simstudy] package. The final data sets can represent data from '''randomized control trials''', '''repeated measure (longitudinal) designs''', and cluster randomized trials. Missingness can be generated using various mechanisms (MCAR, MAR, NMAR).


= Count data =
== combinat package ==
== Zero counts ==
[https://predictivehacks.com/permutations-in-r/ Find all Permutations]
* [https://doi.org/10.1080/00031305.2018.1444673 A Method to Handle Zero Counts in the Multinomial Model]


== Bias ==
== [https://cran.r-project.org/web/packages/coin/index.html coin] package: Resampling ==
[https://amstat.tandfonline.com/doi/full/10.1080/00031305.2018.1564699 Bias in Small-Sample Inference With Count-Data Models] Blackburn 2019
[https://www.statmethods.net/stats/resampling.html Resampling Statistics]


= Survival data analysis =
== Empirical Bayes Normal Means Problem with Correlated Noise ==
See [[Survival_data|Survival data analysis]]
[https://arxiv.org/abs/1812.07488 Solving the Empirical Bayes Normal Means Problem with Correlated Noise] Sun 2018


= Logistic regression =
The package [https://github.com/LSun/cashr cashr] and the [https://github.com/LSun/cashr_paper source code of the paper]


== Simulate binary data from the logistic model ==
= Bayes =
https://stats.stackexchange.com/questions/46523/how-to-simulate-artificial-data-for-logistic-regression
== Bayes factor ==
<syntaxhighlight lang='rsplus'>
* http://www.nicebread.de/what-does-a-bayes-factor-feel-like/
set.seed(666)
 
x1 = rnorm(1000)          # some continuous variables
== Empirical Bayes method ==
x2 = rnorm(1000)
* http://en.wikipedia.org/wiki/Empirical_Bayes_method
z = 1 + 2*x1 + 3*x2        # linear combination with a bias
* [http://varianceexplained.org/r/empirical-bayes-book/ Introduction to Empirical Bayes: Examples from Baseball Statistics]
pr = 1/(1+exp(-z))        # pass through an inv-logit function
y = rbinom(1000,1,pr)      # bernoulli response variable
#now feed it to glm:
df = data.frame(y=y,x1=x1,x2=x2)
glm( y~x1+x2,data=df,family="binomial")
</syntaxhighlight>


== Building a Logistic Regression model from scratch ==
== Naive Bayes classifier ==
https://www.analyticsvidhya.com/blog/2015/10/basics-logistic-regression
[http://r-posts.com/understanding-naive-bayes-classifier-using-r/ Understanding Naïve Bayes Classifier Using R]


== Odds ratio ==
== MCMC ==
Calculate the odds ratio from the coefficient estimates; see [https://stats.stackexchange.com/questions/8661/logistic-regression-in-r-odds-ratio this post].
[https://stablemarkets.wordpress.com/2018/03/16/speeding-up-metropolis-hastings-with-rcpp/ Speeding up Metropolis-Hastings with Rcpp]
<syntaxhighlight lang='rsplus'>
require(MASS)
N  <- 100              # generate some data
X1 <- rnorm(N, 175, 7)
X2 <- rnorm(N,  30, 8)
X3 <- abs(rnorm(N, 60, 30))
Y  <- 0.5*X1 - 0.3*X2 - 0.4*X3 + 10 + rnorm(N, 0, 12)


# dichotomize Y and do logistic regression
= offset() function =
Yfac  <- cut(Y, breaks=c(-Inf, median(Y), Inf), labels=c("lo", "hi"))
* An '''offset''' is a term to be added to a linear predictor, such as in a generalised linear model, with known coefficient 1 rather than an estimated coefficient.
glmFit <- glm(Yfac ~ X1 + X2 + X3, family=binomial(link="logit"))
* https://www.rdocumentation.org/packages/stats/versions/3.5.0/topics/offset


exp(cbind(coef(glmFit), confint(glmFit))) 
== Offset in Poisson regression ==
</syntaxhighlight>
* http://rfunction.com/archives/223
* https://stats.stackexchange.com/questions/11182/when-to-use-an-offset-in-a-poisson-regression


== AUC ==
# We need to model '''rates''' instead of '''counts'''
<pre>
# More generally, you use offsets because the '''units''' of observation are different in some dimension (different populations, different geographic sizes) and the outcome is proportional to that dimension.
      predict.glm()             ROCR::prediction()    ROCR::performance()
glmobj ------------> predictTest -----------------> ROCPPred ---------> AUC
newdata                labels
</pre>


= Medical applications =
An example from [http://rfunction.com/archives/223 here]
== Subgroup analysis ==
{{Pre}}
Other related keywords: recursive partitioning, randomized clinical trials (RCT)
Y  <- c(15,  7, 36,  4, 16, 12, 41, 15)
N  <- c(4949, 3534, 12210, 344, 6178, 4883, 11256, 7125)
x1 <- c(-0.1, 0, 0.2, 0, 1, 1.1, 1.1, 1)
x2 <- c(2.2, 1.5, 4.5, 7.2, 4.5, 3.2, 9.1, 5.2)


* [https://www.rdatagen.net/post/sub-group-analysis-in-rct/ Thinking about different ways to analyze sub-groups in an RCT]
glm(Y ~ offset(log(N)) + (x1 + x2), family=poisson) # two variables
* [http://onlinelibrary.wiley.com/doi/10.1002/sim.7064/full Tutorial in biostatistics: data-driven subgroup identification and analysis in clinical trials] I Lipkovich, A Dmitrienko - Statistics in medicine, 2017
# Coefficients:
* Personalized medicine:Four perspectives of tailored medicine SJ Ruberg, L Shen - Statistics in Biopharmaceutical Research, 2015
# (Intercept)          x1          x2
* Berger, J. O., Wang, X., and Shen, L. (2014), “A Bayesian Approach to Subgroup Identification,” Journal of Biopharmaceutical Statistics, 24, 110–129.
#    -6.172      -0.380        0.109
* [https://rpsychologist.com/treatment-response-subgroup Change over time is not "treatment response"]
#
# Degrees of Freedom: 7 Total (i.e. Null);  5 Residual
# Null Deviance:     10.56
# Residual Deviance: 4.559 AIC: 46.69
glm(Y ~ offset(log(N)) + I(x1+x2), family=poisson)  # one variable
# Coefficients:
# (Intercept)  I(x1 + x2)
-6.12652      0.04746
#
# Degrees of Freedom: 7 Total (i.e. Null);  6 Residual
# Null Deviance:     10.56
# Residual Deviance: 8.001 AIC: 48.13
</pre>


== Interaction analysis ==
== Offset in Cox regression ==
* Goal: '''assessing the predictiveness of biomarkers''' by testing their '''interaction (strength) with the treatment'''.
An example from [https://github.com/cran/biospear/blob/master/R/PCAlasso.R biospear::PCAlasso()]
* [https://onlinelibrary.wiley.com/doi/epdf/10.1002/sim.7608 Evaluation of biomarkers for treatment selection usingindividual participant data from multiple clinical trials] Kang et al 2018
{{Pre}}
* http://www.stat.purdue.edu/~ghobbs/STAT_512/Lecture_Notes/ANOVA/Topic_27.pdf#page=15. For survival data, y-axis is the survival time and B1=treatment, B2=control and X-axis is treatment-effect modifying score. But as seen on [http://www.stat.purdue.edu/~ghobbs/STAT_512/Lecture_Notes/ANOVA/Topic_27.pdf#page=16 page16], the effects may not be separated.
coxph(Surv(time, status) ~ offset(off.All), data = data)
* [http://onlinelibrary.wiley.com/doi/10.1002/bimj.201500234/full Identification of biomarker-by-treatment interactions in randomized clinical trials with survival outcomes and high-dimensional spaces] N Ternès, F Rotolo, G Heinze, S Michiels - Biometrical Journal, 2017
# Call:  coxph(formula = Surv(time, status) ~ offset(off.All), data = data)
* [https://onlinelibrary.wiley.com/doi/epdf/10.1002/sim.6564 Designing a study to evaluate the benefitof a biomarker for selectingpatient treatment] Janes 2015
#
* [https://onlinelibrary.wiley.com/doi/epdf/10.1002/pst.1728 A visualization method measuring theperformance of biomarkers for guidingtreatment decisions] Yang et al 2015. Predictiveness curves were used a lot.
# Null model
* [https://onlinelibrary.wiley.com/doi/epdf/10.1111/biom.12191 Combining Biomarkers to Optimize Patient TreatmentRecommendations] Kang et al 2014. Several simulations are conducted.
#  log likelihood= -2391.736
* [https://www.ncbi.nlm.nih.gov/pubmed/24695044 An approach to evaluating and comparing biomarkers for patient treatment selection] Janes et al 2014
#   n= 500
* [http://journals.sagepub.com/doi/pdf/10.1177/0272989X13493147 A Framework for Evaluating Markers Used to Select Patient Treatment] Janes et al 2014
 
* Tian, L., Alizaden, A. A., Gentles, A. J., and Tibshirani, R. (2014) “A Simple Method for Detecting Interactions Between a Treatment and a Large Number of Covariates,” and the [https://books.google.com/books?hl=en&lr=&id=2gG3CgAAQBAJ&oi=fnd&pg=PA79&ots=y5LqF3vk-T&sig=r2oaOxf9gcjK-1bvFHVyfvwscP8#v=onepage&q&f=true book chapter].
# versus without using offset()
* [https://biostats.bepress.com/cgi/viewcontent.cgi?article=1228&context=uwbiostat Statistical Methods for Evaluating and Comparing Biomarkers for Patient Treatment Selection] Janes et al 2013
coxph(Surv(time, status) ~ off.All, data = data)
* [https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1541-0420.2011.01722.x Assessing Treatment-Selection Markers using a Potential Outcomes Framework] Huang et al 2012
# Call:
* [https://biostats.bepress.com/cgi/viewcontent.cgi?article=1223&context=uwbiostat Methods for Evaluating Prediction Performance of Biomarkers and Tests] Pepe et al 2012
# coxph(formula = Surv(time, status) ~ off.All, data = data)
* Measuring the performance of markers for guiding treatment decisions by Janes, et al 2011. <syntaxhighlight lang='rsplus'>
#
cf <- c(2, 1, .5, 0)
#          coef exp(coef) se(coef)    z    p
f1 <- function(x) { z <- cf[1] + cf[3] + (cf[2]+cf[4])*x; 1/ (1 + exp(-z)) }
# off.All 0.485    1.624    0.658 0.74 0.46
f0 <- function(x) { z <- cf[1] + cf[2]*x; 1/ (1 + exp(-z)) }
#
par(mfrow=c(1,3))
# Likelihood ratio test=0.54  on 1 df, p=0.5
curve(f1, -3, 3, col = 'red', ylim = c(0, 1),
# n= 500, number of events= 438
      ylab = '5-year DFS Rate', xlab = 'Marker A/D Value',
coxph(Surv(time, status) ~ off.All, data = data)$loglik
      main = 'Predictiveness Curve', lwd = 2)
# [1] -2391.702 -2391.430    # initial coef estimate, final coef
curve(f0, -3, 3, col = 'black', ylim = c(0, 1),
</pre>
      xlab = '', ylab = '', lwd = 2, add = TRUE)
 
legend(.5, .4, c("control", "treatment"),
== Offset in linear regression ==
      col = c("black", "red"), lwd = 2)
* https://www.rdocumentation.org/packages/stats/versions/3.5.1/topics/lm
* https://stackoverflow.com/questions/16920628/use-of-offset-in-lm-regression-r


cf <- c(.1, 1, -.1, .5)
= Overdispersion =
curve(f1, -3, 3, col = 'red', ylim = c(0, 1),
https://en.wikipedia.org/wiki/Overdispersion
      ylab = '5-year DFS Rate', xlab = 'Marker G Value',
 
      main = 'Predictiveness Curve', lwd = 2)
Var(Y) = phi * E(Y). If phi > 1, then it is overdispersion relative to Poisson. If phi <1, we have under-dispersion (rare).
curve(f0, -3, 3, col = 'black', ylim = c(0, 1),
      xlab = '', ylab = '', lwd = 2, add = TRUE)
legend(.5, .4, c("control", "treatment"),
      col = c("black", "red"), lwd = 2)
abline(v= - cf[3]/cf[4], lty = 2)


cf <- c(1, -1, 1, 2)
== Heterogeneity ==
curve(f1, -3, 3, col = 'red', ylim = c(0, 1),
The Poisson model fit is not good; residual deviance/df >> 1. The lack of fit maybe due to missing data, covariates or overdispersion.
      ylab = '5-year DFS Rate', xlab = 'Marker B Value',
      main = 'Predictiveness Curve', lwd = 2)
curve(f0, -3, 3, col = 'black', ylim = c(0, 1),
      xlab = '', ylab = '', lwd = 2, add = TRUE)
legend(.5, .85, c("control", "treatment"),
      col = c("black", "red"), lwd = 2)
abline(v= - cf[3]/cf[4], lty = 2)
</syntaxhighlight> [[:File:PredcurveLogit.svg]]
* [https://www.degruyter.com/downloadpdf/j/ijb.2014.10.issue-1/ijb-2012-0052/ijb-2012-0052.pdf An Approach to Evaluating and Comparing Biomarkers for Patient Treatment Selection] The International Journal of Biostatistics by Janes, 2014. Y-axis is risk given marker, not P(T > t0|X). Good details.
* Gunter, L., Zhu, J., and Murphy, S. (2011), “Variable Selection for Qualitative Interactions in Personalized Medicine While Controlling the Family-Wise Error Rate,” Journal of Biopharmaceutical Statistics, 21, 1063–1078.


= Statistical Learning =
Subjects within each covariate combination still differ greatly.  
* [http://statweb.stanford.edu/~tibs/ElemStatLearn/ Elements of Statistical Learning] Book homepage
* [http://heather.cs.ucdavis.edu/draftregclass.pdf From Linear Models to Machine Learning] by Norman Matloff
* [http://www.kdnuggets.com/2017/04/10-free-must-read-books-machine-learning-data-science.html 10 Free Must-Read Books for Machine Learning and Data Science]
* [https://towardsdatascience.com/the-10-statistical-techniques-data-scientists-need-to-master-1ef6dbd531f7 10 Statistical Techniques Data Scientists Need to Master]
*# Linear regression
*# Classification: Logistic Regression, Linear Discriminant Analysis, Quadratic Discriminant Analysis
*# Resampling methods: Bootstrapping and Cross-Validation
*# Subset selection: Best-Subset Selection, Forward Stepwise Selection, Backward Stepwise Selection, Hybrid Methods
*# Shrinkage/regularization: Ridge regression, Lasso
*# Dimension reduction: Principal Components Regression, Partial least squares
*# Nonlinear models: Piecewise function, Spline, generalized additive model
*# Tree-based methods: Bagging, Boosting, Random Forest
*# Support vector machine
*# Unsupervised learning: PCA, k-means, Hierarchical
* [https://www.listendata.com/2018/03/regression-analysis.html?m=1 15 Types of Regression you should know]


== LDA (Fisher's linear discriminant), QDA ==
*https://onlinecourses.science.psu.edu/stat504/node/169.
* https://en.wikipedia.org/wiki/Linear_discriminant_analysis
* https://onlinecourses.science.psu.edu/stat504/node/162
* [https://datascienceplus.com/how-to-perform-logistic-regression-lda-qda-in-r/ How to perform Logistic Regression, LDA, & QDA in R]
* [http://r-posts.com/discriminant-analysis-statistics-all-the-way/ Discriminant Analysis: Statistics All The Way]
* [https://onlinelibrary.wiley.com/doi/10.1111/biom.13065 Multiclass linear discriminant analysis with ultrahigh‐dimensional features] Li 2019


== Bagging ==
Consider Quasi-Poisson or negative binomial.
Chapter 8 of the book.


* Bootstrap mean is approximately a posterior average.
== Test of overdispersion or underdispersion in Poisson models ==
* Bootstrap aggregation or bagging average: Average the prediction over a collection of bootstrap samples, thereby reducing its variance. The bagging estimate is defined by
https://stats.stackexchange.com/questions/66586/is-there-a-test-to-determine-whether-glm-overdispersion-is-significant
:<math>\hat{f}_{bag}(x) = \frac{1}{B}\sum_{b=1}^B \hat{f}^{*b}(x).</math>


[https://statcompute.wordpress.com/2016/01/02/where-bagging-might-work-better-than-boosting/ Where Bagging Might Work Better Than Boosting]
== Poisson ==
* https://en.wikipedia.org/wiki/Poisson_distribution
* [https://www.tandfonline.com/doi/abs/10.1080/00031305.2022.2046159 The “Poisson” Distribution: History, Reenactments, Adaptations]
* [https://www.zeileis.org/news/poisson/ The Poisson distribution: From basic probability theory to regression models]
* [https://www.dataquest.io/blog/tutorial-poisson-regression-in-r/ Tutorial:  Poisson Regression in R]
* We can use a '''quasipoisson''' model, which allows the variance to be proportional rather than equal to the mean. glm(, family="quasipoisson", ).
** [https://sscc.wisc.edu/sscc/pubs/glm-r/ Generalized Linear Models in R] from sscc.wisc.
** See the R code in the supplement of the paper [https://academic.oup.com/ije/article/46/1/348/2622842 Interrupted time series regression for the evaluation of public health interventions: a tutorial] 2016


[https://freakonometrics.hypotheses.org/52777 CLASSIFICATION FROM SCRATCH, BAGGING AND FORESTS 10/8]
== Negative Binomial ==
The mean of the Poisson distribution can itself be thought of as a random variable drawn from the gamma distribution thereby introducing an additional free parameter.


== Boosting ==
== Binomial ==
* Ch8.2 Bagging, Random Forests and Boosting of [http://www-bcf.usc.edu/~gareth/ISL/ An Introduction to Statistical Learning] and the [http://www-bcf.usc.edu/~gareth/ISL/Chapter%208%20Lab.txt code].
* [https://www.rdatagen.net/post/overdispersed-binomial-data/ Generating and modeling over-dispersed binomial data]
* [http://freakonometrics.hypotheses.org/19874 An Attempt To Understand Boosting Algorithm]
* [https://aosmith.rbind.io/2020/08/20/simulate-binomial-glmm/ Simulate! Simulate! - Part 4: A binomial generalized linear mixed model]
* [http://cran.r-project.org/web/packages/gbm/index.html gbm] package. An implementation of extensions to Freund and Schapire's '''AdaBoost algorithm''' and Friedman's '''gradient boosting machine'''. Includes regression methods for least squares, absolute loss, t-distribution loss, [http://mathewanalytics.com/2015/11/13/applied-statistical-theory-quantile-regression/ quantile regression], logistic, multinomial logistic, Poisson, Cox proportional hazards partial likelihood, AdaBoost exponential loss, Huberized hinge loss, and Learning to Rank measures (LambdaMart).
* [https://cran.r-project.org/web/packages/simstudy/index.html simstudy] package. The final data sets can represent data from '''randomized control trials''', '''repeated measure (longitudinal) designs''', and cluster randomized trials. Missingness can be generated using various mechanisms (MCAR, MAR, NMAR). [https://www.rdatagen.net/post/analyzing-a-binary-outcome-in-a-study-with-within-cluster-pair-matched-randomization/ Analyzing a binary outcome arising out of within-cluster, pair-matched randomization]. [https://www.rdatagen.net/post/generating-probabilities-for-ordinal-categorical-data/ Generating probabilities for ordinal categorical data].
* https://www.biostat.wisc.edu/~kendzior/STAT877/illustration.pdf
** [https://www.rdatagen.net/post/2020-12-22-constrained-randomization-to-evaulate-the-vaccine-rollout-in-nursing-homes/ Constrained randomization to evaulate the vaccine rollout in nursing homes]
* http://www.is.uni-freiburg.de/ressourcen/business-analytics/10_ensemblelearning.pdf and [http://www.is.uni-freiburg.de/ressourcen/business-analytics/homework_ensemblelearning_questions.pdf exercise]
** [https://www.rdatagen.net/post/2021-01-05-coming-soon-new-feature-to-easily-generate-cumulative-odds-without-proportionality-assumption/ Coming soon: effortlessly generate ordinal data without assuming proportional odds]
* [https://freakonometrics.hypotheses.org/52782 Classification from scratch]
** [https://www.rdatagen.net/post/2021-03-02-randomization-tests/ Randomization tests]


=== AdaBoost ===
= Count data =
AdaBoost.M1 by Freund and Schapire (1997):
== Zero counts ==
* [https://doi.org/10.1080/00031305.2018.1444673 A Method to Handle Zero Counts in the Multinomial Model]


The error rate on the training sample is
== Bias ==
<math>
[https://amstat.tandfonline.com/doi/full/10.1080/00031305.2018.1564699 Bias in Small-Sample Inference With Count-Data Models] Blackburn 2019
\bar{err} = \frac{1}{N} \sum_{i=1}^N I(y_i \neq G(x_i)),
</math>


Sequentially apply the weak classification algorithm to repeatedly modified versions of the data, thereby producing a sequence of weak classifiers <math>G_m(x), m=1,2,\dots,M.</math>
= Survival data analysis =
See [[Survival_data|Survival data analysis]]


The predictions from all of them are combined through a weighted majority vote to produce the final prediction:
= Logistic regression =
<math>
G(x) = sign[\sum_{m=1}^M \alpha_m G_m(x)].
</math>
Here <math> \alpha_1,\alpha_2,\dots,\alpha_M</math> are computed by the boosting algorithm and weight the contribution of each respective <math>G_m(x)</math>. Their effect is to give higher influence to the more accurate classifiers in the sequence.


=== Dropout regularization ===
== Simulate binary data from the logistic model ==
[https://statcompute.wordpress.com/2017/08/20/dart-dropout-regularization-in-boosting-ensembles/ DART: Dropout Regularization in Boosting Ensembles]
https://stats.stackexchange.com/questions/46523/how-to-simulate-artificial-data-for-logistic-regression
{{Pre}}
set.seed(666)
x1 = rnorm(1000)          # some continuous variables
x2 = rnorm(1000)
z = 1 + 2*x1 + 3*x2        # linear combination with a bias
pr = 1/(1+exp(-z))        # pass through an inv-logit function
y = rbinom(1000,1,pr)      # bernoulli response variable
#now feed it to glm:
df = data.frame(y=y,x1=x1,x2=x2)
glm( y~x1+x2,data=df,family="binomial")
</pre>


=== Gradient boosting ===
== Building a Logistic Regression model from scratch ==
* https://en.wikipedia.org/wiki/Gradient_boosting
https://www.analyticsvidhya.com/blog/2015/10/basics-logistic-regression
* [https://shirinsplayground.netlify.com/2018/11/ml_basics_gbm/ Machine Learning Basics - Gradient Boosting & XGBoost]
* [http://www.sthda.com/english/articles/35-statistical-machine-learning-essentials/139-gradient-boosting-essentials-in-r-using-xgboost/ Gradient Boosting Essentials in R Using XGBOOST]


== Gradient descent ==
== Algorithm didn’t converge & probabilities 0/1 ==
Gradient descent is a first-order iterative optimization algorithm for finding the minimum of a function ([https://en.wikipedia.org/wiki/Gradient_descent Wikipedia]).
* [https://statisticsglobe.com/r-glm-fit-warning-algorithm-not-converge-probabilities glm.fit Warning Messages in R: algorithm didn’t converge & probabilities 0/1]
* [https://stackoverflow.com/a/8596547 Why am I getting "algorithm did not converge" and "fitted prob numerically 0 or 1" warnings with glm?]
* [https://spin.atomicobject.com/2014/06/24/gradient-descent-linear-regression/ An Introduction to Gradient Descent and Linear Regression] Easy to understand based on simple linear regression. Code is provided too.
* [http://gradientdescending.com/applying-gradient-descent-primer-refresher/ Applying gradient descent – primer / refresher]
* [http://sebastianruder.com/optimizing-gradient-descent/index.html An overview of Gradient descent optimization algorithms]
* [https://www.analyticsvidhya.com/blog/2016/01/complete-tutorial-ridge-lasso-regression-python/ A Complete Tutorial on Ridge and Lasso Regression in Python]
* How to choose the learning rate?
** [http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=MachineLearning&doc=exercises/ex3/ex3.html Machine learning] from Andrew Ng
** http://scikit-learn.org/stable/modules/sgd.html
* R packages
** https://cran.r-project.org/web/packages/gradDescent/index.html, https://www.rdocumentation.org/packages/gradDescent/versions/2.0
** https://cran.r-project.org/web/packages/sgd/index.html


The error function from a simple linear regression looks like
== Prediction ==
: <math>
<ul>
\begin{align}
<li>[https://stackoverflow.com/a/36637603 Confused with the reference level in logistic regression in R]</li>
Err(m,b) &= \frac{1}{N}\sum_{i=1}^n (y_i - (m x_i + b))^2, \\
<li>[https://rstatisticsblog.com/data-science-in-action/machine-learning/binary-logistic-regression-with-r/ Binary Logistic Regression With R]. The prediction values returned from predict(fit, type = "response") are the probability that a new observation is from class 1 (instead of class 0); the second level. We can convert this probability into a class label by using ''ifelse(pred > 0.5, 1, 0)''.  </li>
\end{align}
<li>[https://www.guru99.com/r-generalized-linear-model.html GLM in R: Generalized Linear Model with Example] </li>
</math>
<li>[https://www.machinelearningplus.com/machine-learning/logistic-regression-tutorial-examples-r/ Logistic Regression – A Complete Tutorial With Examples in R]. caret's downSample()/upSample() was used.
<pre>
library(caret)
table(oilType)
# oilType
#  A  B  C  D  E  F  G
# 37 26  3  7 11 10  2
dim(fattyAcids)
# [1] 96  7
dim(upSample(fattyAcids, oilType))
# [1] 259  8
table(upSample(fattyAcids, oilType)$Class)
#  A  B  C  D  E  F  G
# 37 37 37 37 37 37 37
table(downSample(fattyAcids, oilType)$Class)
# A B C D E F G
# 2 2 2 2 2 2 2
</pre>
</li>
</ul>


We compute the gradient first for each parameters.
== Odds ratio ==
: <math>
<ul>
\begin{align}
<li> https://en.wikipedia.org/wiki/Odds_ratio. It seems a larger OR does not imply a smaller Fisher's exact p-value. See an example on Fig 4 [https://ascopubs.org/doi/figure/10.1200/PO.19.00345 here].
\frac{\partial Err}{\partial m} &= \frac{2}{n} \sum_{i=1}^n -x_i(y_i - (m x_i + b)), \\
<li>Odds ratio = exp(coefficient). For example, if the coefficient for a predictor variable in your logistic regression model is 0.5, the odds ratio for that variable would be: exp(0.5) = 1.64. This means that, for every unit increase in the predictor variable, the '''odds''' of the binary outcome occurring increase by a factor of 1.64. A larger odds ratio indicates a stronger association between the predictor variable and the binary outcome, while a smaller odds ratio indicates a weaker association.
\frac{\partial Err}{\partial b} &= \frac{2}{n} \sum_{i=1}^n -(y_i - (m x_i + b))  
<li>why the odds ratio is exp(coefficient) in logistic regression? The odds ratio is the exponent of the coefficient in a logistic regression model because the logistic regression model is based on the '''logit function, which is the natural logarithm of the odds ratio'''. The logit function takes the following form: '''logit(p) = log(p/(1-p))''', where p is the probability of the binary outcome occurring.
\end{align}
<li>Clinical example: Imagine that you are conducting a study to investigate the association between body mass index (''BMI'') and the risk of developing ''type 2 diabetes''. Fit a logistic regression using BMI as the covariate. Calculate the odds ratio for the BMI variable: exp(coefficient) = 1.64. This means that, for every unit increase in BMI, the odds of a patient developing type 2 diabetes increase by a factor of 1.64.
</math>
<li>'''Probability vs. odds''': Probability and odds can differ from each other in many ways. For example, probability (of an event) typically appears as a percentage, while you can express odds as a ''fraction or ratio'' (the ratio of the number of ways the event can occur to the number of ways it cannot occur). Another difference is that probability uses a range that only exists between the numbers zero and one, while odds use a range that has no limits.
<li> Calculate the odds ratio from the coefficient estimates; see [https://stats.stackexchange.com/questions/8661/logistic-regression-in-r-odds-ratio this post].
{{Pre}}
require(MASS)
N  <- 100              # generate some data
X1 <- rnorm(N, 175, 7)
X2 <- rnorm(N,  30, 8)
X3 <- abs(rnorm(N, 60, 30))
Y  <- 0.5*X1 - 0.3*X2 - 0.4*X3 + 10 + rnorm(N, 0, 12)
 
# dichotomize Y and do logistic regression
Yfac  <- cut(Y, breaks=c(-Inf, median(Y), Inf), labels=c("lo", "hi"))
glmFit <- glm(Yfac ~ X1 + X2 + X3, family=binomial(link="logit"))
 
exp(cbind(coef(glmFit), confint(glmFit)))
</pre>
</ul>


The gradient descent algorithm uses an iterative method to update the estimates using a tuning parameter called '''learning rate'''.
== AUC ==
[https://hopstat.wordpress.com/2014/12/19/a-small-introduction-to-the-rocr-package/ A small introduction to the ROCR package]
<pre>
<pre>
new_m &= m_current - (learningRate * m_gradient)  
      predict.glm()            ROCR::prediction()    ROCR::performance()
new_b &= b_current - (learningRate * b_gradient)
glmobj ------------> predictTest -----------------> ROCPPred ---------> AUC
newdata                labels
</pre>
</pre>


After each iteration, derivative is closer to zero. [http://blog.hackerearth.com/gradient-descent-algorithm-linear-regression Coding in R] for the simple linear regression.
== Gompertz function ==
* [https://en.wikipedia.org/wiki/Gompertz_function Gompertz function] and [https://en.wikipedia.org/wiki/Gompertz_distribution Gompertz distribution]
* [https://www.youtube.com/watch?v=0ifT-7K68sk Gompertz Curve in R | Tumor Growth Example]


=== Gradient descent vs Newton's method ===
= Medical applications =
* [https://stackoverflow.com/a/12066869 What is the difference between Gradient Descent and Newton's Gradient Descent?]
== RCT ==
* [http://www.santanupattanayak.com/2017/12/19/newtons-method-vs-gradient-descent-method-in-tacking-saddle-points-in-non-convex-optimization/ Newton's Method vs Gradient Descent Method in tacking saddle points in Non-Convex Optimization]
[https://www.rdatagen.net/post/2021-11-23-design-effects-with-baseline-measurements/ The design effect of a cluster randomized trial with baseline measurements]
* [https://dinh-hung-tu.github.io/gradient-descent-vs-newton-method/ Gradient Descent vs Newton Method]


== Classification and Regression Trees (CART) ==
== Subgroup analysis ==
=== Construction of the tree classifier ===
Other related keywords: recursive partitioning, randomized clinical trials (RCT)
* Node proportion
:<math> p(1|t) + \dots + p(6|t) =1 </math> where <math>p(j|t)</math> define the node proportions (class proportion of class ''j'' on node ''t''. Here we assume there are 6 classes.
* Impurity of node t
:<math>i(t)</math> is a nonnegative function <math>\phi</math> of the <math>p(1|t), \dots, p(6|t)</math> such that <math> \phi(1/6,1/6,\dots,1/6)</math> = maximumm <math>\phi(1,0,\dots,0)=0, \phi(0,1,0,\dots,0)=0, \dots, \phi(0,0,0,0,0,1)=0</math>. That is, the node impurity is largest when all classes are equally mixed together in it, and smallest when the node contains only one class.
* Gini index of impurity
:<math>i(t) = - \sum_{j=1}^6 p(j|t) \log p(j|t).</math>
* Goodness of the split s on node t
:<math>\Delta i(s, t) = i(t) -p_Li(t_L) - p_Ri(t_R). </math> where <math>p_R</math> are the proportion of the cases in t go into the left node <math>t_L</math> and a proportion <math>p_R</math> go into right node <math>t_R</math>.
A tree was grown in the following way: At the root node <math>t_1</math>, a search was made through all candidate splits to find that split <math>s^*</math> which gave the largest decrease in impurity;
:<math>\Delta i(s^*, t_1) = \max_{s} \Delta i(s, t_1).</math>
* Class character of a terminal node was determined by the plurality rule. Specifically, if <math>p(j_0|t)=\max_j p(j|t)</math>, then ''t'' was designated as a class <math>j_0</math> terminal node.


=== R packages ===
* [https://www.rdatagen.net/post/sub-group-analysis-in-rct/ Thinking about different ways to analyze sub-groups in an RCT]
* [http://cran.r-project.org/web/packages/rpart/vignettes/longintro.pdf rpart]
* [http://onlinelibrary.wiley.com/doi/10.1002/sim.7064/full Tutorial in biostatistics: data-driven subgroup identification and analysis in clinical trials] I Lipkovich, A Dmitrienko - Statistics in medicine, 2017
* http://exploringdatablog.blogspot.com/2013/04/classification-tree-models.html
* Personalized medicine:Four perspectives of tailored medicine SJ Ruberg, L Shen - Statistics in Biopharmaceutical Research, 2015
* Berger, J. O., Wang, X., and Shen, L. (2014), “A Bayesian Approach to Subgroup Identification,” Journal of Biopharmaceutical Statistics, 24, 110–129.
* [https://rpsychologist.com/treatment-response-subgroup Change over time is not "treatment response"]
* [https://www.tandfonline.com/doi/full/10.1080/01621459.2020.1740096?journalCode=uasa20 Inference on Selected Subgroups in Clinical Trials] Guo 2020


== Partially additive (generalized) linear model trees ==
== Interaction analysis ==
* https://eeecon.uibk.ac.at/~zeileis/news/palmtree/  
* Goal: '''assessing the predictiveness of biomarkers''' by testing their '''interaction (strength) with the treatment'''.
* https://cran.r-project.org/web/packages/palmtree/index.html
* [[Survival_data#Prognostic_markers_vs_predictive_markers_.28and_other_biomarkers.29|Prognostics vs predictive marker]] including quantitative and qualitative interactions.
* [https://onlinelibrary.wiley.com/doi/epdf/10.1002/sim.7608 Evaluation of biomarkers for treatment selection usingindividual participant data from multiple clinical trials] Kang et al 2018
* http://www.stat.purdue.edu/~ghobbs/STAT_512/Lecture_Notes/ANOVA/Topic_27.pdf#page=15. For survival data, y-axis is the survival time and B1=treatment, B2=control and X-axis is treatment-effect modifying score. But as seen on [http://www.stat.purdue.edu/~ghobbs/STAT_512/Lecture_Notes/ANOVA/Topic_27.pdf#page=16 page16], the effects may not be separated.
* [http://onlinelibrary.wiley.com/doi/10.1002/bimj.201500234/full Identification of biomarker-by-treatment interactions in randomized clinical trials with survival outcomes and high-dimensional spaces] N Ternès, F Rotolo, G Heinze, S Michiels - Biometrical Journal, 2017
* [https://onlinelibrary.wiley.com/doi/epdf/10.1002/sim.6564 Designing a study to evaluate the benefitof a biomarker for selectingpatient treatment] Janes 2015
* [https://onlinelibrary.wiley.com/doi/epdf/10.1002/pst.1728 A visualization method measuring theperformance of biomarkers for guidingtreatment decisions] Yang et al 2015. Predictiveness curves were used a lot.
* [https://onlinelibrary.wiley.com/doi/epdf/10.1111/biom.12191 Combining Biomarkers to Optimize Patient TreatmentRecommendations] Kang et al 2014. Several simulations are conducted.
* [https://www.ncbi.nlm.nih.gov/pubmed/24695044 An approach to evaluating and comparing biomarkers for patient treatment selection] Janes et al 2014
* [http://journals.sagepub.com/doi/pdf/10.1177/0272989X13493147 A Framework for Evaluating Markers Used to Select Patient Treatment] Janes et al 2014
* Tian, L., Alizaden, A. A., Gentles, A. J., and Tibshirani, R. (2014) “A Simple Method for Detecting Interactions Between a Treatment and a Large Number of Covariates,” and the [https://books.google.com/books?hl=en&lr=&id=2gG3CgAAQBAJ&oi=fnd&pg=PA79&ots=y5LqF3vk-T&sig=r2oaOxf9gcjK-1bvFHVyfvwscP8#v=onepage&q&f=true book chapter].
* [https://biostats.bepress.com/cgi/viewcontent.cgi?article=1228&context=uwbiostat Statistical Methods for Evaluating and Comparing Biomarkers for Patient Treatment Selection] Janes et al 2013
* [https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1541-0420.2011.01722.x Assessing Treatment-Selection Markers using a Potential Outcomes Framework] Huang et al 2012
* [https://biostats.bepress.com/cgi/viewcontent.cgi?article=1223&context=uwbiostat Methods for Evaluating Prediction Performance of Biomarkers and Tests] Pepe et al 2012
* Measuring the performance of markers for guiding treatment decisions by Janes, et al 2011. <syntaxhighlight lang='rsplus'>
cf <- c(2, 1, .5, 0)
f1 <- function(x) { z <- cf[1] + cf[3] + (cf[2]+cf[4])*x; 1/ (1 + exp(-z)) }
f0 <- function(x) { z <- cf[1] + cf[2]*x; 1/ (1 + exp(-z)) }
par(mfrow=c(1,3))
curve(f1, -3, 3, col = 'red', ylim = c(0, 1),
      ylab = '5-year DFS Rate', xlab = 'Marker A/D Value',
      main = 'Predictiveness Curve', lwd = 2)
curve(f0, -3, 3, col = 'black', ylim = c(0, 1),
      xlab = '', ylab = '', lwd = 2, add = TRUE)
legend(.5, .4, c("control", "treatment"),
      col = c("black", "red"), lwd = 2)


== Supervised Classification, Logistic and Multinomial ==
cf <- c(.1, 1, -.1, .5)
* http://freakonometrics.hypotheses.org/19230
curve(f1, -3, 3, col = 'red', ylim = c(0, 1),
      ylab = '5-year DFS Rate', xlab = 'Marker G Value',  
      main = 'Predictiveness Curve', lwd = 2)
curve(f0, -3, 3, col = 'black', ylim = c(0, 1),
      xlab = '', ylab = '', lwd = 2, add = TRUE)
legend(.5, .4, c("control", "treatment"),
      col = c("black", "red"), lwd = 2)
abline(v= - cf[3]/cf[4], lty = 2)


== Variable selection ==
cf <- c(1, -1, 1, 2)
=== Review ===
curve(f1, -3, 3, col = 'red', ylim = c(0, 1),
[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5969114/ Variable selection – A review and recommendations for the practicing statistician] by Heinze et al 2018.
      ylab = '5-year DFS Rate', xlab = 'Marker B Value',
      main = 'Predictiveness Curve', lwd = 2)
curve(f0, -3, 3, col = 'black', ylim = c(0, 1),
      xlab = '', ylab = '', lwd = 2, add = TRUE)
legend(.5, .85, c("control", "treatment"),
      col = c("black", "red"), lwd = 2)
abline(v= - cf[3]/cf[4], lty = 2)
</syntaxhighlight> [[:File:PredcurveLogit.svg]]
* [https://www.degruyter.com/downloadpdf/j/ijb.2014.10.issue-1/ijb-2012-0052/ijb-2012-0052.pdf An Approach to Evaluating and Comparing Biomarkers for Patient Treatment Selection] The International Journal of Biostatistics by Janes, 2014. Y-axis is risk given marker, not P(T > t0|X). Good details.
* Gunter, L., Zhu, J., and Murphy, S. (2011), “Variable Selection for Qualitative Interactions in Personalized Medicine While Controlling the Family-Wise Error Rate,” Journal of Biopharmaceutical Statistics, 21, 1063–1078.


=== Variable selection and variable importance plot ===
= Statistical Learning =
* http://freakonometrics.hypotheses.org/19835
* [http://statweb.stanford.edu/~tibs/ElemStatLearn/ Elements of Statistical Learning] Book homepage
* [http://statweb.stanford.edu/~tibs/research.html An Introduction to Statistical Learning with Applications in R]/ISLR], [https://github.com/tpn/pdfs/blob/master/An%20Introduction%20To%20Statistical%20Learning%20with%20Applications%20in%20R%20(ISLR%20Sixth%20Printing).pdf pdf]
** https://www.statlearning.com/ 2nd edition. Aug 2021. [https://cran.r-project.org/web/packages/ISLR2/index.html ISLR2] package.
** https://r4ds.github.io/bookclub-islr/
** [https://www.dataschool.io/15-hours-of-expert-machine-learning-videos/amp/?s=09 In-depth introduction to machine learning in 15 hours of expert videos]
** [https://emilhvitfeldt.github.io/ISLR-tidymodels-labs/index.html *Translations of the labs into using the tidymodels set of packages]
* [http://heather.cs.ucdavis.edu/draftregclass.pdf From Linear Models to Machine Learning] by Norman Matloff
* [http://www.kdnuggets.com/2017/04/10-free-must-read-books-machine-learning-data-science.html 10 Free Must-Read Books for Machine Learning and Data Science]
* [https://towardsdatascience.com/the-10-statistical-techniques-data-scientists-need-to-master-1ef6dbd531f7 10 Statistical Techniques Data Scientists Need to Master]
*# Linear regression
*# Classification: Logistic Regression, Linear Discriminant Analysis, Quadratic Discriminant Analysis
*# Resampling methods: Bootstrapping and Cross-Validation
*# Subset selection: Best-Subset Selection, Forward Stepwise Selection, Backward Stepwise Selection, Hybrid Methods
*# Shrinkage/regularization: Ridge regression, Lasso
*# Dimension reduction: Principal Components Regression, Partial least squares
*# Nonlinear models: Piecewise function, Spline, generalized additive model
*# Tree-based methods: Bagging, Boosting, Random Forest
*# Support vector machine
*# Unsupervised learning: PCA, k-means, Hierarchical
* [https://www.listendata.com/2018/03/regression-analysis.html?m=1 15 Types of Regression you should know]
* [https://www.tandfonline.com/doi/full/10.1080/01621459.2021.1979010 Is a Classification Procedure Good Enough?—A Goodness-of-Fit Assessment Tool for Classification Learning] Zhang 2021 JASA
 
== LDA (Fisher's linear discriminant), QDA ==
* https://en.wikipedia.org/wiki/Linear_discriminant_analysis.
** Assumptions: '''Multivariate normality, Homogeneity of variance/covariance''', Multicollinearity, Independence.
** The common variance is calculated by the pooled covariance matrix just like the [[T-test#Two_sample_test_assuming_equal_variance|t-test case]].
** ''Logistic regression has none-the-less become the common choice, since the assumptions of discriminant analysis are rarely met.''
* [https://datascienceplus.com/how-to-perform-logistic-regression-lda-qda-in-r/ How to perform Logistic Regression, LDA, & QDA in R]
* [http://r-posts.com/discriminant-analysis-statistics-all-the-way/ Discriminant Analysis: Statistics All The Way]
* [https://onlinelibrary.wiley.com/doi/10.1111/biom.13065 Multiclass linear discriminant analysis with ultrahigh‐dimensional features] Li 2019
* [https://sebastianraschka.com/Articles/2014_python_lda.html Linear Discriminant Analysis – Bit by Bit]


=== Variable selection and cross-validation ===
== Bagging ==
* http://freakonometrics.hypotheses.org/19925
Chapter 8 of the book.
* http://ellisp.github.io/blog/2016/06/05/bootstrap-cv-strategies/


=== Mallow ''C<sub>p</sub>'' ===
* Bootstrap mean is approximately a posterior average.
Mallows's ''C<sub>p</sub>'' addresses the issue of overfitting. The Cp statistic calculated on a sample of data estimates the '''mean squared prediction error (MSPE)'''.
* Bootstrap aggregation or bagging average: Average the prediction over a collection of bootstrap samples, thereby reducing its variance. The bagging estimate is defined by
:<math>
:<math>\hat{f}_{bag}(x) = \frac{1}{B}\sum_{b=1}^B \hat{f}^{*b}(x).</math>
E\sum_j (\hat{Y}_j - E(Y_j\mid X_j))^2/\sigma^2,
</math>
The ''C<sub>p</sub>'' statistic is defined as
:<math> C_p={SSE_p \over S^2} - N + 2P. </math>


* https://en.wikipedia.org/wiki/Mallows%27s_Cp
[https://statcompute.wordpress.com/2016/01/02/where-bagging-might-work-better-than-boosting/ Where Bagging Might Work Better Than Boosting]
* Used in Yuan & Lin (2006) group lasso. The degrees of freedom is estimated by the bootstrap or perturbation methods. Their paper mentioned the performance is comparable with that of 5-fold CV but is computationally much faster.


=== Variable selection for mode regression ===
[https://freakonometrics.hypotheses.org/52777 CLASSIFICATION FROM SCRATCH, BAGGING AND FORESTS 10/8]
http://www.tandfonline.com/doi/full/10.1080/02664763.2017.1342781 Chen & Zhou, Journal of applied statistics ,June 2017


== Neural network ==
== Boosting ==
* [http://junma5.weebly.com/data-blog/build-your-own-neural-network-classifier-in-r Build your own neural network in R]
* Ch8.2 Bagging, Random Forests and Boosting of [http://www-bcf.usc.edu/~gareth/ISL/ An Introduction to Statistical Learning] and the [http://www-bcf.usc.edu/~gareth/ISL/Chapter%208%20Lab.txt code].
* (Video) [https://youtu.be/ntKn5TPHHAk 10.2: Neural Networks: Perceptron Part 1 - The Nature of Code] from the Coding Train. The book [http://natureofcode.com/book/chapter-10-neural-networks/ THE NATURE OF CODE] by DANIEL SHIFFMAN
* [http://freakonometrics.hypotheses.org/19874 An Attempt To Understand Boosting Algorithm]
* [https://freakonometrics.hypotheses.org/52774 CLASSIFICATION FROM SCRATCH, NEURAL NETS]. The ROCR package was used to produce the ROC curve.
* [http://cran.r-project.org/web/packages/gbm/index.html gbm] package. An implementation of extensions to Freund and Schapire's '''AdaBoost algorithm''' and Friedman's '''gradient boosting machine'''. Includes regression methods for least squares, absolute loss, t-distribution loss, [http://mathewanalytics.com/2015/11/13/applied-statistical-theory-quantile-regression/ quantile regression], logistic, multinomial logistic, Poisson, Cox proportional hazards partial likelihood, AdaBoost exponential loss, Huberized hinge loss, and Learning to Rank measures (LambdaMart).
* https://www.biostat.wisc.edu/~kendzior/STAT877/illustration.pdf
* http://www.is.uni-freiburg.de/ressourcen/business-analytics/10_ensemblelearning.pdf and [http://www.is.uni-freiburg.de/ressourcen/business-analytics/homework_ensemblelearning_questions.pdf exercise]
* [https://freakonometrics.hypotheses.org/52782 Classification from scratch]
* [https://datasciencetut.com/boosting-in-machine-learning/ Boosting in Machine Learning:-A Brief Overview]


== Support vector machine (SVM) ==
=== AdaBoost ===
* [https://statcompute.wordpress.com/2016/03/19/improve-svm-tuning-through-parallelism/ Improve SVM tuning through parallelism] by using the '''foreach''' and '''doParallel''' packages.
AdaBoost.M1 by Freund and Schapire (1997):


== Quadratic Discriminant Analysis (qda), KNN ==
The error rate on the training sample is
[https://datarvalue.blogspot.com/2017/05/machine-learning-stock-market-data-part_16.html Machine Learning. Stock Market Data, Part 3: Quadratic Discriminant Analysis and KNN]
<math>
\bar{err} = \frac{1}{N} \sum_{i=1}^N I(y_i \neq G(x_i)),
</math>


== [https://en.wikipedia.org/wiki/Regularization_(mathematics) Regularization] ==
Sequentially apply the weak classification algorithm to repeatedly modified versions of the data, thereby producing a sequence of weak classifiers <math>G_m(x), m=1,2,\dots,M.</math>
Regularization is a process of introducing additional information in order to solve an ill-posed problem or to prevent overfitting


=== Ridge regression ===
The predictions from all of them are combined through a weighted majority vote to produce the final prediction:
* [https://stats.stackexchange.com/questions/52653/what-is-ridge-regression What is ridge regression?]
<math>
* [https://stats.stackexchange.com/questions/118712/why-does-ridge-estimate-become-better-than-ols-by-adding-a-constant-to-the-diago Why does ridge estimate become better than OLS by adding a constant to the diagonal?] The estimates become more stable if the covariates are highly correlated.
G(x) = sign[\sum_{m=1}^M \alpha_m G_m(x)].
* (In ridge regression) the matrix we need to invert no longer has determinant near zero, so the solution does not lead to uncomfortably large variance in the estimated parameters. And that’s a good thing. See [https://tamino.wordpress.com/2011/02/12/ridge-regression/ this post].
</math>
* [https://www.tandfonline.com/doi/abs/10.1080/02664763.2018.1526891?journalCode=cjas20 Multicolinearity and ridge regression: results on type I errors, power and heteroscedasticity]
Here <math> \alpha_1,\alpha_2,\dots,\alpha_M</math> are computed by the boosting algorithm and weight the contribution of each respective <math>G_m(x)</math>. Their effect is to give higher influence to the more accurate classifiers in the sequence.


Since L2 norm is used in the regularization, ridge regression is also called L2 regularization.
* [https://sefiks.com/2018/11/02/a-step-by-step-adaboost-example/ A Step by Step Adaboost Example]
* [https://xavierbourretsicotte.github.io/AdaBoost.html AdaBoost: Implementation and intuition]


[https://drsimonj.svbtle.com/ridge-regression-with-glmnet ridge regression with glmnet]
=== Dropout regularization ===
[https://statcompute.wordpress.com/2017/08/20/dart-dropout-regularization-in-boosting-ensembles/ DART: Dropout Regularization in Boosting Ensembles]


Hoerl and Kennard (1970a, 1970b) introduced ridge regression, which minimizes RSS subject to a constraint <math>\sum|\beta_j|^2 \le t</math>. Note that though ridge regression shrinks the OLS estimator toward 0 and yields a biased estimator <math>\hat{\beta} = (X^TX + \lambda X)^{-1} X^T y </math> where <math>\lambda=\lambda(t)</math>, a function of ''t'', the variance is smaller than that of the OLS estimator.
=== Gradient boosting ===
* https://en.wikipedia.org/wiki/Gradient_boosting
* [https://shirinsplayground.netlify.com/2018/11/ml_basics_gbm/ Machine Learning Basics - Gradient Boosting & XGBoost]
* [http://www.sthda.com/english/articles/35-statistical-machine-learning-essentials/139-gradient-boosting-essentials-in-r-using-xgboost/ Gradient Boosting Essentials in R Using XGBOOST]
* [http://philipppro.github.io/catboost_better_than_the_rest/ Is catboost the best gradient boosting R package?]


The solution exists if <math>\lambda >0</math> even if <math>n < p </math>.
== Gradient descent ==
[https://en.wikipedia.org/wiki/Gradient_descent Gradient descent] is a first-order iterative optimization algorithm for finding the minimum of a function.
* [https://youtu.be/sDv4f4s2SB8?t=647 Gradient Descent, Step-by-Step] (video) StatQuest. '''Step size''' and '''learning rate'''.
** [https://youtu.be/sDv4f4s2SB8?t=567 Gradient descent is very useful when it is not possible to solve for where the derivative = 0]
** [https://youtu.be/sDv4f4s2SB8?t=1363 New parameter = Old parameter - Step size] where Step size = slope(or gradient) * Learning rate.
** [https://youtu.be/vMh0zPT0tLI  Stochastic Gradient Descent, Clearly Explained!!!]
* [https://spin.atomicobject.com/2014/06/24/gradient-descent-linear-regression/ An Introduction to Gradient Descent and Linear Regression] Easy to understand based on simple linear regression. Python code is provided too. The unknown parameter is the '''learning rate'''.
<ul>
<li>[https://econometricsense.blogspot.com/2011/11/gradient-descent-in-r.html Gradient Descent in R] by Econometric Sense. Example of using the trivial cost function 1.2 * (x-2)^2 + 3.2. R code is provided and visualization of steps is interesting! The unknown parameter is the '''learning rate'''.
<pre>
repeat until convergence {
  Xn+1 = Xn - α∇F(Xn)
}
</pre>
Where ∇F(x) would be the derivative for the cost function at hand and α is the learning rate.
</li></ul>
* [https://econometricsense.blogspot.com/2011/11/regression-via-gradient-descent-in-r.html Regression via Gradient Descent in R] by Econometric Sense.
* [http://gradientdescending.com/applying-gradient-descent-primer-refresher/ Applying gradient descent – primer / refresher]
* [http://sebastianruder.com/optimizing-gradient-descent/index.html An overview of Gradient descent optimization algorithms]
* [https://www.analyticsvidhya.com/blog/2016/01/complete-tutorial-ridge-lasso-regression-python/ A Complete Tutorial on Ridge and Lasso Regression in Python]
* How to choose the learning rate?
** [http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=MachineLearning&doc=exercises/ex3/ex3.html Machine learning] from Andrew Ng
** http://scikit-learn.org/stable/modules/sgd.html
* R packages
** https://cran.r-project.org/web/packages/gradDescent/index.html, https://www.rdocumentation.org/packages/gradDescent/versions/2.0
** https://cran.r-project.org/web/packages/sgd/index.html


Ridge regression (L2 penalty) only shrinks the coefficients. In contrast, Lasso method (L1 penalty) tries to shrink some coefficient estimators to exactly zeros. This can be seen from comparing the coefficient path plot from both methods.
The error function from a simple linear regression looks like
: <math>
\begin{align}
Err(m,b) &= \frac{1}{N}\sum_{i=1}^n (y_i - (m x_i + b))^2, \\
\end{align}
</math>


Geometrically (contour plot of the cost function), the L1 penalty (the sum of absolute values of coefficients) will incur a probability of some zero coefficients (i.e. some coefficient hitting the corner of a diamond shape in the 2D case). For example, in the 2D case (X-axis=<math>\beta_0</math>, Y-axis=<math>\beta_1</math>), the shape of the L1 penalty <math>|\beta_0| + |\beta_1|</math> is a diamond shape whereas the shape of the L2 penalty (<math>\beta_0^2 + \beta_1^2</math>) is a circle.
We compute the gradient first for each parameters.
: <math>
\begin{align}
\frac{\partial Err}{\partial m} &= \frac{2}{n} \sum_{i=1}^n -x_i(y_i - (m x_i + b)), \\
\frac{\partial Err}{\partial b} &= \frac{2}{n} \sum_{i=1}^n -(y_i - (m x_i + b))
\end{align}
</math>


=== Lasso/glmnet, adaptive lasso and FAQs ===
The gradient descent algorithm uses an iterative method to update the estimates using a tuning parameter called '''learning rate'''.
* https://en.wikipedia.org/wiki/Lasso_(statistics). It has a discussion when two covariates are highly correlated. For example if gene <math>i</math> and gene <math>j</math> are identical, then the values of <math>\beta _{j}</math> and <math>\beta _{k}</math> that minimize the lasso objective function are not uniquely determined. Elastic Net has been designed to address this shortcoming.
<pre>
** Strongly correlated covariates have similar regression coefficients, is referred to as the '''grouping''' effect. From the wikipedia page ''"one would like to find all the associated covariates, rather than selecting only one from each set of strongly correlated covariates, as lasso often does. In addition, selecting only a single covariate from each group will typically result in increased prediction error, since the model is less robust (which is why ridge regression often outperforms lasso)"''.
new_m &= m_current - (learningRate * m_gradient)  
* [https://web.stanford.edu/~hastie/Papers/Glmnet_Vignette.pdf Glmnet Vignette]. It tries to minimize <math>RSS(\beta) + \lambda [(1-\alpha)||\beta||_2^2/2 + \alpha ||\beta||_1] </math>. The ''elastic-net'' penalty is controlled by <math>\alpha</math>, and bridge the gap between lasso (<math>\alpha = 1</math>) and ridge (<math>\alpha = 0</math>). Following is a CV curve (adaptive lasso) using the example from glmnet(). Two vertical lines are indicated: left one is '''lambda.min''' (that gives minimum mean cross-validated error) and right one is '''lambda.1se''' (the most ''regularized'' model such that error is within one standard error of the minimum). For the tuning parameter <math>\lambda</math>,
new_b &= b_current - (learningRate * b_gradient)  
** The larger the <math>\lambda</math>, more coefficients are becoming zeros (think about '''coefficient path''' plots) and thus the simpler (more '''regularized''') the model.
</pre>
** If <math>\lambda</math> becomes zero, it reduces to the regular regression and if <math>\lambda</math> becomes infinity, the coefficients become zeros.
** In terms of the bias-variance tradeoff, the larger the <math>\lambda</math>, the higher the bias and the lower the variance of the coefficient estimators.


[[:File:Glmnetplot.svg]]  [[:File:Glmnet path.svg]] [[:File:Glmnet l1norm.svg]]
After each iteration, derivative is closer to zero. [http://blog.hackerearth.com/gradient-descent-algorithm-linear-regression Coding in R] for the simple linear regression.
: <syntaxhighlight lang='rsplus'>
set.seed(1010)
n=1000;p=100
nzc=trunc(p/10)
x=matrix(rnorm(n*p),n,p)
beta=rnorm(nzc)
fx= x[,seq(nzc)] %*% beta
eps=rnorm(n)*5
y=drop(fx+eps)
px=exp(fx)
px=px/(1+px)
ly=rbinom(n=length(px),prob=px,size=1)


## Full lasso
=== Gradient descent vs Newton's method ===
set.seed(999)
* [https://stackoverflow.com/a/12066869 What is the difference between Gradient Descent and Newton's Gradient Descent?]
cv.full <- cv.glmnet(x, ly, family='binomial', alpha=1, parallel=TRUE)
* [http://www.santanupattanayak.com/2017/12/19/newtons-method-vs-gradient-descent-method-in-tacking-saddle-points-in-non-convex-optimization/ Newton's Method vs Gradient Descent Method in tacking saddle points in Non-Convex Optimization]
plot(cv.full)  # cross-validation curve and two lambda's
* [https://dinh-hung-tu.github.io/gradient-descent-vs-newton-method/ Gradient Descent vs Newton Method]
plot(glmnet(x, ly, family='binomial', alpha=1), xvar="lambda", label=TRUE) # coefficient path plot
plot(glmnet(x, ly, family='binomial', alpha=1))  # L1 norm plot
log(cv.full$lambda.min) # -4.546394
log(cv.full$lambda.1se) # -3.61605
sum(coef(cv.full, s=cv.full$lambda.min) != 0) # 44


## Ridge Regression to create the Adaptive Weights Vector
== Classification and Regression Trees (CART) ==
set.seed(999)
=== Construction of the tree classifier ===
cv.ridge <- cv.glmnet(x, ly, family='binomial', alpha=0, parallel=TRUE)
* Node proportion
wt <- 1/abs(matrix(coef(cv.ridge, s=cv.ridge$lambda.min)
:<math> p(1|t) + \dots + p(6|t) =1 </math> where <math>p(j|t)</math> define the node proportions (class proportion of class ''j'' on node ''t''. Here we assume there are 6 classes.
                  [, 1][2:(ncol(x)+1)] ))^1 ## Using gamma = 1, exclude intercept
* Impurity of node t
## Adaptive Lasso using the 'penalty.factor' argument
:<math>i(t)</math> is a nonnegative function <math>\phi</math> of the <math>p(1|t), \dots, p(6|t)</math> such that <math> \phi(1/6,1/6,\dots,1/6)</math> = maximumm <math>\phi(1,0,\dots,0)=0, \phi(0,1,0,\dots,0)=0, \dots, \phi(0,0,0,0,0,1)=0</math>. That is, the node impurity is largest when all classes are equally mixed together in it, and smallest when the node contains only one class.
set.seed(999)
* Gini index of impurity
cv.lasso <- cv.glmnet(x, ly, family='binomial', alpha=1, parallel=TRUE, penalty.factor=wt)
:<math>i(t) = - \sum_{j=1}^6 p(j|t) \log p(j|t).</math>
# defautl type.measure="deviance" for logistic regression
* Goodness of the split s on node t
plot(cv.lasso)
:<math>\Delta i(s, t) = i(t) -p_Li(t_L) - p_Ri(t_R). </math> where <math>p_R</math> are the proportion of the cases in t go into the left node <math>t_L</math> and a proportion <math>p_R</math> go into right node <math>t_R</math>.
log(cv.lasso$lambda.min) # -2.995375
A tree was grown in the following way: At the root node <math>t_1</math>, a search was made through all candidate splits to find that split <math>s^*</math> which gave the largest decrease in impurity;
log(cv.lasso$lambda.1se) # -0.7625655
:<math>\Delta i(s^*, t_1) = \max_{s} \Delta i(s, t_1).</math>
sum(coef(cv.lasso, s=cv.lasso$lambda.min) != 0) # 34
* Class character of a terminal node was determined by the plurality rule. Specifically, if <math>p(j_0|t)=\max_j p(j|t)</math>, then ''t'' was designated as a class <math>j_0</math> terminal node.
</syntaxhighlight>
 
* A list of potential lambdas: see [http://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html#lin Linear Regression] case. The λ sequence is determined by '''lambda.max''' and '''lambda.min.ratio'''. The latter (default is ifelse(nobs<nvars,0.01,0.0001)) is the ratio of smallest value of the generated λ sequence (say ''lambda.min'') to  ''lambda.max''. The program then generated ''nlambda'' values linear on the log scale from ''lambda.max'' down to ''lambda.min''. ''lambda.max'' is not given, but easily computed from the input x and y; it is the smallest value for ''lambda'' such that all the coefficients are zero.
=== R packages ===
* [https://privefl.github.io/blog/choosing-hyper-parameters-in-penalized-regression/ Choosing hyper-parameters (α and λ) in penalized regression] by Florian Privé
* [http://cran.r-project.org/web/packages/rpart/vignettes/longintro.pdf rpart]
* [https://stats.stackexchange.com/questions/70249/feature-selection-model-with-glmnet-on-methylation-data-pn lambda.min vs lambda.1se]
* http://exploringdatablog.blogspot.com/2013/04/classification-tree-models.html
** The '''lambda.1se''' represents the value of λ in the search that was simpler than the best model ('''lambda.min'''), but which has error within 1 standard error of the best model. In other words, using the value of ''lambda.1se'' as the selected value for λ results in a model that is slightly simpler than the best model but which cannot be distinguished from the best model in terms of error given the uncertainty in the k-fold CV estimate of the error of the best model.
 
** The '''lambda.min''' option refers to value of λ at the lowest CV error. The error at this value of λ is the average of the errors over the k folds and hence this estimate of the error is uncertain.
== Partially additive (generalized) linear model trees ==
* https://www.rdocumentation.org/packages/glmnet/versions/2.0-10/topics/glmnet
* https://eeecon.uibk.ac.at/~zeileis/news/palmtree/  
* [http://blog.revolutionanalytics.com/2016/11/glmnetutils.html glmnetUtils: quality of life enhancements for elastic net regression with glmnet]
* https://cran.r-project.org/web/packages/palmtree/index.html
* Mixing parameter: alpha=1 is the '''lasso penalty''', and alpha=0 the '''ridge penalty''' and anything between 0–1 is '''Elastic net'''.
** RIdge regression uses Euclidean distance/L2-norm as the penalty. It won't remove any variables.
** Lasso uses L1-norm as the penalty. Some of the coefficients may be shrunk exactly to zero.
* [https://www.quora.com/In-ridge-regression-and-lasso-what-is-lambda In ridge regression and lasso, what is lambda?]
** Lambda is a penalty coefficient. Large lambda will shrink the coefficients.
** cv.glment()$lambda.1se gives the most regularized model such that error is within one standard error of the minimum
* cv.glmnet() has a logical parameter '''parallel''' which is useful if a cluster or cores have been previously allocated
* [http://statweb.stanford.edu/~tibs/sta305files/Rudyregularization.pdf Ridge regression and the LASSO]
* Standard error/Confidence interval
** [https://www.reddit.com/r/statistics/comments/1vg8k0/standard_errors_in_glmnet/ Standard Errors in GLMNET] and [https://stackoverflow.com/questions/39750965/confidence-intervals-for-ridge-regression Confidence intervals for Ridge regression]
** '''[https://cran.r-project.org/web/packages/penalized/vignettes/penalized.pdf#page=18 Why SEs are not meaningful and are usually not provided in penalized regression?]'''
**# Hint:  standard errors are not very meaningful for strongly biased estimates such as arise from penalized estimation methods.
**# '''Penalized estimation is a procedure that reduces the variance of estimators by introducing substantial bias.'''
**# The bias of each estimator is therefore a major component of its mean squared error, whereas its variance may contribute only a small part.
**# Any bootstrap-based calculations can only give an assessment of the variance of the estimates.
**# Reliable estimates of the bias are only available if reliable unbiased estimates are available, which is typically not the case in situations in which penalized estimates are used.
** [https://stats.stackexchange.com/tags/glmnet/hot Hottest glmnet questions from stackexchange].
** [https://stats.stackexchange.com/questions/91462/standard-errors-for-lasso-prediction-using-r Standard errors for lasso prediction]. There might not be a consensus on a statistically valid method of calculating standard errors for the lasso predictions.
** [https://www4.stat.ncsu.edu/~lu/programcodes.html Code] for Adaptive-Lasso for Cox's proportional hazards model by Zhang & Lu (2007). This can compute the SE of estimates. The weights are originally based on the maximizers of the log partial likelihood. However, the beta may not be estimable in cases such as high-dimensional gene data, or the beta may be unstable if strong collinearity exists among covariates. In such cases, robust estimators such as ridge regression estimators would be used to determine the weights.
* LASSO vs Least angle regression
** https://web.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf
** [http://web.stanford.edu/~hastie/TALKS/larstalk.pdf Least Angle Regression, Forward Stagewise and the Lasso]
** https://www.quora.com/What-is-Least-Angle-Regression-and-when-should-it-be-used
** [http://statweb.stanford.edu/~tibs/lasso/simple.html A simple explanation of the Lasso and Least Angle Regression]
** https://stats.stackexchange.com/questions/4663/least-angle-regression-vs-lasso
** https://cran.r-project.org/web/packages/lars/index.html
* '''Oracle property''' and '''adaptive lasso'''
** [http://www.stat.wisc.edu/~shao/stat992/fan-li2001.pdf Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties], Fan & Li (2001) JASA
** [http://ricardoscr.github.io/how-to-adaptive-lasso.html Adaptive Lasso: What it is and how to implement in R]. Adaptive lasso weeks to minimize <math> RSS(\beta) + \lambda \sum_1^p \hat{\omega}_j |\beta_j| </math> where <math>\lambda</math> is the tuning parameter, <math>\hat{\omega}_j = \frac{1}{(|\hat{\beta}_j^{ini}|)^\gamma}</math> is the adaptive weights vector and <math>\hat{\beta}_j^{ini}</math> is an initial estimate of the coefficients obtained through ridge regression. '''Adaptive Lasso ends up penalizing more those coefficients with lower initial estimates.''' <math>\gamma</math> is a positive constant for adjustment of the adaptive weight vector, and the authors suggest the possible values of 0.5, 1 and 2.
** When n goes to infinity, <math>\hat{\omega}_j |\beta_j|  </math> converges to <math>I(\beta_j \neq 0) </math>. So the adaptive Lasso procedure can be regarded as an automatic implementation of best-subset selection in some asymptotic sense.
** [https://stats.stackexchange.com/questions/229142/what-is-the-oracle-property-of-an-estimator What is the oracle property of an estimator?] An oracle estimator must be consistent in 1) '''variable selection''' and 2) '''consistent parameter estimation'''.
** (Linear regression) The adaptive lasso and its oracle properties Zou (2006, JASA)
** (Cox model) Adaptive-LASSO for Cox's proportional hazard model by Zhang and Lu (2007, Biometrika)
**[https://insightr.wordpress.com/2017/06/14/when-the-lasso-fails/ When the LASSO fails???]. Adaptive lasso is used to demonstrate its usefulness.
* [https://statisticaloddsandends.wordpress.com/2018/11/13/a-deep-dive-into-glmnet-penalty-factor/ A deep dive into glmnet: penalty.factor], [https://statisticaloddsandends.wordpress.com/2018/11/15/a-deep-dive-into-glmnet-standardize/ standardize], [https://statisticaloddsandends.wordpress.com/2019/01/09/a-deep-dive-into-glmnet-offset/ offset]
** Lambda sequence is not affected by the "penalty.factor"
** How "penalty.factor" used by the objective function may need to be corrected
* Some issues:
** With group of highly correlated features, Lasso tends to select amongst them arbitrarily.
** Often empirically ridge has better predictive performance than lasso but lasso leads to sparser solution
** Elastic-net (Zou & Hastie '05) aims to address these issues: hybrid between Lasso and ridge regression, uses L1 and L2 penalties.
* [https://statcompute.wordpress.com/2019/02/23/gradient-free-optimization-for-glmnet-parameters/ Gradient-Free Optimization for GLMNET Parameters]
* [https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2656-1 Gsslasso Cox]: a Bayesian hierarchical model for predicting survival and detecting associated genes by incorporating pathway information, Tang et al BMC Bioinformatics 2019
 
=== Lasso logistic regression ===
https://freakonometrics.hypotheses.org/52894
 
=== Lagrange Multipliers ===
[https://medium.com/@andrew.chamberlain/a-simple-explanation-of-why-lagrange-multipliers-works-253e2cdcbf74 A Simple Explanation of Why Lagrange Multipliers Works]


=== How to solve lasso/convex optimization ===
== Supervised Classification, Logistic and Multinomial ==
* [https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf Convex Optimization] by Boyd S, Vandenberghe L, Cambridge 2004. It is cited by Zhang & Lu (2007). The '''interior point algorithm''' can be used to solve the optimization problem in adaptive lasso.
* http://freakonometrics.hypotheses.org/19230
* Review of '''gradient descent''':
 
** Finding maximum: <math>w^{(t+1)} = w^{(t)} + \eta \frac{dg(w)}{dw}</math>, where <math>\eta</math> is stepsize.
== Variable selection ==
** Finding minimum: <math>w^{(t+1)} = w^{(t)} - \eta \frac{dg(w)}{dw}</math>.
=== Review ===
** [https://stackoverflow.com/questions/12066761/what-is-the-difference-between-gradient-descent-and-newtons-gradient-descent What is the difference between Gradient Descent and Newton's Gradient Descent?] Newton's method requires <math>g''(w)</math>, more smoothness of g(.).
[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5969114/ Variable selection – A review and recommendations for the practicing statistician] by Heinze et al 2018.
** Finding minimum for multiple variables ('''gradient descent'''): <math>w^{(t+1)} = w^{(t)} - \eta \Delta g(w^{(t)})</math>. For the least squares problem, <math>g(w) = RSS(w)</math>.
 
** Finding minimum for multiple variables in the least squares problem (minimize <math>RSS(w)</math>):  <math>\text{partial}(j) = -2\sum h_j(x_i)(y_i - \hat{y}_i(w^{(t)}), w_j^{(t+1)} = w_j^{(t)} - \eta \; \text{partial}(j)</math>
=== Variable selection and variable importance plot ===
** Finding minimum for multiple variables in the ridge regression problem (minimize <math>RSS(w)+\lambda ||w||_2^2=(y-Hw)'(y-Hw)+\lambda w'w</math>): <math>\text{partial}(j) = -2\sum h_j(x_i)(y_i - \hat{y}_i(w^{(t)}), w_j^{(t+1)} = (1-2\eta \lambda) w_j^{(t)} - \eta \; \text{partial}(j)</math>. Compared to the closed form approach: <math>\hat{w} = (H'H + \lambda I)^{-1}H'y</math> where 1. the inverse exists even N<D as long as <math>\lambda > 0</math> and 2. the complexity of inverse is <math>O(D^3)</math>, D is the dimension of the covariates.
* http://freakonometrics.hypotheses.org/19835
* '''Cyclical coordinate descent''' was used ([https://cran.r-project.org/web/packages/glmnet/vignettes/glmnet_beta.pdf#page=1 vignette]) in the glmnet package. See also '''[https://en.wikipedia.org/wiki/Coordinate_descent coordinate descent]'''. The reason we call it 'descent' is because we want to 'minimize' an objective function.
 
** <math>\hat{w}_j = \min_w g(\hat{w}_1, \cdots, \hat{w}_{j-1},w, \hat{w}_{j+1}, \cdots, \hat{w}_D)</math>
=== Variable selection and cross-validation ===
** See [https://www.jstatsoft.org/article/view/v033i01 paper] on JSS 2010. The Cox PHM case also uses the cyclical coordinate descent method; see the [https://www.jstatsoft.org/article/view/v039i05 paper] on JSS 2011.
* http://freakonometrics.hypotheses.org/19925
** Coursera's [https://www.coursera.org/learn/ml-regression/lecture/rb179/feature-selection-lasso-and-nearest-neighbor-regression Machine learning course 2: Regression] at 1:42. [http://web.stanford.edu/~hastie/TALKS/CD.pdf#page=12 Soft-thresholding] the coefficients is the key for the L1 penalty. The range for the thresholding is controlled by <math>\lambda</math>. Note to view the videos and all materials in coursera we can enroll to audit the course without starting a trial.
* http://ellisp.github.io/blog/2016/06/05/bootstrap-cv-strategies/
** No step size is required as in gradient descent.
 
** [https://sandipanweb.wordpress.com/2017/05/04/implementing-lasso-regression-with-coordinate-descent-and-the-sub-gradient-of-the-l1-penalty-with-soft-thresholding/ Implementing LASSO Regression with Coordinate Descent, Sub-Gradient of the L1 Penalty and Soft Thresholding in Python]
=== Mallow ''C<sub>p</sub>'' ===
** Coordinate descent in the least squares problem: <math>\frac{\partial}{\partial w_j} RSS(w)= -2 \rho_j + 2 w_j</math>; i.e. <math>\hat{w}_j = \rho_j</math>.
Mallows's ''C<sub>p</sub>'' addresses the issue of overfitting. The Cp statistic calculated on a sample of data estimates the '''mean squared prediction error (MSPE)'''.
** Coordinate descent in the Lasso problem (for normalized features): <math>
:<math>
\hat{w}_j =
E\sum_j (\hat{Y}_j - E(Y_j\mid X_j))^2/\sigma^2,
\begin{cases}
\rho_j + \lambda/2, & \text{if }\rho_j < -\lambda/2 \\
0, & \text{if } -\lambda/2 \le \rho_j \le \lambda/2\\
\rho_j- \lambda/2, & \text{if }\rho_j > \lambda/2
\end{cases}
</math>
</math>
** Choosing <math>\lambda</math> via cross validation tends to favor less sparse solutions and thus smaller <math>\lambda</math> then optimal choice for feature selection. See "Machine learning: a probabilistic perspective", Murphy 2012.
The ''C<sub>p</sub>'' statistic is defined as
* Classical: Least angle regression (LARS) Efron et al 2004.
:<math> C_p={SSE_p \over S^2} - N + 2P. </math>
* [https://www.mathworks.com/help/stats/lasso.html?s_tid=gn_loc_drop Alternating Direction Method of Multipliers (ADMM)]. Boyd, 2011. “Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers.” Foundations and Trends in Machine Learning. Vol. 3, No. 1, 2010, pp. 1–122.
 
** https://stanford.edu/~boyd/papers/pdf/admm_slides.pdf
* https://en.wikipedia.org/wiki/Mallows%27s_Cp
** [https://cran.r-project.org/web/packages/ADMM/ ADMM] package
* [https://www.jobnmadu.com/r-blog/2023-02-04-r-rmarkdown/mallows/ Better and enhanced method of estimating Mallow's Cp]
** [https://www.quora.com/Convex-Optimization-Whats-the-advantage-of-alternating-direction-method-of-multipliers-ADMM-and-whats-the-use-case-for-this-type-of-method-compared-against-classic-gradient-descent-or-conjugate-gradient-descent-method What's the advantage of alternating direction method of multipliers (ADMM), and what's the use case for this type of method compared against classic gradient descent or conjugate gradient descent method?]
* Used in Yuan & Lin (2006) group lasso. The degrees of freedom is estimated by the bootstrap or perturbation methods. Their paper mentioned the performance is comparable with that of 5-fold CV but is computationally much faster.
* [https://math.stackexchange.com/questions/771585/convexity-of-lasso If some variables in design matrix are correlated, then LASSO is convex or not?]
* Tibshirani. [http://www.jstor.org/stable/2346178 Regression shrinkage and selection via the lasso] (free). JRSS B 1996.
* [http://www.econ.uiuc.edu/~roger/research/conopt/coptr.pdf Convex Optimization in R] by Koenker & Mizera 2014.
* [https://web.stanford.edu/~hastie/Papers/pathwise.pdf Pathwise coordinate optimization] by Friedman et al 2007.
* [http://web.stanford.edu/~hastie/StatLearnSparsity/ Statistical learning with sparsity: the Lasso and generalizations] T. Hastie, R. Tibshirani, and M. Wainwright, 2015 (book)
* Element of Statistical Learning (book)
* https://youtu.be/A5I1G1MfUmA StatsLearning Lect8h 110913
* Fu's (1998) shooting algorithm for Lasso ([http://web.stanford.edu/~hastie/TALKS/CD.pdf#page=11 mentioned] in the history of coordinate descent) and Zhang & Lu's (2007) modified shooting algorithm for adaptive Lasso.
* [https://www.cs.ubc.ca/~murphyk/MLbook/ Machine Learning: a Probabilistic Perspective] Choosing <math>\lambda</math> via cross validation tends to favor less sparse solutions and thus smaller <math>\lambda</math> than optimal choice for feature selection.


=== Quadratic programming ===
=== Variable selection for mode regression ===
* https://en.wikipedia.org/wiki/Quadratic_programming
http://www.tandfonline.com/doi/full/10.1080/02664763.2017.1342781 Chen & Zhou, Journal of applied statistics ,June 2017
* https://en.wikipedia.org/wiki/Lasso_(statistics)
* [https://cran.r-project.org/web/views/Optimization.html CRAN Task View: Optimization and Mathematical Programming]
* [https://cran.r-project.org/web/packages/quadprog/ quadprog] package and [https://www.rdocumentation.org/packages/quadprog/versions/1.5-5/topics/solve.QP solve.QP()] function
* [https://rwalk.xyz/solving-quadratic-progams-with-rs-quadprog-package/ Solving Quadratic Progams with R’s quadprog package]
* [https://rwalk.xyz/more-on-quadratic-programming-in-r/ More on Quadratic Programming in R]
* https://optimization.mccormick.northwestern.edu/index.php/Quadratic_programming
* [https://rss.onlinelibrary.wiley.com/doi/full/10.1111/rssb.12273 Maximin projection learning for optimal treatment decision with heterogeneous individualized treatment effects] where the algorithm from [https://ieeexplore.ieee.org/abstract/document/7448814/ Lee] 2016 was used.


=== Highly correlated covariates ===
=== lmSubsets ===
'''1. Elastic net'''
[https://eeecon.uibk.ac.at/~zeileis/news/lmsubsets/ lmSubsets]: Exact variable-subset selection in linear regression. 2020


''' 2. Group lasso'''
=== Permutation method ===
* [http://pages.stat.wisc.edu/~myuan/papers/glasso.final.pdf Yuan and Lin 2006] JRSSB
[https://medium.com/responsibleml/basic-xai-with-dalex-part-2-permutation-based-variable-importance-1516c2924a14 BASIC XAI with DALEX — Part 2: Permutation-based variable importance]
* https://cran.r-project.org/web/packages/gglasso/, http://royr2.github.io/2014/04/15/GroupLasso.html
* https://cran.r-project.org/web/packages/grpreg/
* https://cran.r-project.org/web/packages/grplasso/ by Lukas Meier ([http://people.ee.duke.edu/~lcarin/lukas-sara-peter.pdf paper]), used in the '''biospear''' package for survival data
* https://cran.r-project.org/web/packages/SGL/index.html, http://royr2.github.io/2014/05/20/SparseGroupLasso.html, http://web.stanford.edu/~hastie/Papers/SGLpaper.pdf


=== Other Lasso ===
== Neural network ==
* [https://statisticaloddsandends.wordpress.com/2019/01/14/pclasso-a-new-method-for-sparse-regression/ pcLasso]
* [http://junma5.weebly.com/data-blog/build-your-own-neural-network-classifier-in-r Build your own neural network in R]
* [https://www.biorxiv.org/content/10.1101/630079v1 A Fast and Flexible Algorithm for Solving the Lasso in Large-scale and Ultrahigh-dimensional Problems] Qian et al 2019 and the [https://github.com/junyangq/snpnet snpnet] package
* Building A Neural Net from Scratch Using R - [https://rviews.rstudio.com/2020/07/20/shallow-neural-net-from-scratch-using-r-part-1/ Part 1]
* (Video) [https://youtu.be/ntKn5TPHHAk 10.2: Neural Networks: Perceptron Part 1 - The Nature of Code] from the Coding Train. The book [http://natureofcode.com/book/chapter-10-neural-networks/ THE NATURE OF CODE] by DANIEL SHIFFMAN
* [https://freakonometrics.hypotheses.org/52774 CLASSIFICATION FROM SCRATCH, NEURAL NETS]. The ROCR package was used to produce the ROC curve.
* [http://www.erikdrysdale.com/neuralnetsR/ Building a survival-neuralnet from scratch in base R]


== Comparison by plotting ==
== Support vector machine (SVM) ==
If we are running simulation, we can use the [https://github.com/pbiecek/DALEX DALEX] package to visualize the fitting result from different machine learning methods and the true model. See http://smarterpoland.pl/index.php/2018/05/ml-models-what-they-cant-learn.
* [https://statcompute.wordpress.com/2016/03/19/improve-svm-tuning-through-parallelism/ Improve SVM tuning through parallelism] by using the '''foreach''' and '''doParallel''' packages.
* [https://www.spsanderson.com/steveondata/posts/2023-09-11/index.html Plotting SVM Decision Boundaries with e1071 in R]


== UMAP ==
== Quadratic Discriminant Analysis (qda), KNN ==
* https://arxiv.org/abs/1802.03426
[https://datarvalue.blogspot.com/2017/05/machine-learning-stock-market-data-part_16.html Machine Learning. Stock Market Data, Part 3: Quadratic Discriminant Analysis and KNN]
* https://www.biorxiv.org/content/early/2018/04/10/298430
* https://cran.r-project.org/web/packages/umap/index.html


= Imbalanced Classification =
== KNN ==
* [https://www.analyticsvidhya.com/blog/2016/03/practical-guide-deal-imbalanced-classification-problems/ Practical Guide to deal with Imbalanced Classification Problems in R]
[https://finnstats.com/index.php/2021/04/30/knn-algorithm-machine-learning/ KNN Algorithm Machine Learning]
* [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4349800/ The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets]
* [https://github.com/dariyasydykova/open_projects/tree/master/ROC_animation Roc animation]


= Deep Learning =
== [https://en.wikipedia.org/wiki/Regularization_(mathematics) Regularization] ==
* [https://bcourses.berkeley.edu/courses/1453965/wiki CS294-129 Designing, Visualizing and Understanding Deep Neural Networks] from berkeley.
Regularization is a process of introducing additional information in order to solve an ill-posed problem or to prevent overfitting
* https://www.youtube.com/playlist?list=PLkFD6_40KJIxopmdJF_CLNqG3QuDFHQUm
* [https://www.r-bloggers.com/deep-learning-from-first-principles-in-python-r-and-octave-part-5/ Deep Learning from first principles in Python, R and Octave – Part 5]


== Tensor Flow (tensorflow package) ==
[https://www.datacamp.com/community/tutorials/tutorial-ridge-lasso-elastic-net Regularization: Ridge, Lasso and Elastic Net] from datacamp.com. Bias and variance trade-off in parameter estimates was used to lead to the discussion.
* https://tensorflow.rstudio.com/
* [https://youtu.be/atiYXm7JZv0 Machine Learning with R and TensorFlow] (Video)
* [https://developers.google.com/machine-learning/crash-course/ Machine Learning Crash Course] with TensorFlow APIs
* [http://www.pnas.org/content/early/2018/03/09/1717139115 Predicting cancer outcomes from histology and genomics using convolutional networks] Pooya Mobadersany et al, PNAS 2018


== Biological applications ==
=== Regularized least squares ===
* [https://academic.oup.com/bioinformatics/article-abstract/33/22/3685/4092933 An introduction to deep learning on biological sequence data: examples and solutions]
https://en.wikipedia.org/wiki/Regularized_least_squares. Ridge/ridge/elastic net regressions are special cases.


== Machine learning resources ==
=== Ridge regression ===
* [https://www.makeuseof.com/tag/machine-learning-courses/ These Machine Learning Courses Will Prepare a Career Path for You]
* [https://stats.stackexchange.com/questions/52653/what-is-ridge-regression What is ridge regression?]
* [https://blog.datasciencedojo.com/machine-learning-algorithms/ 101 Machine Learning Algorithms for Data Science with Cheat Sheets]
* [https://stats.stackexchange.com/questions/118712/why-does-ridge-estimate-become-better-than-ols-by-adding-a-constant-to-the-diago Why does ridge estimate become better than OLS by adding a constant to the diagonal?] The estimates become more stable if the covariates are highly correlated.
* (In ridge regression) the matrix we need to invert no longer has determinant near zero, so the solution does not lead to uncomfortably large variance in the estimated parameters. And that’s a good thing. See [https://tamino.wordpress.com/2011/02/12/ridge-regression/ this post].
* [https://www.tandfonline.com/doi/abs/10.1080/02664763.2018.1526891?journalCode=cjas20 Multicolinearity and ridge regression: results on type I errors, power and heteroscedasticity]


= Randomization inference =
Since L2 norm is used in the regularization, ridge regression is also called L2 regularization.
* Google: randomization inference in r
* [http://www.personal.psu.edu/ljk20/zeros.pdf Randomization Inference for Outcomes with Clumping at Zero], [https://amstat.tandfonline.com/doi/full/10.1080/00031305.2017.1385535#.W09zpdhKg3E The American Statistician] 2018
* [https://jasonkerwin.com/nonparibus/2017/09/25/randomization-inference-vs-bootstrapping-p-values/ Randomization inference vs. bootstrapping for p-values]


= Bootstrap =
[https://drsimonj.svbtle.com/ridge-regression-with-glmnet ridge regression with glmnet]
* [https://en.wikipedia.org/wiki/Bootstrapping_%28statistics%29 Bootstrap] from Wikipedia.
** This contains an overview of different methods for computing bootstrap confidence intervals.
** [https://www.rdocumentation.org/packages/boot/versions/1.3-20/topics/boot.ci boot.ci()] from the 'boot' package provides a short explanation for different methods for computing bootstrap confidence intervals.
* [https://github.com/jtleek/slipper Bootstrapping made easy and tidy with slipper]
* [https://cran.r-project.org/web/packages/bootstrap/ bootstrap] package. "An Introduction to the Bootstrap" by B. Efron and R. Tibshirani, 1993
* [https://cran.r-project.org/web/packages/boot/ boot] package. Functions and datasets for bootstrapping from the book [https://books.google.com/books?id=_uKcAgAAQBAJ Bootstrap Methods and Their Application] by A. C. Davison and D. V. Hinkley (1997, CUP). A short course material can be found [https://www.researchgate.net/publication/37434447_Bootstrap_Methods_and_Their_Application here].The main functions are '''boot()''' and '''boot.ci()'''.
** https://www.rdocumentation.org/packages/boot/versions/1.3-20
** [https://www.statmethods.net/advstats/bootstrapping.html R in Action] Nonparametric bootstrapping <syntaxhighlight lang='rsplus'>
# Compute the bootstrapped 95% confidence interval for R-squared in the linear regression
rsq <- function(data, indices, formula) {
  d <- data[indices,] # allows boot to select sample
  fit <- lm(formula, data=d)
  return(summary(fit)$r.square)
} # 'formula' is optional depends on the problem


# bootstrapping with 1000 replications
Hoerl and Kennard (1970a, 1970b) introduced ridge regression, which minimizes RSS subject to a constraint <math>\sum|\beta_j|^2 \le t</math>. Note that though ridge regression shrinks the OLS estimator toward 0 and yields a biased estimator <math>\hat{\beta} = (X^TX + \lambda X)^{-1} X^T y </math> where <math>\lambda=\lambda(t)</math>, a function of ''t'', the variance is smaller than that of the OLS estimator.
set.seed(1234)
bootobject <- boot(data=mtcars, statistic=rsq, R=1000,  
                  formula=mpg~wt+disp)
plot(bootobject) # or plot(bootobject, index = 1) if we have multiple statistics
ci <- boot.ci(bootobject, conf = .95, type=c("perc", "bca") )
    # default type is "all" which contains c("norm","basic", "stud", "perc", "bca").
    # 'bca' (Bias Corrected and Accelerated) by Efron 1987 uses
    # percentiles but adjusted to account for bias and skewness.
# Level    Percentile            BCa         
# 95%  ( 0.6838,  0.8833 )  ( 0.6344,  0.8549 )
# Calculations and Intervals on Original Scale
# Some BCa intervals may be unstable
ci$bca[4:5] 
# [1] 0.6343589 0.8549305
# the mean is not the same
mean(c(0.6838,  0.8833 ))
# [1] 0.78355
mean(c(0.6344,  0.8549 ))
# [1] 0.74465
summary(lm(mpg~wt+disp, data = mtcars))$r.square
# [1] 0.7809306
</syntaxhighlight>
** [https://www.r-project.org/doc/Rnews/Rnews_2002-3.pdf#page=2 Resampling Methods in R: The boot Package] by Canty
** [https://pdfs.semanticscholar.org/0203/d0902185dd819bf38c8dacd077df0122b89d.pdf An introduction to bootstrap with applications with R] by Davison and Kuonen.
** http://people.tamu.edu/~alawing/materials/ESSM689/Btutorial.pdf
** http://statweb.stanford.edu/~tibs/sta305files/FoxOnBootingRegInR.pdf
** http://www.stat.wisc.edu/~larget/stat302/chap3.pdf
** https://www.stat.cmu.edu/~cshalizi/402/lectures/08-bootstrap/lecture-08.pdf. Variance, se, bias, confidence interval (basic, percentile), hypothesis testing, parametric & non-parametric bootstrap, bootstrapping regression models.
* http://www.math.ntu.edu.tw/~hchen/teaching/LargeSample/references/R-bootstrap.pdf  No package is used
* http://web.as.uky.edu/statistics/users/pbreheny/621/F10/notes/9-21.pdf Bootstrap confidence interval
* http://www-stat.wharton.upenn.edu/~stine/research/spida_2005.pdf
* Optimism corrected bootstrapping ([https://www4.stat.ncsu.edu/~lu/ST745/sim_modelchecking.pdf#page=12 Harrell et al 1996])
** [http://thestatsgeek.com/2014/10/04/adjusting-for-optimismoverfitting-in-measures-of-predictive-ability-using-bootstrapping/ Adjusting for optimism/overfitting in measures of predictive ability using bootstrapping]
** [https://intobioinformatics.wordpress.com/2018/12/25/optimism-corrected-bootstrapping-a-problematic-method/ Part 1]: Optimism corrected bootstrapping: a problematic method
** [https://intobioinformatics.wordpress.com/2018/12/26/part-2-optimism-corrected-bootstrapping-is-definitely-bias-further-evidence/ Part 2]: Optimism corrected bootstrapping is definitely bias, further evidence
** [https://intobioinformatics.wordpress.com/2018/12/27/part-3-two-more-implementations-of-optimism-corrected-bootstrapping-show-shocking-bias/ Part 3]: Two more implementations of optimism corrected bootstrapping show shocking bias
** [https://intobioinformatics.wordpress.com/2018/12/28/part-4-more-bias-and-why-does-bias-occur-in-optimism-corrected-bootstrapping/ Part 4]: Why does bias occur in optimism corrected bootstrapping?
** [https://intobioinformatics.wordpress.com/2018/12/29/part-5-corrections-to-optimism-corrected-bootstrapping-series-but-it-still-is-problematic/ Part 5]: Code corrections to optimism corrected bootstrapping series


== Nonparametric bootstrap ==
The solution exists if <math>\lambda >0</math> even if <math>n < p </math>.
This is the most common bootstrap method


[https://academic.oup.com/biostatistics/advance-article/doi/10.1093/biostatistics/kxy054/5106666 The upstrap] Crainiceanu & Crainiceanu, Biostatistics 2018
Ridge regression (L2 penalty) only shrinks the coefficients. In contrast, Lasso method (L1 penalty) tries to shrink some coefficient estimators to exactly zeros. This can be seen from comparing the coefficient path plot from both methods.


== Parametric bootstrap ==
Geometrically (contour plot of the cost function), the L1 penalty (the sum of absolute values of coefficients) will incur a probability of some zero coefficients (i.e. some coefficient hitting the corner of a diamond shape in the 2D case). For example, in the 2D case (X-axis=<math>\beta_0</math>, Y-axis=<math>\beta_1</math>), the shape of the L1 penalty <math>|\beta_0| + |\beta_1|</math> is a diamond shape whereas the shape of the L2 penalty (<math>\beta_0^2 + \beta_1^2</math>) is a circle.
* Parametric bootstraps resample a known distribution function, whose parameters are estimated from your sample
* http://www.math.ntu.edu.tw/~hchen/teaching/LargeSample/notes/notebootstrap.pdf#page=3 No package is used
* [http://influentialpoints.com/Training/nonparametric-or-parametric_bootstrap.htm A parametric or non-parametric bootstrap?]
* https://www.stat.cmu.edu/~cshalizi/402/lectures/08-bootstrap/lecture-08.pdf#page=11
* [https://bioconductor.org/packages/release/bioc/vignettes/simulatorZ/inst/doc/simulatorZ-vignette.pdf simulatorZ] Bioc package


= Cross Validation =
=== Lasso/glmnet, adaptive lasso and FAQs ===
R packages:
[[glmnet|glmnet]]
* [https://cran.r-project.org/web/packages/rsample/index.html rsample] (released July 2017)
* [https://cran.r-project.org/web/packages/CrossValidate/index.html CrossValidate] (released July 2017)


== Difference between CV & bootstrapping ==
=== Lasso logistic regression ===
[https://stats.stackexchange.com/a/18355 Differences between cross validation and bootstrapping to estimate the prediction error]
https://freakonometrics.hypotheses.org/52894
* CV tends to be less biased but K-fold CV has fairly large variance.
* Bootstrapping tends to drastically reduce the variance but gives more biased results (they tend to be pessimistic).
* The 632 and 632+ rules methods have been adapted to deal with the bootstrap bias
* Repeated CV does K-fold several times and averages the results similar to regular K-fold


== .632 and .632+ bootstrap ==
=== Lagrange Multipliers ===
* 0.632 bootstrap: Efron's paper [https://www.jstor.org/stable/pdf/2288636.pdf  Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation] in 1983.
[https://medium.com/@andrew.chamberlain/a-simple-explanation-of-why-lagrange-multipliers-works-253e2cdcbf74 A Simple Explanation of Why Lagrange Multipliers Works]
* 0.632+ bootstrap: The CV estimate of prediction error is nearly unbiased but can be highly variable. See [https://www.tandfonline.com/doi/pdf/10.1080/01621459.1997.10474007 Improvements on Cross-Validation: The .632+ Bootstrap Method] by Efron and Tibshirani, JASA 1997.
* Chap 17.7 from "An Introduction to the Bootstrap" by Efron and Tibshirani. Chapman & Hall.
* Chap 7.4 (resubstitution error <math>\overline{err} </math>) and chap 7.11 (<math>Err_{boot(1)}</math>leave-one-out bootstrap estimate of prediction error) from "The Elements of Statistical Learning" by Hastie, Tibshirani and Friedman. Springer.
* [http://stats.stackexchange.com/questions/96739/what-is-the-632-rule-in-bootstrapping What is the .632 bootstrap]?
: <math>
Err_{.632} = 0.368 \overline{err} + 0.632 Err_{boot(1)}
</math>
* [https://link.springer.com/referenceworkentry/10.1007/978-1-4419-9863-7_1328 Bootstrap, 0.632 Bootstrap, 0.632+ Bootstrap] from Encyclopedia of Systems Biology by Springer.
* bootpred() from bootstrap function.
* The .632 bootstrap estimate can be extended to statistics other than prediction error. See the paper [https://www.tandfonline.com/doi/full/10.1080/10543406.2016.1226329 Issues in developing multivariable molecular signatures for guiding clinical care decisions] by Sachs. [https://github.com/sachsmc/signature-tutorial Source code]. Let <math>\phi</math> be a performance metric, <math>S_b</math> a sample of size n from a bootstrap, <math>S_{-b}</math> subset of <math>S</math> that is disjoint from <math>S_b</math>; test set.
: <math>
\hat{E}^*[\phi_{\mathcal{F}}(S)] = .368 \hat{E}[\phi_{f}(S)] + 0.632 \hat{E}[\phi_{f_b}(S_{-b})]
</math>
: where <math>\hat{E}[\phi_{f}(S)]</math> is the naive estimate of <math>\phi_f</math> using the entire dataset.
* For survival data
** [https://cran.r-project.org/web/packages/ROC632/ ROC632] package, [https://repositorium.sdum.uminho.pt/bitstream/1822/52744/1/paper4_final_version_CatarinaSantos_ACB.pdf Overview], and the paper [https://www.degruyter.com/view/j/sagmb.2012.11.issue-6/1544-6115.1815/1544-6115.1815.xml?format=INT Time Dependent ROC Curves for the Estimation of True Prognostic Capacity of Microarray Data] by Founcher 2012.
** [https://onlinelibrary.wiley.com/doi/full/10.1111/j.1541-0420.2007.00832.x Efron-Type Measures of Prediction Error for Survival Analysis] Gerds 2007.
** [https://academic.oup.com/bioinformatics/article/23/14/1768/188061 Assessment of survival prediction models based on microarray data] Schumacher 2007. Brier score.
** [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4194196/ Evaluating Random Forests for Survival Analysis using Prediction Error Curves] Mogensen, 2012. [https://cran.r-project.org/web/packages/pec/ pec] package
** [https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/1471-2288-12-102 Assessment of performance of survival prediction models for cancer prognosis] Chen 2012. Concordance, ROC... But bootstrap was not used.
** [https://www.sciencedirect.com/science/article/pii/S1672022916300390#b0150 Comparison of Cox Model Methods in A Low-dimensional Setting with Few Events] 2016. Concordance, calibration slopes RMSE are considered.


== Create partitions ==
=== How to solve lasso/convex optimization ===
[http://r-exercises.com/2016/11/13/sampling-exercise-1/ set.seed(), sample.split(),createDataPartition(), and createFolds()] functions.
* [https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf Convex Optimization] by Boyd S, Vandenberghe L, Cambridge 2004. It is cited by Zhang & Lu (2007). The '''interior point algorithm''' can be used to solve the optimization problem in adaptive lasso.
 
* Review of '''gradient descent''':
[https://drsimonj.svbtle.com/k-fold-cross-validation-with-modelr-and-broom k-fold cross validation with modelr and broom]
** Finding maximum: <math>w^{(t+1)} = w^{(t)} + \eta \frac{dg(w)}{dw}</math>, where <math>\eta</math> is stepsize.
 
** Finding minimum: <math>w^{(t+1)} = w^{(t)} - \eta \frac{dg(w)}{dw}</math>.
== Nested resampling ==
** [https://stackoverflow.com/questions/12066761/what-is-the-difference-between-gradient-descent-and-newtons-gradient-descent What is the difference between Gradient Descent and Newton's Gradient Descent?] Newton's method requires <math>g''(w)</math>, more smoothness of g(.).
* [http://appliedpredictivemodeling.com/blog/2017/9/2/njdc83d01pzysvvlgik02t5qnaljnd Nested Resampling with rsample]
** Finding minimum for multiple variables ('''gradient descent'''): <math>w^{(t+1)} = w^{(t)} - \eta \Delta g(w^{(t)})</math>. For the least squares problem, <math>g(w) = RSS(w)</math>.
* https://stats.stackexchange.com/questions/292179/whats-the-meaning-of-nested-resampling
** Finding minimum for multiple variables in the least squares problem (minimize <math>RSS(w)</math>):  <math>\text{partial}(j) = -2\sum h_j(x_i)(y_i - \hat{y}_i(w^{(t)}), w_j^{(t+1)} = w_j^{(t)} - \eta \; \text{partial}(j)</math>
 
** Finding minimum for multiple variables in the ridge regression problem (minimize <math>RSS(w)+\lambda \|w\|_2^2=(y-Hw)'(y-Hw)+\lambda w'w</math>): <math>\text{partial}(j) = -2\sum h_j(x_i)(y_i - \hat{y}_i(w^{(t)}), w_j^{(t+1)} = (1-2\eta \lambda) w_j^{(t)} - \eta \; \text{partial}(j)</math>. Compared to the closed form approach: <math>\hat{w} = (H'H + \lambda I)^{-1}H'y</math> where 1. the inverse exists even N<D as long as <math>\lambda > 0</math> and 2. the complexity of inverse is <math>O(D^3)</math>, D is the dimension of the covariates.
Nested resampling is need when we want to '''tuning a model''' by using a grid search. The default settings of a model are likely not optimal for each data set out. So an inner CV has to be performed with the aim to find the best parameter set of a learner for each fold.
* '''Cyclical coordinate descent''' was used ([https://cran.r-project.org/web/packages/glmnet/vignettes/glmnet_beta.pdf#page=1 vignette]) in the glmnet package. See also '''[https://en.wikipedia.org/wiki/Coordinate_descent coordinate descent]'''. The reason we call it 'descent' is because we want to 'minimize' an objective function.
 
** <math>\hat{w}_j = \min_w g(\hat{w}_1, \cdots, \hat{w}_{j-1},w, \hat{w}_{j+1}, \cdots, \hat{w}_D)</math>
See a diagram at https://i.stack.imgur.com/vh1sZ.png
** See [https://www.jstatsoft.org/article/view/v033i01 paper] on JSS 2010. The Cox PHM case also uses the cyclical coordinate descent method; see the [https://www.jstatsoft.org/article/view/v039i05 paper] on JSS 2011.
 
** Coursera's [https://www.coursera.org/learn/ml-regression/lecture/rb179/feature-selection-lasso-and-nearest-neighbor-regression Machine learning course 2: Regression] at 1:42. [http://web.stanford.edu/~hastie/TALKS/CD.pdf#page=12 Soft-thresholding] the coefficients is the key for the L1 penalty. The range for the thresholding is controlled by <math>\lambda</math>. Note to view the videos and all materials in coursera we can enroll to audit the course without starting a trial.
In BRB-ArrayTools -> class prediction with multiple methods, the ''alpha'' (significant level of threshold used for gene selection, 2nd option in individual genes) can be viewed as a tuning parameter for the development of a classifier.
** [http://www.adeveloperdiary.com/data-science/machine-learning/introduction-to-coordinate-descent-using-least-squares-regression/ Introduction to Coordinate Descent using Least Squares Regression]. It also covers '''Cyclic Coordinate Descent''' and '''Coordinate Descent vs Gradient Descent'''. A python code is provided.
 
** No step size is required as in gradient descent.
== Pre-validation ==
** [https://sandipanweb.wordpress.com/2017/05/04/implementing-lasso-regression-with-coordinate-descent-and-the-sub-gradient-of-the-l1-penalty-with-soft-thresholding/ Implementing LASSO Regression with Coordinate Descent, Sub-Gradient of the L1 Penalty and Soft Thresholding in Python]
* [https://www.degruyter.com/view/j/sagmb.2002.1.1/sagmb.2002.1.1.1000/sagmb.2002.1.1.1000.xml Pre-validation and inference in microarrays] Tibshirani and Efron, Statistical Applications in Genetics and Molecular Biology, 2002.
** Coordinate descent in the least squares problem: <math>\frac{\partial}{\partial w_j} RSS(w)= -2 \rho_j + 2 w_j</math>; i.e. <math>\hat{w}_j = \rho_j</math>.
* http://www.stat.columbia.edu/~tzheng/teaching/genetics/papers/tib_efron.pdf#page=5. In each CV, we compute the estimate of the response. This estimate of the response will serve as a new predictor ('''pre-validated predictor''') in the final fitting model.
** Coordinate descent in the Lasso problem (for normalized features): <math>
* P1101 of Sachs 2016. With pre-validation, instead of computing the statistic <math>\phi</math> for each of the held-out subsets (<math>S_{-b}</math> for the bootstrap or <math>S_{k}</math> for cross-validation), the fitted signature <math>\hat{f}(X_i)</math> is estimated for <math>X_i \in S_{-b}</math> where <math>\hat{f}</math> is estimated using <math>S_{b}</math>. This process is repeated to obtain a set of '''pre-validated signature''' estimates <math>\hat{f}</math>. Then an association measure <math>\phi</math> can be calculated using the pre-validated signature estimates and the true outcomes <math>Y_i, i = 1, \ldots, n</math>.
\hat{w}_j =
* In CV, left-out samples = hold-out cases = test set
\begin{cases}
 
\rho_j + \lambda/2, & \text{if }\rho_j < -\lambda/2 \\
= Clustering =
0, & \text{if } -\lambda/2 \le \rho_j \le \lambda/2\\
See [[Heatmap#Clustering|Clustering]].
\rho_j- \lambda/2, & \text{if }\rho_j > \lambda/2
\end{cases}
</math>
** Choosing <math>\lambda</math> via cross validation tends to favor less sparse solutions and thus smaller <math>\lambda</math> then optimal choice for feature selection. See "Machine learning: a probabilistic perspective", Murphy 2012.
** [http://support.sas.com/resources/papers/proceedings15/3297-2015.pdf Lasso Regularization for Generalized Linear Models in Base SAS® Using Cyclical Coordinate Descent]
* Classical: Least angle regression (LARS) Efron et al 2004.
* [https://www.mathworks.com/help/stats/lasso.html?s_tid=gn_loc_drop Alternating Direction Method of Multipliers (ADMM)]. Boyd, 2011. “Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers.” Foundations and Trends in Machine Learning. Vol. 3, No. 1, 2010, pp. 1–122.
** https://stanford.edu/~boyd/papers/pdf/admm_slides.pdf
** [https://cran.r-project.org/web/packages/ADMM/ ADMM] package
** [https://www.quora.com/Convex-Optimization-Whats-the-advantage-of-alternating-direction-method-of-multipliers-ADMM-and-whats-the-use-case-for-this-type-of-method-compared-against-classic-gradient-descent-or-conjugate-gradient-descent-method What's the advantage of alternating direction method of multipliers (ADMM), and what's the use case for this type of method compared against classic gradient descent or conjugate gradient descent method?]
* [https://math.stackexchange.com/questions/771585/convexity-of-lasso If some variables in design matrix are correlated, then LASSO is convex or not?]
* Tibshirani. [http://www.jstor.org/stable/2346178 Regression shrinkage and selection via the lasso] (free). JRSS B 1996.
* [http://www.econ.uiuc.edu/~roger/research/conopt/coptr.pdf Convex Optimization in R] by Koenker & Mizera 2014.
* [https://web.stanford.edu/~hastie/Papers/pathwise.pdf Pathwise coordinate optimization] by Friedman et al 2007.
* [http://web.stanford.edu/~hastie/StatLearnSparsity/ Statistical learning with sparsity: the Lasso and generalizations] T. Hastie, R. Tibshirani, and M. Wainwright, 2015 (book)
* Element of Statistical Learning (book)
* https://youtu.be/A5I1G1MfUmA StatsLearning Lect8h 110913
* Fu's (1998) shooting algorithm for Lasso ([http://web.stanford.edu/~hastie/TALKS/CD.pdf#page=11 mentioned] in the history of coordinate descent) and Zhang & Lu's (2007) modified shooting algorithm for adaptive Lasso.
* [https://www.cs.ubc.ca/~murphyk/MLbook/ Machine Learning: a Probabilistic Perspective] Choosing <math>\lambda</math> via cross validation tends to favor less sparse solutions and thus smaller <math>\lambda</math> than optimal choice for feature selection.
* [https://github.com/OHDSI/Cyclops Cyclops] package - Cyclic Coordinate Descent for Logistic, Poisson and Survival Analysis. [https://cran.r-project.org/web/packages/Cyclops/index.html CRAN]. It imports '''Rcpp''' package. It also provides Dockerfile.
* [http://www.optimization-online.org/DB_FILE/2014/12/4679.pdf Coordinate Descent Algorithms] by Stephen J. Wright


= Mixed Effect Model =
=== Quadratic programming ===
 
* https://en.wikipedia.org/wiki/Quadratic_programming
* Paper by [http://www.stat.cmu.edu/~brian/463/week07/laird-ware-biometrics-1982.pdf Laird and Ware 1982]
* https://en.wikipedia.org/wiki/Lasso_(statistics)
* [http://cran.r-project.org/doc/contrib/Fox-Companion/appendix-mixed-models.pdf John Fox's Linear Mixed Models] Appendix to An R and S-PLUS Companion to Applied Regression. Very clear. It provides 2 typical examples (hierarchical data and longitudinal data) of using the mixed effects model. It also uses Trellis plots to examine the data.
* [https://cran.r-project.org/web/views/Optimization.html CRAN Task View: Optimization and Mathematical Programming]
* Chapter 10 Random and Mixed Effects from Modern Applied Statistics with S by Venables and Ripley.
* [https://cran.r-project.org/web/packages/quadprog/ quadprog] package and [https://www.rdocumentation.org/packages/quadprog/versions/1.5-5/topics/solve.QP solve.QP()] function
* (Book) lme4: Mixed-effects modeling with R by Douglas Bates.
* [https://rwalk.xyz/solving-quadratic-progams-with-rs-quadprog-package/ Solving Quadratic Progams with R’s quadprog package]
* (Book) Mixed-effects modeling in S and S-Plus by José Pinheiro and Douglas Bates.
* [https://rwalk.xyz/more-on-quadratic-programming-in-r/ More on Quadratic Programming in R]
* [http://educate-r.org//2016/06/29/user2016.html Simulation and power analysis of generalized linear mixed models]
* https://optimization.mccormick.northwestern.edu/index.php/Quadratic_programming
* [https://poissonisfish.wordpress.com/2017/12/11/linear-mixed-effect-models-in-r/ Linear mixed-effect models in R] by poissonisfish
* [https://rss.onlinelibrary.wiley.com/doi/full/10.1111/rssb.12273 Maximin projection learning for optimal treatment decision with heterogeneous individualized treatment effects] where the algorithm from [https://ieeexplore.ieee.org/abstract/document/7448814/ Lee] 2016 was used.
* [https://www.statforbiology.com/2019/stat_general_correlationindependence2/ Dealing with correlation in designed field experiments]: part II


= Model selection criteria =
=== Constrained optimization ===
* [http://r-video-tutorial.blogspot.com/2017/07/assessing-accuracy-of-our-models-r.html Assessing the Accuracy of our models (R Squared, Adjusted R Squared, RMSE, MAE, AIC)]
[https://cran.r-project.org/web/packages/Jaya/vignettes/A_guide_to_JA.html Jaya Package]. Jaya Algorithm is a gradient-free optimization algorithm. It can be used for Maximization or Minimization of a function for solving both constrained and unconstrained optimization problems. It does not contain any hyperparameters.
* [https://forecasting.svetunkov.ru/en/2018/03/22/comparing-additive-and-multiplicative-regressions-using-aic-in-r/ Comparing additive and multiplicative regressions using AIC in R]
* [https://www.tandfonline.com/doi/full/10.1080/00031305.2018.1459316?src=recsys Model Selection and Regression t-Statistics] Derryberry 2019


== Akaike information criterion/AIC ==
=== Highly correlated covariates ===
* https://en.wikipedia.org/wiki/Akaike_information_criterion.
'''1. Elastic net'''
:<math>\mathrm{AIC} \, = \, 2k - 2\ln(\hat L)</math>, where k be the number of estimated parameters in the model.
* Smaller is better
* Akaike proposed to approximate the expectation of the cross-validated log likelihood  <math>E_{test}E_{train} [log L(x_{test}| \hat{\beta}_{train})]</math> by <math>log L(x_{train} | \hat{\beta}_{train})-k </math>.
* Leave-one-out cross-validation is asymptotically equivalent to AIC, for ordinary linear regression models.
* AIC can be used to compare two models even if they are not hierarchically nested.
* [https://www.rdocumentation.org/packages/stats/versions/3.6.0/topics/AIC AIC()] from the stats package.


== BIC ==
''' 2. Group lasso'''
:<math>\mathrm{BIC} \, = \, \ln(n) \cdot 2k - 2\ln(\hat L)</math>, where k be the number of estimated parameters in the model.
* [http://pages.stat.wisc.edu/~myuan/papers/glasso.final.pdf Yuan and Lin 2006] JRSSB
 
* https://cran.r-project.org/web/packages/gglasso/, http://royr2.github.io/2014/04/15/GroupLasso.html
== Overfitting ==
* https://cran.r-project.org/web/packages/grpreg/
[https://stats.stackexchange.com/questions/81576/how-to-judge-if-a-supervised-machine-learning-model-is-overfitting-or-not How to judge if a supervised machine learning model is overfitting or not?]
* https://cran.r-project.org/web/packages/grplasso/ by Lukas Meier ([http://people.ee.duke.edu/~lcarin/lukas-sara-peter.pdf paper]), used in the '''biospear''' package for survival data
* https://cran.r-project.org/web/packages/SGL/index.html, http://royr2.github.io/2014/05/20/SparseGroupLasso.html, http://web.stanford.edu/~hastie/Papers/SGLpaper.pdf


== AIC vs AUC ==
=== Grouped data ===
[https://stats.stackexchange.com/a/51278 What is the difference in what AIC and c-statistic (AUC) actually measure for model fit?]
* [https://www.tandfonline.com/doi/abs/10.1080/02664763.2020.1822304?journalCode=cjas20 Regularized robust estimation in binary regression models]


Roughly speaking:
=== Other Lasso ===
* AIC is telling you how good your model fits for a specific mis-classification cost.
* [https://statisticaloddsandends.wordpress.com/2019/01/14/pclasso-a-new-method-for-sparse-regression/ pcLasso]
* AUC is telling you how good your model would work, on average, across all mis-classification costs.
* [https://www.biorxiv.org/content/10.1101/630079v1 A Fast and Flexible Algorithm for Solving the Lasso in Large-scale and Ultrahigh-dimensional Problems] Qian et al 2019 and the [https://github.com/junyangq/snpnet snpnet] package
* [https://doi.org/10.1093/biostatistics/kxz034 Adaptive penalization in high-dimensional regression and classification with external covariates using variational Bayes] by Velten & Huber 2019 and the bioconductor package [http://www.bioconductor.org/packages/release/bioc/html/graper.html graper]. Differentially penalizes '''feature groups''' defined by the covariates and adapts the relative strength of penalization to the information content of each group.  Incorporating side-information on the assay type and spatial or functional annotations could help to improve prediction performance. Furthermore, it could help prioritizing feature groups, such as different assays or gene sets.


'''Frank Harrell''': AUC (C-index) has the advantage of measuring the concordance probability as you stated, aside from cost/utility considerations. To me the bottom line is the AUC should be used to describe discrimination of one model, not to compare 2 models. For comparison we need to use the most powerful measure: deviance and those things derived from deviance: generalized 𝑅<sup>2</sup> and AIC.
== Comparison by plotting ==
If we are running simulation, we can use the [https://github.com/pbiecek/DALEX DALEX] package to visualize the fitting result from different machine learning methods and the true model. See http://smarterpoland.pl/index.php/2018/05/ml-models-what-they-cant-learn.


== Variable selection and model estimation ==
== Prediction ==
[https://stats.stackexchange.com/a/138475 Proper variable selection: Use only training data or full data?]
[https://amstat.tandfonline.com/doi/full/10.1080/01621459.2020.1762613 Prediction, Estimation, and Attribution] Efron 2020


* training observations to perform all aspects of model-fitting—including variable selection
== Postprediction inference/Inference based on predicted outcomes ==
* make use of the full data set in order to obtain more accurate coefficient estimates (This statement is arguable)
[https://www.pnas.org/content/117/48/30266 Methods for correcting inference based on outcomes predicted by machine learning] Wang 2020. [https://github.com/leekgroup/postpi postpi] package.


= Entropy =
== SHAP/SHapley Additive exPlanation: feature importance for each class ==
== Definition ==
<ul>
Entropy is defined by -log2(p) where p is a probability. '''Higher entropy represents higher unpredictable of an event'''.
<li>https://en.wikipedia.org/wiki/Shapley_value
<li>Python https://shap.readthedocs.io/en/latest/index.html
<li>[https://towardsdatascience.com/introduction-to-shap-with-python-d27edc23c454 Introduction to SHAP with Python]. For a given prediction, SHAP values can tell us how much each factor in a model has contributed to the prediction.
<li>[https://towardsdatascience.com/a-novel-approach-to-feature-importance-shapley-additive-explanations-d18af30fc21b A Novel Approach to Feature Importance — Shapley Additive Explanations]
<li>[https://towardsdatascience.com/shap-shapley-additive-explanations-5a2a271ed9c3 SHAP: Shapley Additive Explanations]
<li>R package [https://cran.r-project.org/web/packages/shapr/ shapr]: Prediction Explanation with Dependence-Aware Shapley Values
* The output of Shapley value produced by explain() is an n_test x (1+p_test) matrix where "n" is the number of obs and "p" is the dimension of predictor.
* The Shapley values can be plotted using a barplot for each test sample.
* '''approach''' parameter can be empirical/gaussian/copula/ctree. See [https://rdrr.io/cran/shapr/man/ doc]
* Note the package only supports a few prediction models to be used in the '''shapr''' function.
<pre>
$ debug(shapr:::get_supported_models)
$ shapr:::get_supported_models()
Browse[2]> print(DT)
  model_class get_model_specs predict_model
1:    default          FALSE          TRUE
2:        gam            TRUE          TRUE
3:        glm            TRUE          TRUE
4:          lm            TRUE          TRUE
5:      ranger            TRUE          TRUE
6: xgb.Booster            TRUE          TRUE
</pre>
</li>
<li>[https://blog.datascienceheroes.com/how-to-interpret-shap-values-in-r/ A gentle introduction to SHAP values in R] '''xgboost''' package
<li>[https://stackoverflow.com/a/71886457 Create SHAP plots for tidymodels objects]
<li>[https://cran.r-project.org/web/packages/shapper/index.html shapper]: Wrapper of Python Library 'shap'
<li>[https://lorentzen.ch/index.php/2022/12/21/interpret-complex-linear-models-with-shap-within-seconds/ Interpret Complex Linear Models with SHAP within Seconds]
</ul>


Some examples:
= Imbalanced/unbalanced Classification =
* Fair 2-side die: Entropy = -.5*log2(.5) - .5*log2(.5) = 1.
See [[ROC#Unbalanced_classes|ROC]].
* Fair 6-side die: Entropy = -6*1/6*log2(1/6) = 2.58
* Weighted 6-side die: Consider pi=.1 for i=1,..,5 and p6=.5. Entropy = -5*.1*log2(.1) - .5*log2(.5) = 2.16 (less unpredictable than a fair 6-side die).


== Use ==
= Deep Learning =
When entropy was applied to the variable selection, we want to select a class variable which gives a largest entropy difference between without any class variable (compute entropy using response only) and with that class variable (entropy is computed by adding entropy in each class level) because this variable is most discriminative and it gives most '''information gain'''. For example,
* [https://bcourses.berkeley.edu/courses/1453965/wiki CS294-129 Designing, Visualizing and Understanding Deep Neural Networks] from berkeley.
* entropy (without any class)=.94,  
* https://www.youtube.com/playlist?list=PLkFD6_40KJIxopmdJF_CLNqG3QuDFHQUm
* entropy(var 1) = .69,
* [https://www.r-bloggers.com/deep-learning-from-first-principles-in-python-r-and-octave-part-5/ Deep Learning from first principles in Python, R and Octave – Part 5]
* entropy(var 2)=.91,
 
* entropy(var 3)=.725.
== Tensor Flow (tensorflow package) ==
We will choose variable 1 since it gives the largest gain (.94 - .69) compared to the other variables (.94 -.91, .94 -.725).  
* https://tensorflow.rstudio.com/
* [https://youtu.be/atiYXm7JZv0 Machine Learning with R and TensorFlow] (Video)
* [https://developers.google.com/machine-learning/crash-course/ Machine Learning Crash Course] with TensorFlow APIs
* [http://www.pnas.org/content/early/2018/03/09/1717139115 Predicting cancer outcomes from histology and genomics using convolutional networks] Pooya Mobadersany et al, PNAS 2018


Why is picking the attribute with the most information gain beneficial? It ''reduces'' entropy, which increases predictability. A decrease in entropy signifies an decrease in unpredictability, which also means an increase in predictability.
== Biological applications ==
* [https://academic.oup.com/bioinformatics/article-abstract/33/22/3685/4092933 An introduction to deep learning on biological sequence data: examples and solutions]


Consider a split of a continuous variable. Where should we cut the continuous variable to create a binary partition with the highest gain? Suppose cut point c1 creates an entropy .9 and another cut point c2 creates an entropy .1. We should choose c2.
== Machine learning resources ==
* [https://www.makeuseof.com/tag/machine-learning-courses/ These Machine Learning Courses Will Prepare a Career Path for You]
* [https://blog.datasciencedojo.com/machine-learning-algorithms/ 101 Machine Learning Algorithms for Data Science with Cheat Sheets]
* [https://supervised-ml-course.netlify.com/ Supervised machine learning case studies in R] - A Free, Interactive Course Using Tidy Tools.


== Related ==
== The Bias-Variance Trade-Off & "DOUBLE DESCENT" in the test error ==
In addition to information gain, gini (dʒiːni) index is another metric used in decision tree. See [http://en.wikipedia.org/wiki/Decision_tree_learning wikipedia page] about decision tree learning.
https://twitter.com/daniela_witten/status/1292293102103748609 and an easy to read [https://threadreaderapp.com/thread/1292293102103748609.html Thread Reader].


= Ensembles =
* (Thread #17) The key point is with 20 DF, n=p, and there's exactly ONE least squares fit that has zero training error. And that fit happens to have oodles of wiggles.....
* Combining classifiers. Pro: better classification performance. Con: time consuming.
* (Thread #18) but as we increase the DF so that p>n, there are TONS of '''interpolating''' least squares fits. The MINIMUM NORM least squares fit is the "least wiggly" of those zillions of fits. And the "least wiggly" among them is even less wiggly than the fit when p=n !!!
* Comic http://flowingdata.com/2017/09/05/xkcd-ensemble-model/
* (Thread #19) "double descent" is happening b/c DF isn't really the right quantity for the the x-axis: like, the fact that we are choosing the minimum norm least squares fit actually means that the spline with 36 DF is **less** flexible than the spline with 20 DF.  
* [http://www.win-vector.com/blog/2019/07/common-ensemble-models-can-be-biased/ Common Ensemble Models can be Biased]
* (Thread #20) if had used a ridge penalty when fitting the spline (instead of least squares)? Well then we wouldn't have interpolated training set, we wouldn't have seen double descent, AND we would have gotten better test error (for the right value of the tuning parameter!)
* (Thread #21) When we use (stochastic) gradient descent to fit a neural net, we are actually picking out the minimum norm solution!! So the spline example is a pretty good analogy for what is happening when we see double descent for neural nets.


== Bagging ==
== Survival data ==
Draw N bootstrap samples and summary the results (averaging for regression problem, majority vote for classification problem). Decrease variance without changing bias. Not help much with underfit or high bias models.
[https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.8542?campaign=woletoc Deep learning for survival outcomes] Steingrimsson, 2020


=== Random forest ===
= Randomization inference =
'''Variance importance''': if you scramble the values of a variable, and the accuracy of your tree does not change much, then the variable is not very important.
* Google: randomization inference in r
* [http://www.personal.psu.edu/ljk20/zeros.pdf Randomization Inference for Outcomes with Clumping at Zero], [https://amstat.tandfonline.com/doi/full/10.1080/00031305.2017.1385535#.W09zpdhKg3E The American Statistician] 2018
* [https://jasonkerwin.com/nonparibus/2017/09/25/randomization-inference-vs-bootstrapping-p-values/ Randomization inference vs. bootstrapping for p-values]


Why is it useful to compute variance importance? So the model's predictions are easier to interpret (not improve the prediction performance).
== Randomization test ==
[https://www.tandfonline.com/doi/full/10.1080/01621459.2023.2199814 What is a Randomization Test?]


Random forest has advantages of easier to run in parallel and suitable for small n large p problems.
= Model selection criteria =
* [http://r-video-tutorial.blogspot.com/2017/07/assessing-accuracy-of-our-models-r.html Assessing the Accuracy of our models (R Squared, Adjusted R Squared, RMSE, MAE, AIC)]
* [https://forecasting.svetunkov.ru/en/2018/03/22/comparing-additive-and-multiplicative-regressions-using-aic-in-r/ Comparing additive and multiplicative regressions using AIC in R]
* [https://www.tandfonline.com/doi/full/10.1080/00031305.2018.1459316?src=recsys Model Selection and Regression t-Statistics] Derryberry 2019
* Mean Absolute Deviance. Measure of the average absolute difference between the predicted values and the actual values.
* Cf: [https://en.wikipedia.org/wiki/Average_absolute_deviation Mean absolute deviation], [https://en.wikipedia.org/wiki/Median_absolute_deviation Median absolute deviation]. Measure of the variability.


[https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2264-5 Random forest versus logistic regression: a large-scale benchmark experiment] by Raphael Couronné, BMC Bioinformatics 2018
== All models are wrong ==
[https://en.wikipedia.org/wiki/All_models_are_wrong All models are wrong] from George Box.


[https://github.com/suiji/arborist Arborist]: Parallelized, Extensible Random Forests
== MSE ==
* [https://stats.stackexchange.com/a/306337 Is MSE decreasing with increasing number of explanatory variables?] Yes


[https://academic.oup.com/bioinformatics/article-abstract/35/15/2701/5250706?redirectedFrom=fulltext On what to permute in test-based approaches for variable importance measures in Random Forests]
== Akaike information criterion/AIC ==
* https://en.wikipedia.org/wiki/Akaike_information_criterion.
:<math>\mathrm{AIC} \, = \, 2k - 2\ln(\hat L)</math>, where k be the number of estimated parameters in the model.
* Smaller is better (error criteria)
* Akaike proposed to approximate the expectation of the cross-validated log likelihood  <math>E_{test}E_{train} [log L(x_{test}| \hat{\beta}_{train})]</math> by <math>log L(x_{train} | \hat{\beta}_{train})-k </math>.
* Leave-one-out cross-validation is asymptotically equivalent to AIC, for ordinary linear regression models.
* AIC can be used to compare two models even if they are not hierarchically nested.
* [https://www.rdocumentation.org/packages/stats/versions/3.6.0/topics/AIC AIC()] from the stats package.
* [https://broom.tidymodels.org/reference/glance.lm.html broom::glance()] was used.
* Generally resampling based measures such as cross-validation should be preferred over theoretical measures such as Aikake's Information Criteria. [http://scott.fortmann-roe.com/docs/BiasVariance.html Understanding the Bias-Variance Tradeoff] & [http://scott.fortmann-roe.com/docs/MeasuringError.html Accurately Measuring Model Prediction Error].


== Boosting ==
== BIC ==
Instead of selecting data points randomly with the boostrap, it favors the misclassified points.  
:<math>\mathrm{BIC} \, = \, \ln(n) \cdot 2k - 2\ln(\hat L)</math>, where k be the number of estimated parameters in the model.


Algorithm:
== Overfitting ==
* Initialize the weights
* [https://stats.stackexchange.com/questions/81576/how-to-judge-if-a-supervised-machine-learning-model-is-overfitting-or-not How to judge if a supervised machine learning model is overfitting or not?]
* Repeat
* [https://win-vector.com/2021/01/04/the-nature-of-overfitting/ The Nature of Overfitting], [https://win-vector.com/2021/01/07/smoothing-isnt-always-safe/ Smoothing isn’t Always Safe]
** resample with respect to weights
** retrain the model
** recompute weights


Since boosting requires computation in iterative and bagging can be run in parallel, bagging has an advantage over boosting when the data is very large.
== AIC vs AUC ==
[https://stats.stackexchange.com/a/51278 What is the difference in what AIC and c-statistic (AUC) actually measure for model fit?]


== Time series ==
Roughly speaking:
[https://petolau.github.io/Ensemble-of-trees-for-forecasting-time-series/ Ensemble learning for time series forecasting in R]
* AIC is telling you how good your model fits for a specific mis-classification cost.
* AUC is telling you how good your model would work, on average, across all mis-classification costs.


= p-values =
'''Frank Harrell''': AUC (C-index) has the advantage of measuring the concordance probability as you stated, aside from cost/utility considerations. To me the bottom line is the AUC should be used to describe discrimination of one model, not to compare 2 models. For comparison we need to use the most powerful measure: deviance and those things derived from deviance: generalized 𝑅<sup>2</sup> and AIC.
==  p-values ==
* Prob(Data | H0)
* https://en.wikipedia.org/wiki/P-value
* [https://amstat.tandfonline.com/toc/utas20/73/sup1 Statistical Inference in the 21st Century: A World Beyond p < 0.05] The American Statistician, 2019
* [https://matloff.wordpress.com/2016/03/07/after-150-years-the-asa-says-no-to-p-values/ THE ASA SAYS NO TO P-VALUES] The problem is that with large samples, significance tests pounce on tiny, unimportant departures from the null hypothesis. We have the opposite problem with small samples: The power of the test is low, and we will announce that there is “no significant effect” when in fact we may have too little data to know whether the effect is important.
* [http://www.r-statistics.com/2016/03/its-not-the-p-values-fault-reflections-on-the-recent-asa-statement/ It’s not the p-values’ fault]
* [https://stablemarkets.wordpress.com/2016/05/21/exploring-p-values-with-simulations-in-r/ Exploring P-values with Simulations in R] from Stable Markets.
* p-value and [https://en.wikipedia.org/wiki/Effect_size effect size]. http://journals.sagepub.com/doi/full/10.1177/1745691614553988


== Distribution of p values in medical abstracts ==
== Variable selection and model estimation ==
* http://www.ncbi.nlm.nih.gov/pubmed/26608725
[https://stats.stackexchange.com/a/138475 Proper variable selection: Use only training data or full data?]
* [https://github.com/jtleek/tidypvals An R package with several million published p-values in tidy data sets] by Jeff Leek.


== nominal p-value and Empirical p-values ==
* training observations to perform all aspects of model-fitting—including variable selection
* Nominal p-values are based on asymptotic null distributions
* make use of the full data set in order to obtain more accurate coefficient estimates (This statement is arguable)
* Empirical p-values are computed from simulations/permutations


== (nominal) alpha level ==
= Cross-Validation =
Conventional methodology for statistical testing is, in advance of undertaking the test, to set a NOMINAL ALPHA CRITERION LEVEL (often 0.05). The outcome is classified as showing STATISTICAL SIGNIFICANCE if the actual ALPHA (probability of the outcome under the null hypothesis) is no greater than this NOMINAL ALPHA CRITERION LEVEL.
References:
* http://www.translationdirectory.com/glossaries/glossary033.htm
* [https://arxiv.org/abs/2104.00673 Cross-validation: what does it estimate and how well does it do it?], [https://www.tandfonline.com/doi/full/10.1080/01621459.2023.2197686 JASA] 2023
* http://courses.washington.edu/p209s07/lecturenotes/Week%205_Monday%20overheads.pdf


== Normality assumption ==
R packages:
[https://www.biorxiv.org/content/early/2018/12/20/498931 Violating the normality assumption may be the lesser of two evils]
* [https://cran.r-project.org/web/packages/rsample/index.html rsample] (released July 2017). An [https://leekgroup.github.io/postpi/doc/vignettes.html example] from the postpi package.
* [https://cran.r-project.org/web/packages/CrossValidate/index.html CrossValidate] (released July 2017)
* [https://github.com/thierrymoudiki/crossval crossval] (github, new home at https://techtonique.r-universe.dev/),
** [https://thierrymoudiki.github.io/blog/2020/05/08/r/misc/crossval-custom-errors Custom errors for cross-validation using crossval::crossval_ml]
** [https://thierrymoudiki.github.io/blog/2021/07/23/r/crossvalidation-r-universe crossvalidation on R-universe, plus a classification example]


= T-statistic =
== Bias–variance tradeoff ==
Let <math style="vertical-align:-.3em">\scriptstyle\hat\beta</math> be an [[estimator]] of parameter ''β'' in some [[statistical model]]. Then a '''''t''-statistic''' for this parameter is any quantity of the form
<ul>
: <math>
<li>[https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff Wikipedia]
    t_{\hat{\beta}} = \frac{\hat\beta - \beta_0}{\mathrm{s.e.}(\hat\beta)},
<li>[https://www.simplilearn.com/tutorials/machine-learning-tutorial/bias-and-variance Everything You Need To Know About Bias And Variance]. Y-axis = error, X-axis = model complexity.
  </math>
<li>[https://datacadamia.com/data_mining/bias_trade-off#model_complexity_is_betterworse Statistics - Bias-variance trade-off (between overfitting and underfitting)]
where ''β''<sub>0</sub> is a non-random, known constant, and <math style="vertical-align:-.3em">\scriptstyle s.e.(\hat\beta)</math> is the [[standard error (statistics)|standard error]] of the estimator <math style="vertical-align:-.3em">\scriptstyle\hat\beta</math>.
<li>[https://statisticallearning.org/bias-variance-tradeoff.html *Chapter 4 The Bias–Variance Tradeoff] from Basics of Statistical Learning by David Dalpiaz. R code is included. Regression case.
<li>Ridge regression
* <math>Obj = (y-X \beta)^T (y - X \beta) + \lambda ||\beta||_2^2 </math>
* [https://lbelzile.github.io/lineaRmodels/bias-and-variance-tradeoff.html Plot of MSE, bias**2, variance of ridge estimator in terms of lambda] by Léo Belzile. Note that there is a typo in the bias term. It should be <math>E(\gamma)-\gamma = [(Z^TZ+\lambda I_p)^{-1}Z^TZ -I_p] \lambda </math>.
* [https://www.statlect.com/fundamentals-of-statistics/ridge-regression Explicit form of the bias and variance] of ridge estimator. The estimator is linear. <math>\hat{\beta} = (X^T X + \lambda I_p)^{-1} (X^T y) </math>
</ul>


== Two sample test assuming equal variance ==
== Data splitting ==
* [http://en.wikipedia.org/wiki/Pooled_variance Pooled variance]
[https://www.fharrell.com/post/split-val/?s=09 Split-Sample Model Validation]
* [http://en.wikipedia.org/wiki/Student%27s_t-test Student's t-test]


The ''t'' statistic (df = <math> n_1 + n_2 - 2</math>) to test whether the means are different can be calculated as follows:
== PRESS statistic (LOOCV) in regression ==
:<math>t = \frac{\bar {X}_1 - \bar{X}_2}{s_{X_1X_2} \cdot \sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}</math>
The [https://en.wikipedia.org/wiki/PRESS_statistic PRESS statistic] (predicted residual error sum of squares) <math>\sum_i (y_i - \hat{y}_{i,-i})^2</math> provides another way to find the optimal model in regression. See the [https://lbelzile.github.io/lineaRmodels/cross-validation-1.html formula for the  ridge regression] case.


where
== LOOCV vs 10-fold CV in classification ==
* Background: [https://en.wikipedia.org/wiki/Variance#Sum_of_correlated_variables Variance of mean] for correlated data. If the variables have equal variance ''σ''<sup>2</sup> and the average correlation of distinct variables is ''ρ'', then the variance of their mean is


:<math> s_{X_1X_2} = \sqrt{\frac{(n_1-1)s_{X_1}^2+(n_2-1)s_{X_2}^2}{n_1+n_2-2}}.</math>
:<math>\operatorname{Var}\left(\overline{X}\right) = \frac{\sigma^2}{n} + \frac{n - 1}{n}\rho\sigma^2.</math>
:This implies that the variance of the mean increases with the average of the correlations.
* ([https://hastie.su.domains/ISLR2/ISLRv2_website.pdf#page=214 5.1.4 of ISLR 2nd])
** k-fold CV is that it often gives more accurate estimates of the test error rate than does LOOCV. This has to do with a bias-variance trade-off.
** '''When we perform LOOCV, we are in effect averaging the outputs of n fitted models, each of which is trained on an almost identical set of observations; therefore, these outputs are highly (positively) correlated with each other.''' Since the mean of many highly correlated quantities has higher variance than does the mean of many quantities that are not as highly correlated, the test error estimate resulting from LOOCV tends to have higher variance than does the test error estimate resulting from k-fold CV... Typically, given these considerations, one performs k-fold cross-validation using k = 5 or k = 10, as these values have been shown empirically to yield test error rate estimates that suffer neither from excessively high bias nor from very high variance.
* [https://stats.stackexchange.com/a/264721 10-fold Cross-validation vs leave-one-out cross-validation]
** Leave-one-out cross-validation is approximately unbiased.  But it tends to have a high '''variance'''.
** The '''variance''' in fitting the model tends to be higher if it is fitted to a small dataset.
** In LOOCV, because there is a lot of overlap between training sets, and thus the test error estimates are highly correlated, which means that the mean value of the test error estimate will have higher '''variance'''.
** Unless the dataset were very small, I would use 10-fold cross-validation if it fitted in my computational budget, or better still, bootstrap estimation and bagging.
* [https://web.stanford.edu/~hastie/ISLR2/ISLRv2_website.pdf#page=213 Chapter 5 Resampling Methods] of ISLR 2nd.
* [https://r4ds.github.io/bookclub-islr/bias-variance-tradeoff-and-k-fold-cross-validation.html  Bias-Variance Tradeoff and k-fold Cross-Validation]
* [https://stats.stackexchange.com/a/90903 Why is leave-one-out cross-validation (LOOCV) variance about the mean estimate for error high?]
* [https://stats.stackexchange.com/a/178421 High variance of leave-one-out cross-validation]
* [https://brb.nci.nih.gov/techreport/TechReport_Molinaro.pdf Prediction Error Estimation: A Comparison of Resampling Methods] Molinaro 2005
* Survival data [https://brb.nci.nih.gov/techreport/Subramanina-Simon-StatMed.pdf An evaluation of resampling methods for assessment of survival risk prediction in high-dimensional settings] Subramanian 2010
* [https://brb.nci.nih.gov/techreport/Briefings.pdf#page=10 Using cross-validation to evaluate predictive accuracy of survival risk classifiers based on high-dimensional data] Subramanian 2011.
** classification error: (Molinaro 2005) For small sample sizes of fewer than 50 cases, they recommended use of leave-one-out cross-validation to minimize mean squared error of the estimate of prediction error.
** survival data using time-dependent ROC: (Subramanian 2010) They recommended use of 5- or 10-fold cross-validation for a wide range of conditions


<math>s_{X_1X_2}</math> is an estimator of the common/pooled [[standard deviation]] of the two samples. The square-root of a pooled variance estimator is known as a pooled standard deviation.  
== Monte carlo cross-validation ==
This method creates multiple random splits of the dataset into training and validation data. See [https://en.wikipedia.org/wiki/Cross-validation_(statistics)#Repeated_random_sub-sampling_validation Wikipedia].
* It is not creating replicates of CV samples.  
* As the number of random splits approaches infinity, the result of repeated random sub-sampling validation tends towards that of leave-p-out cross-validation.


* [https://en.wikipedia.org/wiki/Pooled_variance Pooled variance] from Wikipedia
== Difference between CV & bootstrapping ==
* The pooled sample variance is an unbiased estimator of the common variance if Xi and Yi are following the normal distribution.
[https://stats.stackexchange.com/a/18355 Differences between cross validation and bootstrapping to estimate the prediction error]
* (From [https://support.minitab.com/en-us/minitab/18/help-and-how-to/statistics/basic-statistics/supporting-topics/data-concepts/what-is-the-pooled-standard-deviation/ minitab]) The pooled standard deviation is the average spread of all data points about their group mean (''not the overall mean''). It is a weighted average of each group's standard deviation. The weighting gives larger groups a proportionally greater effect on the overall estimate.
* CV tends to be less biased but K-fold CV has fairly large variance.  
* [https://heuristicandrew.blogspot.com/2018/01/type-i-error-rates-in-two-sample-t-test.html Type I error rates in two-sample t-test by simulation]
* Bootstrapping tends to drastically reduce the variance but gives more biased results (they tend to be pessimistic).
* The 632 and 632+ rules methods have been adapted to deal with the bootstrap bias
* Repeated CV does K-fold several times and averages the results similar to regular K-fold


== Two sample test assuming unequal variance ==
== .632 and .632+ bootstrap ==
The ''t'' statistic (Behrens-Welch test statistic) to test whether the population means are different is calculated as:
* 0.632 bootstrap: Efron's paper [https://www.jstor.org/stable/pdf/2288636.pdf  Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation] in 1983.
 
* 0.632+ bootstrap: The CV estimate of prediction error is nearly unbiased but can be highly variable. See [https://www.tandfonline.com/doi/pdf/10.1080/01621459.1997.10474007 Improvements on Cross-Validation: The .632+ Bootstrap Method] by Efron and Tibshirani, JASA 1997.
:<math>t = {\overline{X}_1 - \overline{X}_2 \over s_{\overline{X}_1 - \overline{X}_2}}</math>
* Chap 17.7 from "An Introduction to the Bootstrap" by Efron and Tibshirani. Chapman & Hall.
 
* Chap 7.4 (resubstitution error <math>\overline{err} </math>) and chap 7.11 (<math>Err_{boot(1)}</math>leave-one-out bootstrap estimate of prediction error) from "The Elements of Statistical Learning" by Hastie, Tibshirani and Friedman. Springer.
where
* [http://stats.stackexchange.com/questions/96739/what-is-the-632-rule-in-bootstrapping What is the .632 bootstrap]?
 
: <math>
:<math>s_{\overline{X}_1 - \overline{X}_2} = \sqrt{{s_1^2 \over n_1} + {s_2^2  \over n_2}}.
Err_{.632} = 0.368 \overline{err} + 0.632 Err_{boot(1)}
</math>
</math>
* [https://link.springer.com/referenceworkentry/10.1007/978-1-4419-9863-7_1328 Bootstrap, 0.632 Bootstrap, 0.632+ Bootstrap] from Encyclopedia of Systems Biology by Springer.
* bootpred() from bootstrap function.
* The .632 bootstrap estimate can be extended to statistics other than prediction error. See the paper [https://www.tandfonline.com/doi/full/10.1080/10543406.2016.1226329 Issues in developing multivariable molecular signatures for guiding clinical care decisions] by Sachs. [https://github.com/sachsmc/signature-tutorial Source code]. Let <math>\phi</math> be a performance metric, <math>S_b</math> a sample of size n from a bootstrap, <math>S_{-b}</math> subset of <math>S</math> that is disjoint from <math>S_b</math>; test set.
: <math>
\hat{E}^*[\phi_{\mathcal{F}}(S)] = .368 \hat{E}[\phi_{f}(S)] + 0.632 \hat{E}[\phi_{f_b}(S_{-b})]
</math>
: where <math>\hat{E}[\phi_{f}(S)]</math> is the naive estimate of <math>\phi_f</math> using the entire dataset.
* For survival data
** [https://cran.r-project.org/web/packages/ROC632/ ROC632] package, [https://repositorium.sdum.uminho.pt/bitstream/1822/52744/1/paper4_final_version_CatarinaSantos_ACB.pdf Overview], and the paper [https://www.degruyter.com/view/j/sagmb.2012.11.issue-6/1544-6115.1815/1544-6115.1815.xml?format=INT Time Dependent ROC Curves for the Estimation of True Prognostic Capacity of Microarray Data] by Founcher 2012.
** [https://onlinelibrary.wiley.com/doi/full/10.1111/j.1541-0420.2007.00832.x Efron-Type Measures of Prediction Error for Survival Analysis] Gerds 2007.
** [https://academic.oup.com/bioinformatics/article/23/14/1768/188061 Assessment of survival prediction models based on microarray data] Schumacher 2007. Brier score.
** [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4194196/ Evaluating Random Forests for Survival Analysis using Prediction Error Curves] Mogensen, 2012. [https://cran.r-project.org/web/packages/pec/ pec] package
** [https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/1471-2288-12-102 Assessment of performance of survival prediction models for cancer prognosis] Chen 2012. Concordance, ROC... But bootstrap was not used.
** [https://www.sciencedirect.com/science/article/pii/S1672022916300390#b0150 Comparison of Cox Model Methods in A Low-dimensional Setting with Few Events] 2016. Concordance, calibration slopes RMSE are considered.


Here ''s''<sup>2</sup> is the [[unbiased estimator]] of the [[variance]] of the two samples.
== Create partitions for cross-validation ==
* [http://r-exercises.com/2016/11/13/sampling-exercise-1/ set.seed(), sample.split(),createDataPartition(), and createFolds()] functions from the [https://github.com/cran/caret/blob/master/R/createDataPartition.R caret] package. [https://topepo.github.io/caret/data-splitting.html Simple Splitting with Important Groups]. [https://rdrr.io/rforge/caret/src/R/createFolds.R ?createFolds],
* [https://gist.github.com/mrecos/47a201af97d8d218beb6 Stratified K-folds Cross-Validation with Caret]
* [https://drsimonj.svbtle.com/k-fold-cross-validation-with-modelr-and-broom k-fold cross validation with modelr and broom]
* [https://cran.r-project.org/web/packages/h2o/index.html h2o] package to [https://bmccancer.biomedcentral.com/track/pdf/10.1186/s12885-018-4546-8#page=4 split the merged training dataset into three parts]


The degrees of freedom is evaluated using the [http://en.wikipedia.org/wiki/Welch%E2%80%93Satterthwaite_equation Satterthwaite's approximation]
<pre>
n <- 42; nfold <- 5  # unequal partition
folds <- split(sample(1:n), rep(1:nfold, length = n))  # a list
sapply(folds, length)
</pre>


:<math>df = { ({s_1^2 \over n_1} + {s_2^2 \over n_2})^2 \over {({s_1^2 \over n_1})^2 \over n_1-1} + {({s_2^2 \over n_2})^2 \over n_2-1} }. </math>
[https://github.com/cran/glmnet/blob/master/R/cv.glmnet.R#L245 cv.glmnet()]
<pre>
sample(rep(seq(nfolds), length = N))  # a vector
set.seed(1); sample(rep(seq(3), length = 20))
# [1] 1 1 1 2 1 1 2 2 2 3 3 2 3 1 3 3 3 1 2 2
</pre>


== Paired test ==
Another way is to use '''replace=TRUE''' in sample() (not quite uniform compared to the last method, strange)
[https://www.rdatagen.net/post/thinking-about-the-run-of-the-mill-pre-post-analysis/ Have you ever asked yourself, "how should I approach the classic pre-post analysis?"]
<pre>
sample(1:nfolds, N, replace=TRUE) # a vector
set.seed(1); sample(1:3, 20, replace=TRUE
# [1] 1 3 1 2 1 3 3 2 2 3 3 1 1 1 2 2 2 2 3 1
table(.Last.value)
# .Last.value
# 1 2 3
# 7 7 6
</pre>


== [http://en.wikipedia.org/wiki/Standard_score Z-value/Z-score] ==  
Another simple example. Split the data into 70% training data and 30% testing data
If the population parameters are known, then rather than computing the t-statistic, one can compute the z-score.
<pre>
mysplit <- sample(c(rep(0, 0.7 * nrow(df)), rep(1, nrow(df) - 0.7 * nrow(df))))
train <- df[mysplit == 0, ]
test <- df[mysplit == 1,
</pre>


== Nonparametric test: Wilcoxon rank sum test ==
== Create training/testing data ==
Sensitive to differences in location
<ul>
<li>[https://rdrr.io/rforge/caret/man/createDataPartition.html ?createDataPartition].
<li>[https://stackoverflow.com/a/46591859 caret createDataPartition returns more samples than expected]. It is more complicated than it looks.
<pre>
set.seed(1)
createDataPartition(rnorm(10), p=.3)
# $Resample1
# [1] 1 2 4 5


== Nonparametric test: Kolmogorov-Smirnov test ==
set.seed(1)
Sensitive to difference in shape and location of the distribution functions of two groups
createDataPartition(rnorm(10), p=.5)
# $Resample1
# [1] 1 2 4 5 6 9
</pre>
<li>[https://en.wikipedia.org/wiki/Stratified_sampling Stratified sampling]: [https://www.statology.org/stratified-sampling-r/ Stratified Sampling in R (With Examples)], [https://rsample.tidymodels.org/reference/initial_split.html initial_split()] from tidymodels. '''With a strata argument, the random sampling is conducted within the stratification variable'''. So it guaranteed each strata (stratify variable level) has observations in training and testing sets.
<pre>
> library(rsample) # or library(tidymodels)
> table(mtcars$cyl)
4  6  8
11  7 14
> set.seed(22)
> sp <- initial_split(mtcars, prop=.8, strata = cyl)
  # 80% training and 20% testing sets
> table(training(sp)$cyl)
4  6  8
8  5 11
> table(testing(sp)$cyl)
4 6 8
3 2 3
> 8/11; 5/7; 11/14 # split by initial_split()
[1] 0.7272727
[1] 0.7142857
[1] 0.7857143
> 9/11; 6/7; 12/14 # if we try to increase 1 observation
[1] 0.8181818
[1] 0.8571429
[1] 0.8571429
> (8+5+11)/nrow(mtcars)
[1] 0.75
> (9+6+12)/nrow(mtcars)
[1] 0.84375  # looks better


== Limma: Empirical Bayes method ==
> set.seed(22)
* Some Bioconductor packages: limma, RnBeads, IMA, minfi packages.
> sp2 <- initial_split(mtcars, prop=.8)
* The '''moderated T-statistics''' used in Limma is defined on Limma's [https://bioconductor.org/packages/release/bioc/vignettes/limma/inst/doc/usersguide.pdf#page=63 user guide].
table(training(sp2)$cyl)
* Diagram of usage [https://www.rdocumentation.org/packages/limma/versions/3.28.14/topics/makeContrasts ?makeContrasts], [https://www.rdocumentation.org/packages/limma/versions/3.28.14/topics/contrasts.fit ?contrasts.fit], [https://www.rdocumentation.org/packages/limma/versions/3.28.14/topics/ebayes ?eBayes] <syntaxhighlight>
4  6  8
          lmFit        contrasts.fit          eBayes      topTable
8  7 10
        x ------> fit ------------------> fit2  -----> fit2  --------->
> table(testing(sp2)$cyl)
                  ^                      ^
4 8
                  |                      |
3 4
    model.matrix  |    makeContrasts      |
# not what we want since cyl "6" has no observations
class ---------> design ----------> contrasts
</pre>
</syntaxhighlight>
</ul>
* Examples of contrasts (search '''contrasts.fit''' and/or '''model.matrix''' from the user guide) <syntaxhighlight lang='rsplus'>
# Ex 1 (Single channel design):
design <- model.matrix(~ 0+factor(c(1,1,1,2,2,3,3,3))) # number of samples x number of groups
colnames(design) <- c("group1", "group2", "group3")
fit <- lmFit(eset, design)
contrast.matrix <- makeContrasts(group2-group1, group3-group2, group3-group1,
                                levels=design)        # number of groups x number of contrasts
fit2 <- contrasts.fit(fit, contrast.matrix)
fit2 <- eBayes(fit2)
topTable(fit2, coef=1, adjust="BH")
topTable(fit2, coef=1, sort = "none", n = Inf, adjust="BH")$adj.P.Val


# Ex 2 (Common reference design):
== Nested resampling ==
targets <- readTargets("runxtargets.txt")
* [http://appliedpredictivemodeling.com/blog/2017/9/2/njdc83d01pzysvvlgik02t5qnaljnd Nested Resampling with rsample]
design <- modelMatrix(targets, ref="EGFP")
* [https://github.com/compstat-lmu/lecture_i2ml/tree/master/slides-pdf Introduction to Machine Learning (I2ML)]
contrast.matrix <- makeContrasts(AML1,CBFb,AML1.CBFb,AML1.CBFb-AML1,AML1.CBFb-CBFb,
* https://stats.stackexchange.com/questions/292179/whats-the-meaning-of-nested-resampling
                                levels=design)
fit <- lmFit(MA, design)
fit2 <- contrasts.fit(fit, contrasts.matrix)
fit2 <- eBayes(fit2)


# Ex 3 (Direct two-color design):
Nested resampling is need when we want to '''tuning a model''' by using a grid search. The default settings of a model are likely not optimal for each data set out. So an inner CV has to be performed with the aim to find the best parameter set of a learner for each fold.
design <- modelMatrix(targets, ref="CD4")
contrast.matrix <- cbind("CD8-CD4"=c(1,0),"DN-CD4"=c(0,1),"CD8-DN"=c(1,-1))
rownames(contrast.matrix) <- colnames(design)
fit <- lmFit(eset, design)
fit2 <- contrasts.fit(fit, contrast.matrix)


# Ex 4 (Single channel + Two groups):
See a diagram at https://i.stack.imgur.com/vh1sZ.png
fit <- lmFit(eset, design)
cont.matrix <- makeContrasts(MUvsWT=MU-WT, levels=design)
fit2 <- contrasts.fit(fit, cont.matrix)
fit2 <- eBayes(fit2)


# Ex 5 (Single channel + Several groups):
In BRB-ArrayTools -> class prediction with multiple methods, the ''alpha'' (significant level of threshold used for gene selection, 2nd option in individual genes) can be viewed as a tuning parameter for the development of a classifier.
f <- factor(targets$Target, levels=c("RNA1","RNA2","RNA3"))
design <- model.matrix(~0+f)
colnames(design) <- c("RNA1","RNA2","RNA3")
fit <- lmFit(eset, design)
contrast.matrix <- makeContrasts(RNA2-RNA1, RNA3-RNA2, RNA3-RNA1,
                                levels=design)
fit2 <- contrasts.fit(fit, contrast.matrix)
fit2 <- eBayes(fit2)


# Ex 6 (Single channel + Interaction models 2x2 Factorial Designs) :
== Pre-validation/pre-validated predictor ==
cont.matrix <- makeContrasts(
* [https://www.degruyter.com/view/j/sagmb.2002.1.1/sagmb.2002.1.1.1000/sagmb.2002.1.1.1000.xml Pre-validation and inference in microarrays]  Tibshirani and Efron, Statistical Applications in Genetics and Molecular Biology, 2002.
  SvsUinWT=WT.S-WT.U,
* See glmnet vignette
  SvsUinMu=Mu.S-Mu.U,
* http://www.stat.columbia.edu/~tzheng/teaching/genetics/papers/tib_efron.pdf#page=5. In each CV, we compute the estimate of the response. This estimate of the response will serve as a new predictor ('''pre-validated 'predictor' ''') in the final fitting model.
  Diff=(Mu.S-Mu.U)-(WT.S-WT.U),
* P1101 of Sachs 2016. With pre-validation, instead of computing the statistic <math>\phi</math> for each of the held-out subsets (<math>S_{-b}</math> for the bootstrap or <math>S_{k}</math> for cross-validation), the fitted signature <math>\hat{f}(X_i)</math> is estimated for <math>X_i \in S_{-b}</math> where <math>\hat{f}</math> is estimated using <math>S_{b}</math>. This process is repeated to obtain a set of '''pre-validated 'signature' ''' estimates <math>\hat{f}</math>. Then an association measure <math>\phi</math> can be calculated using the pre-validated signature estimates and the true outcomes <math>Y_i, i = 1, \ldots, n</math>.
  levels=design)
* Another description from the paper [https://www.genetics.org/content/205/1/77 The Spike-and-Slab Lasso Generalized Linear Models for Prediction and Associated Genes Detection]. The prevalidation method is a variant of cross-validation. We then use <math>(y_i, \hat{\eta}_i) </math> to compute the measures described above. The cross-validated linear predictor for each patient is derived independently of the observed response of the patient, and hence the “prevalidated” dataset Embedded Image can essentially be treated as a “new dataset.” Therefore, this procedure provides valid assessment of the predictive performance of the model. To get stable results, we run 10× 10-fold cross-validation for real data analysis.
fit2 <- contrasts.fit(fit, cont.matrix)
* In CV, left-out samples = hold-out cases = test set
fit2 <- eBayes(fit2)
</syntaxhighlight>
* Example from user guide 17.3 (Mammary progenitor cell populations) <syntaxhighlight lang='rsplus'>
setwd("~/Downloads/IlluminaCaseStudy")
url <- c("http://bioinf.wehi.edu.au/marray/IlluminaCaseStudy/probe%20profile.txt.gz",
  "http://bioinf.wehi.edu.au/marray/IlluminaCaseStudy/control%20probe%20profile.txt.gz",
  "http://bioinf.wehi.edu.au/marray/IlluminaCaseStudy/Targets.txt")
for(i in url)  system(paste("wget ", i))
system("gunzip probe%20profile.txt.gz")
system("gunzip control%20probe%20profile.txt.gz")


source("http://www.bioconductor.org/biocLite.R")
== Custom cross validation ==
biocLite("limma")
* [https://github.com/WinVector/vtreat vtreat package]
biocLite("statmod")
* https://github.com/WinVector/vtreat/blob/master/Examples/CustomizedCrossPlan/CustomizedCrossPlan.md
library(limma)
targets <- readTargets()
targets


x <- read.ilmn(files="probe profile.txt",ctrlfiles="control probe profile.txt",
== Cross validation vs regularization ==
  other.columns="Detection")
[http://www.win-vector.com/blog/2019/11/when-cross-validation-is-more-powerful-than-regularization/ When Cross-Validation is More Powerful than Regularization]
options(digits=3)
head(x$E)
boxplot(log2(x$E),range=0,ylab="log2 intensity")
y <- neqc(x)
dim(y)
expressed <- rowSums(y$other$Detection < 0.05) >= 3
y <- y[expressed,]
dim(y) # 24691 12
plotMDS(y,labels=targets$CellType)


ct <- factor(targets$CellType)
== Cross-validation with confidence (CVC) ==
design <- model.matrix(~0+ct)
[https://amstat.tandfonline.com/doi/abs/10.1080/01621459.2019.1672556 JASA 2019] by Jing Lei, [https://arxiv.org/pdf/1703.07904.pdf pdf], [http://www.stat.cmu.edu/~jinglei/pub.shtml code]
colnames(design) <- levels(ct)
dupcor <- duplicateCorrelation(y,design,block=targets$Donor) # need statmod
dupcor$consensus.correlation


fit <- lmFit(y, design, block=targets$Donor, correlation=dupcor$consensus.correlation)
== Correlation data ==
contrasts <- makeContrasts(ML-MS, LP-MS, ML-LP, levels=design)
[https://arxiv.org/pdf/1904.02438.pdf Cross-Validation for Correlated Data] Rabinowicz, JASA 2020
fit2 <- contrasts.fit(fit, contrasts)
fit2 <- eBayes(fit2, trend=TRUE)
summary(decideTests(fit2, method="global"))
topTable(fit2, coef=1) # Top ten differentially expressed probes between ML and MS
#                SYMBOL TargetID logFC AveExpr    t  P.Value adj.P.Val    B
# ILMN_1766707    IL17B    <NA> -4.19    5.94 -29.0 2.51e-12  5.19e-08 18.1
# ILMN_1706051      PLD5    <NA> -4.00    5.67 -27.8 4.20e-12  5.19e-08 17.7
# ...
tT <- topTable(fit2, coef=1, number = Inf)
dim(tT)
# [1] 24691    8
</syntaxhighlight>
* Three groups comparison (What is the difference of A vs Other AND A vs (B+C)/2?). [https://grokbase.com/t/r/bioconductor/092bnp4147/bioc-limma-contrasts-comparing-one-factor-to-multiple-others Contrasts comparing one factor to multiple others] <syntaxhighlight lang='rsplus'>
library(limma)
set.seed(1234)
n <- 100
testexpr <- matrix(rnorm(n * 10, 5, 1), nc= 10)
testexpr[, 6:7] <- testexpr[, 6:7] + 7  # mean is 12


design1 <- model.matrix(~ 0 + as.factor(c(rep(1,5),2,2,3,3,3)))
== Bias in Error Estimation ==
design2 <- matrix(c(rep(1,5),rep(0,5),rep(0,5),rep(1,5)),ncol=2)
* [https://academic.oup.com/jnci/article/95/1/14/2520188#55882619 Pitfalls in the Use of DNA Microarray Data for Diagnostic and Prognostic Classification] Simon 2003. [https://github.com/arraytools/pitfalls My R code].
colnames(design1) <- LETTERS[1:3]
** Conclusion: '''Feature selection''' must be done within each cross-validation. Otherwise the selected feature already saw the labels of the training data, and made use of them.
colnames(design2) <- c("A", "Other")
** Simulation: 2000 sets of 20 samples, of which 10 belonged to class 1 and the remaining 10 to class 2. Each sample was a vector of 6000 features (synthetic gene expressions).
* [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1397873/ Bias in Error Estimation when Using Cross-Validation for Model Selection] Varma & Simon 2006
** Conclusion: '''Parameter tuning''' must be done within each cross-validation; '''nested CV''' is advocated.
** Figures 1 (Shrunken centroids, shrinkage parameter Δ) & 2 (SVM, kernel parameters) are biased. Figure 3 (Shrunken centroids) & 4 (SVM) are unbiased.
** For k-NN, the parameter is k.
** Simulation:
*** Null data: 1000 sets of 40 samples, of which 20 belonged to class 1 and the remaining 20 to class 2. Each sample was a vector of 6000 features (synthetic gene expressions).
*** Non-null data: we simulated differential expression by fixing 10 genes (out of 6000) to have a population mean differential expression of 1 between the two classes.
* Over-fitting and [https://www.jmlr.org/papers/volume11/cawley10a/cawley10a.pdf selection bias]; see [https://en.wikipedia.org/wiki/Cross-validation_(statistics) Cross-validation_(statistics)], [https://en.wikipedia.org/wiki/Selection_bias Selection bias] on Wikipedia. [https://twitter.com/sketchplanator/status/1409175698166763528 Comic].
* [https://arxiv.org/abs/1901.08974 On the cross-validation bias due to unsupervised pre-processing] Moscovich, 2019. [https://rss.onlinelibrary.wiley.com/doi/full/10.1111/rssb.12537?campaign=wolearlyview JRSSB] 2022
* [https://diagnprognres.biomedcentral.com/articles/10.1186/s41512-022-00126-w?s=09 Risk of bias of prognostic models developed using machine learning: a systematic review in oncology] Dhiman 2022
* [https://github.com/matloff/fastStat#lesson-over--predictive-modeling----avoiding-overfitting Avoiding Overfitting] from fastStat: All of REAL Statistics


fit1 <- lmFit(testexpr,design1)
== Bias due to unsupervised preprocessing ==
contrasts.matrix1 <- makeContrasts("AvsOther"=A-(B+C)/2, levels = design1)
[https://rss.onlinelibrary.wiley.com/doi/full/10.1111/rssb.12537 On the cross-validation bias due to unsupervised preprocessing] 2022. Below I follow the practice from [https://hpc.nih.gov/apps/python.html#envs Biowulf] to install Mamba. In this example, the 'project1' subfolder (2.0 GB) is located in '~/conda/envs' directory.
fit1 <- eBayes(contrasts.fit(fit1,contrasts=contrasts.matrix1))
{{Pre}}
$ which python3
/usr/bin/python3


fit2 <- lmFit(testexpr,design2)
$ wget https://github.com/conda-forge/miniforge/releases/latest/download/Mambaforge-Linux-x86_64.sh
contrasts.matrix2 <- makeContrasts("AvsOther"=A-Other, levels = design2)
$ bash Mambaforge-Linux-x86_64.sh -p /home/brb/conda -b
fit2 <- eBayes(contrasts.fit(fit2,contrasts=contrasts.matrix2))
$ source ~/conda/etc/profile.d/conda.sh && source ~/conda/etc/profile.d/mamba.sh
$ mkdir -p ~/bin
$ cat <<'__EOF__' > ~/bin/myconda
__conda_setup="$('/home/$USER/conda/bin/conda' 'shell.bash' 'hook' 2> /dev/null)"
if [ $? -eq 0 ]; then
    eval "$__conda_setup"
else
    if [ -f "/home/$USER/conda/etc/profile.d/conda.sh" ]; then
        . "/home/$USER/conda/etc/profile.d/conda.sh"
    else
        export PATH="/home/$USER/conda/bin:$PATH"
    fi
fi
unset __conda_setup


t1 <- topTable(fit1,coef=1, number = Inf)
if [ -f "/home/$USER/conda/etc/profile.d/mamba.sh" ]; then
t2 <- topTable(fit2,coef=1, number = Inf)
    . "/home/$USER/conda/etc/profile.d/mamba.sh"
fi
__EOF__
$ source ~/bin/myconda


rbind(head(t1, 3), tail(t1, 3))
$ export MAMBA_NO_BANNER=1
#        logFC  AveExpr        t      P.Value    adj.P.Val        B
$ mamba create -n project1 python=3.7 numpy scipy scikit-learn mkl-service mkl_random pandas matplotlib
# 92 -5.293932 5.810926 -8.200138 1.147084e-15 1.147084e-13 26.335702
$ mamba activate project1
# 81 -5.045682 5.949507 -7.815607 2.009706e-14 1.004853e-12 23.334600
$ which python # /home/brb/conda/envs/project1/bin/python
# 37 -4.720906 6.182821 -7.312539 7.186627e-13 2.395542e-11 19.625964
# 27 -2.127055 6.854324 -3.294744 1.034742e-03 1.055859e-03 -1.141991
# 86 -1.938148 7.153142 -3.002133 2.776390e-03 2.804434e-03 -2.039869
# 75 -1.876490 6.516004 -2.906626 3.768951e-03 3.768951e-03 -2.314869
rbind(head(t2, 3), tail(t2, 3))
#        logFC AveExpr          t    P.Value adj.P.Val        B
# 92 -4.518551 5.810926 -2.5022436 0.01253944 0.2367295 -4.587080
# 81 -4.500503 5.949507 -2.4922492 0.01289503 0.2367295 -4.587156
# 37 -4.111158 6.182821 -2.2766414 0.02307100 0.2367295 -4.588728
# 27 -1.496546 6.854324 -0.8287440 0.40749644 0.4158127 -4.595601
# 86 -1.341607 7.153142 -0.7429435 0.45773401 0.4623576 -4.595807
# 75 -1.171366 6.516004 -0.6486690 0.51673851 0.5167385 -4.596008


var(as.numeric(testexpr[, 6:10]))
$ git clone https://github.com/mosco/unsupervised-preprocessing.git
# [1] 12.38074
$ cd unsupervised-preprocessing/
var(as.numeric(testexpr[, 6:7]))
$ python    # Ctrl+d to quit
# [1] 0.8501378
$ mamba deactivate
var(as.numeric(testexpr[, 8:10]))
</pre>
# [1] 0.9640699
</syntaxhighlight> As we can see the p-values returned from the first contrast are very small (large mean but small variance) but the p-values returned from the 2nd contrast are large (still large mean but very large variance). The variance from the "Other" group can be calculated from a mixture distribution ( pdf = .4 N(12, 1) + .6 N(5, 1), VarY = E(Y^2) - (EY)^2 where E(Y^2) = .4 (VarX1 + (EX1)^2) + .6 (VarX2 + (EX2)^2) = 73.6 and EY = .4 * 12 + .6 * 5 = 7.8; so VarY = 73.6 - 7.8^2 = 12.76).
* [https://support.bioconductor.org/p/67984/ Correct assumptions of using limma moderated t-test] and the paper [http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0012336 Should We Abandon the t-Test in the Analysis of Gene Expression Microarray Data: A Comparison of Variance Modeling Strategies].
** Evaluation: statistical power (figure 3, 4, 5), false-positive rate (table 2), execution time and ease of use (table 3)
** Limma presents several advantages
** RVM inflates the expected number of false-positives when sample size is small. On the other hand the, RVM is very close to Limma from either their formulas (p3 of the supporting info) or the Hierarchical clustering (figure 2) of two examples.
** [https://www.slideshare.net/nahla0tammam/b4-jeanmougin Slides]
* [https://support.bioconductor.org/p/80398/ Use Limma to run ordinary T tests] <syntaxhighlight lang='rsplus'>
# where 'fit' is the output from lmFit() or contrasts.fit().
unmod.t <- fit$coefficients/fit$stdev.unscaled/fit$sigma
pval <- 2*pt(-abs(unmod.t), fit$df.residual)


# Following the above example
== Pitfalls of applying machine learning in genomics ==  
t.test(testexpr[1, 1:5], testexpr[1, 6:10], var.equal = T)
[https://www.nature.com/articles/s41576-021-00434-9 Navigating the pitfalls of applying machine learning in genomics] 2022
# Two Sample t-test
#
# data: testexpr[1, 1:5] and testexpr[1, 6:10]
# t = -1.2404, df = 8, p-value = 0.25
# alternative hypothesis: true difference in means is not equal to 0
# 95 percent confidence interval:
#  -7.987791  2.400082
# sample estimates:
#  mean of x mean of y
# 4.577183  7.371037
fit2$coefficients[1] / (fit2$stdev.unscaled[1] * fit2$sigma[1]) # Ordinary t-statistic
# [1] -1.240416
fit2$coefficients[1] / (fit2$stdev.unscaled[1] * sqrt(fit2$s2.post[1])) # moderated t-statistic
# [1] -1.547156
topTable(fit2,coef=1, sort.by = "none")[1,]
#      logFC  AveExpr        t  P.Value adj.P.Val        B
# 1 -2.793855 5.974110 -1.547156 0.1222210 0.2367295 -4.592992


# Square root of the pooled variance
= Bootstrap =
fit2$sigma[1]
See [[Bootstrap]]
# [1] 3.561284
(((5-1)*var(testexpr[1, 1:5]) + (5-1)*var(testexpr[1, 6:10]))/(5+5-2)) %>% sqrt()
# [1] 3.561284   
</syntaxhighlight>
* Comparison of ordinary T-statistic, RVM T-statistic and Limma/eBayes moderated T-statistic.
{| class="wikitable"
|-
!  !! Test statistic for gene g !!
|-
| [https://en.wikipedia.org/wiki/Student%27s_t-test#Equal_or_unequal_sample_sizes,_equal_variance Ordinary T-test] || <math> \frac{\overline{y}_{g1} - \overline{y}_{g2}}{S_g^{Pooled}/\sqrt{1/n_1 + 1/n_2}}</math> || <math>(S_g^{Pooled})^2 = \frac{(n_1-1)S_{g1}^2 + (n_2-1)S_{g2}^2}{n1+n2-2} </math>
|-
| [https://academic.oup.com/bioinformatics/article/19/18/2448/194552 RVM] || <math> \frac{\overline{y}_{g1} - \overline{y}_{g2}}{S_g^{RVM}/\sqrt{1/n_1 + 1/n_2}}</math> || <math>(S_g^{RVM})^2 = \frac{(n_1+n_2-2)S_{g}^2 + 2*a*(a*b)^{-1}}{n1+n2-2+2*a} </math>
|-
| Limma || <math> \frac{\overline{y}_{g1} - \overline{y}_{g2}}{S_g^{Limma}/\sqrt{1/n_1 + 1/n_2}}</math> || <math>(S_g^{Limma})^2 = \frac{d_0 S_0^2 + d_g S_g^2}{d_0 + d_g} </math>
|}
* In Limma,
** <math>\sigma_g^2</math> assumes an inverse Chi-square distribution with mean <math>S_0^2</math> and <math>d_0</math> degrees of freedom
** <math>d_0</math> (fit$df.prior) and <math>d_g</math> are, respectively, prior and residual/empirical degrees of freedom.
** <math>S_0^2</math> (fit$s2.prior) is the prior distribution and <math>S_g^2</math> is the pooled variance.
** <math>(S_g^{Limma})^2</math> can be obtained from fit$s2.post.
* [https://arxiv.org/abs/1901.10679 Empirical Bayes estimation of normal means, accounting for uncertainty in estimated standard errors] Lu 2019


= ANOVA =
= Clustering =
* [https://cloud.r-project.org/doc/contrib/Faraway-PRA.pdf Practical Regression and Anova using R] by Julian J. Faraway, 2002
See [[Heatmap#Clustering|Clustering]].
* [http://wiekvoet.blogspot.com/2016/01/a-simple-anova.html A simple ANOVA]
* [http://r-exercises.com/2016/11/29/repeated-measures-anova-in-r-exercises/ Repeated measures ANOVA in R Exercises]
* [http://singmann.org/mixed-models-for-anova-designs-with-one-observation-per-unit-of-observation-and-cell-of-the-design/ Mixed models for ANOVA designs with one observation per unit of observation and cell of the design]
* [http://singmann.org/anova-in-r-afex-may-be-the-solution-you-are-looking-for/ afex] package, [http://singmann.org/afex_plot/ afex_plot(): Publication-Ready Plots for Factorial Designs]
* [http://r-video-tutorial.blogspot.com/2017/07/experiment-designs-for-agriculture.html Experiment designs for Agriculture]


== Common tests are linear models ==
= Cross-sectional analysis =
https://lindeloev.github.io/tests-as-linear/
* https://en.wikipedia.org/wiki/Cross-sectional_study. The opposite of cross-sectional analysis is longitudinal analysis.
* Cross-sectional analysis refers to a type of research method in which data is collected '''at a single point in time''' from a group of individuals, organizations, or other units of analysis. This approach contrasts with longitudinal studies, which follow the same group of individuals or units over an extended period of time.
** In a cross-sectional analysis, researchers typically collect data from a sample of individuals or units that are representative of the population of interest. This data can then be used to examine patterns, relationships, or differences among the units at a specific point in time.
** Cross-sectional analysis is commonly used in fields such as sociology, psychology, public health, and economics to study topics such as demographics, health behaviors, income inequality, and social attitudes. While cross-sectional analysis can provide valuable insights into the characteristics of a population at a given point in time, it cannot establish causality or determine changes over time.


== Post-hoc test ==
= Mixed Effect Model =
Determine which levels have significantly different means.


* http://jamesmarquezportfolio.com/one_way_anova_with_post_hocs_in_r.html
See [[Longitudinal#Mixed_Effect_Model|Longitudinal analysis]].
* [https://stats.idre.ucla.edu/r/faq/how-can-i-do-post-hoc-pairwise-comparisons-in-r/ pairwise.t.test()] for one-way ANOVA
* [https://www.r-bloggers.com/post-hoc-pairwise-comparisons-of-two-way-anova/ Post-hoc Pairwise Comparisons of Two-way ANOVA] using TukeyHSD().
* post-hoc tests: pairwise.t.test versus TukeyHSD test


== TukeyHSD (Honestly Significant Difference), diagnostic checking ==
= Entropy =
https://datascienceplus.com/one-way-anova-in-r/, [https://brownmath.com/stat/anova1.htm#HSD Tukey HSD for Post-Hoc Analysis] (detailed explanation including the type 1 error problem in multiple testings)
* [http://theautomatic.net/2020/02/18/how-is-information-gain-calculated/ HOW IS INFORMATION GAIN CALCULATED?]
* [https://youtu.be/YtebGVx-Fxw Entropy (for data science) Clearly Explained!!!] by StatQuest
** Entropy and [https://youtu.be/YtebGVx-Fxw?t=186 Surprise] and [https://youtu.be/YtebGVx-Fxw?t=951 surprise is in an inverse relationship to probability]
** [https://youtu.be/YtebGVx-Fxw?t=716 Entropy is an expectation of surprise]
** [https://youtu.be/YtebGVx-Fxw?t=921 Entropy can be used to quantify the similarity]
** [https://youtu.be/YtebGVx-Fxw?t=931 Entropy is the highest when we have the same number of both types of chickens]
: <math>
\begin{align}
Entropy &= \sum \log(1/p(x)) p(x) = \sum Surprise P(Surprise)
\end{align}
</math>


* TukeyHSD for the pairwise tests
== Definition ==
** You can’t just perform a series of t tests, because that would greatly increase your likelihood of a Type I error.
Entropy is defined by -log2(p) where p is a probability. '''Higher entropy represents higher unpredictable of an event'''.
** compute something analogous to a t score for each pair of means, but you don’t compare it to the Student’s t distribution. Instead, you use a new distribution called the '''[https://en.wikipedia.org/wiki/Studentized_range_distribution studentized range]''' (from Wikipedia) or '''q distribution'''.
** Suppose that we take a sample of size ''n'' from each of ''k'' populations with the same normal distribution ''N''(''μ'',&nbsp;''σ'') and suppose that <math>\bar{y}</math><sub>min</sub> is the smallest of these sample means and <math>\bar{y}</math><sub>max</sub> is the largest of these sample means, and suppose ''S''<sup>2</sup> is the pooled sample variance from these samples. Then the following random variable has a Studentized range distribution: <math>q = \frac{\overline{y}_{\max} - \overline{y}_{\min}}{S/\sqrt{n}}</math>
** [http://www.sthda.com/english/wiki/one-way-anova-test-in-r#tukey-multiple-pairwise-comparisons One-Way ANOVA Test in R] from sthda.com. <syntaxhighlight lang='rsplus'>
res.aov <- aov(weight ~ group, data = PlantGrowth)
summary(res.aov)
#              Df Sum Sq Mean Sq F value Pr(>F) 
#  group        2  3.766  1.8832  4.846 0.0159 *
#  Residuals  27 10.492  0.3886               
TukeyHSD(res.aov)
# Tukey multiple comparisons of means
# 95% family-wise confidence level
#
# Fit: aov(formula = weight ~ group, data = PlantGrowth)
#
# $group
#            diff        lwr      upr    p adj
# trt1-ctrl -0.371 -1.0622161 0.3202161 0.3908711
# trt2-ctrl  0.494 -0.1972161 1.1852161 0.1979960
# trt2-trt1  0.865  0.1737839 1.5562161 0.0120064


# Extra:
Some examples:
# Check your data
* Fair 2-side die: Entropy = -.5*log2(.5) - .5*log2(.5) = 1.
my_data <- PlantGrowth
* Fair 6-side die: Entropy = -6*1/6*log2(1/6) = 2.58
levels(my_data$group)
* Weighted 6-side die: Consider pi=.1 for i=1,..,5 and p6=.5. Entropy = -5*.1*log2(.1) - .5*log2(.5) = 2.16 (less unpredictable than a fair 6-side die).
set.seed(1234)
dplyr::sample_n(my_data, 10)


# compute the summary statistics by group
== Use ==
library(dplyr)
When entropy was applied to the variable selection, we want to select a class variable which gives a largest entropy difference between without any class variable (compute entropy using response only) and with that class variable (entropy is computed by adding entropy in each class level) because this variable is most discriminative and it gives most '''information gain'''. For example,  
group_by(my_data, group) %>%
* entropy (without any class)=.94,
  summarise(
* entropy(var 1) = .69,  
    count = n(),
* entropy(var 2)=.91,  
    mean = mean(weight, na.rm = TRUE),
* entropy(var 3)=.725.  
    sd = sd(weight, na.rm = TRUE)
We will choose variable 1 since it gives the largest gain (.94 - .69) compared to the other variables (.94 -.91, .94 -.725).  
  )
</syntaxhighlight>
** Or we can use Benjamini-Hochberg method for p-value adjustment in pairwise comparisons <syntaxhighlight lang='rsplus'>
library(multcomp)
pairwise.t.test(my_data$weight, my_data$group,
                p.adjust.method = "BH")
#      ctrl  trt1
# trt1 0.194 -  
# trt2 0.132 0.013
#
# P value adjustment method: BH
</syntaxhighlight>
* Shapiro-Wilk test for normality <syntaxhighlight lang='rsplus'>
# Extract the residuals
aov_residuals <- residuals(object = res.aov )
# Run Shapiro-Wilk test
shapiro.test(x = aov_residuals )
</syntaxhighlight>
* Bartlett test and Levene test for the homogeneity of variances across the groups


== Repeated measure ==
Why is picking the attribute with the most information gain beneficial? It ''reduces'' entropy, which increases predictability. A decrease in entropy signifies an decrease in unpredictability, which also means an increase in predictability.
* [https://neuropsychology.github.io/psycho.R//2018/05/01/repeated_measure_anovas.html How to do Repeated Measures ANOVAs in R]
* [https://onlinecourses.science.psu.edu/stat502/node/206 Cross-over Repeated Measure Designs]
* [https://www.rdatagen.net/post/when-the-research-question-doesn-t-fit-nicely-into-a-standard-study-design/ Cross-over study design with a major constraint]


== Combining insignificant factor levels ==
Consider a split of a continuous variable. Where should we cut the continuous variable to create a binary partition with the highest gain? Suppose cut point c1 creates an entropy .9 and another cut point c2 creates an entropy .1. We should choose c2.
[https://freakonometrics.hypotheses.org/55451 COMBINING AUTOMATICALLY FACTOR LEVELS IN R]


== Omnibus tests ==
== Related ==
* https://en.wikipedia.org/wiki/Omnibus_test
In addition to information gain, gini (dʒiːni) index is another metric used in decision tree. See [http://en.wikipedia.org/wiki/Decision_tree_learning wikipedia page] about decision tree learning.
* [https://stats.stackexchange.com/questions/59891/understanding-the-definition-of-omnibus-tests Understanding the definition of omnibus tests] Tests are refereed to as omnibus if after rejecting the null hypothesis you do not know where the differences assessed by the statistical test are. In the case of F tests they are omnibus when there is more than one df in the numerator (3 or more groups) it is omnibus.
 
= Ensembles =
* Combining classifiers. Pro: better classification performance. Con: time consuming.
* Comic http://flowingdata.com/2017/09/05/xkcd-ensemble-model/
* [http://www.win-vector.com/blog/2019/07/common-ensemble-models-can-be-biased/ Common Ensemble Models can be Biased]
* [https://github.com/marjoleinf/pre?s=09 pre: an R package for deriving prediction rule ensembles]. It works on binary, multinomial, (multivariate) continuous, count and survival responses.


= [https://en.wikipedia.org/wiki/Goodness_of_fit Goodness of fit] =
== Bagging ==
== [https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test Chi-square tests] ==
Draw N bootstrap samples and summary the results (averaging for regression problem, majority vote for classification problem). Decrease variance without changing bias. Not help much with underfit or high bias models.
* [http://freakonometrics.hypotheses.org/20531 An application of chi-square tests]


== Fitting distribution ==
=== Random forest ===
[https://magesblog.com/post/2011-12-01-fitting-distributions-with-r/ Fitting distributions with R]
* '''Variance importance''': if you scramble the values of a variable, and the accuracy of your tree does not change much, then the variable is not very important.
* Why is it useful to compute variance importance? So the model's predictions are easier to interpret (not improve the prediction performance).
* Random forest has advantages of easier to run in parallel and suitable for small n large p problems.
* [https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2264-5 Random forest versus logistic regression: a large-scale benchmark experiment] by Raphael Couronné, BMC Bioinformatics 2018
* [https://github.com/suiji/arborist Arborist]: Parallelized, Extensible Random Forests
* [https://academic.oup.com/bioinformatics/article-abstract/35/15/2701/5250706?redirectedFrom=fulltext On what to permute in test-based approaches for variable importance measures in Random Forests]
* [https://datasandbox.netlify.app/posts/2022-10-03-tree%20based%20methods/ Tree Based Methods: Exploring the Forest] A study of the different tree based methods in machine learning .
* It seems RF is good in classification problem. [https://thierrymoudiki.github.io/blog/2023/08/27/r/misc/crossvalidation-boxplots Comparing cross-validation results using crossval_ml and boxplots]


= Contingency Tables =
== Boosting ==
== [https://en.wikipedia.org/wiki/Odds_ratio Odds ratio and Risk ratio] ==
Instead of selecting data points randomly with the boostrap, it favors the misclassified points.
The ratio of the odds of an event occurring in one group to the odds of it occurring in another group
<pre>
        drawn  | not drawn |
-------------------------------------
white |  A      |  B      | Wh
-------------------------------------
black |  C      |  D      | Bk
</pre>
* Odds Ratio = (A / C) / (B / D) = (AD) / (BC)
* Risk Ratio = (A / Wh) / (C / Bk)


== Hypergeometric, One-tailed Fisher exact test ==
Algorithm:
* https://www.bioconductor.org/help/course-materials/2009/SeattleApr09/gsea/ (Are interesting features over-represented? or are selected genes more often in the ''GO category'' than expected by chance?)
* Initialize the weights
* https://en.wikipedia.org/wiki/Hypergeometric_distribution. '' In a test for over-representation of successes in the sample, the hypergeometric p-value is calculated as the probability of randomly drawing '''k''' or more successes from the population in '''n''' total draws. In a test for under-representation, the p-value is the probability of randomly drawing '''k''' or fewer successes.''
* Repeat
* http://stats.stackexchange.com/questions/62235/one-tailed-fishers-exact-test-and-the-hypergeometric-distribution
** resample with respect to weights
* Two sided hypergeometric test
** retrain the model
** http://stats.stackexchange.com/questions/155189/how-to-make-a-two-tailed-hypergeometric-test
** recompute weights
** http://stats.stackexchange.com/questions/140107/p-value-in-a-two-tail-test-with-asymmetric-null-distribution
 
** http://stats.stackexchange.com/questions/19195/explaining-two-tailed-tests
Since boosting requires computation in iterative and bagging can be run in parallel, bagging has an advantage over boosting when the data is very large.
* https://www.biostars.org/p/90662/ When computing the p-value (tail probability), consider to use 1 - Prob(observed -1) instead of 1 - Prob(observed) for discrete distribution.
* https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Hypergeometric.html p(x) = choose(m, x) choose(n, k-x) / choose(m+n, k).
<pre>
        drawn  | not drawn |
-------------------------------------
white |  x      |          | m
-------------------------------------
black |  k-x    |          | n
-------------------------------------
      |  k      |          | m+n
</pre>


For example, k=100, m=100, m+n=1000,
== Time series ==
<syntaxhighlight lang='rsplus'>
* [https://petolau.github.io/Ensemble-of-trees-for-forecasting-time-series/ Ensemble learning for time series forecasting in R]
> 1 - phyper(10, 100, 10^3-100, 100, log.p=F)
* [https://blog.bguarisma.com/time-series-forecasting-lab-part-5-ensembles Time Series Forecasting Lab (Part 5) - Ensembles], [https://blog.bguarisma.com/time-series-forecasting-lab-part-6-stacked-ensembles Time Series Forecasting Lab (Part 6) - Stacked Ensembles]
[1] 0.4160339
> a <- dhyper(0:10, 100, 10^3-100, 100)
> cumsum(rev(a))
  [1] 1.566158e-140 1.409558e-135 3.136408e-131 3.067025e-127 1.668004e-123 5.739613e-120 1.355765e-116
  [8] 2.325536e-113 3.018276e-110 3.058586e-107 2.480543e-104 1.642534e-101  9.027724e-99  4.175767e-96
[15]  1.644702e-93  5.572070e-91  1.638079e-88  4.210963e-86  9.530281e-84  1.910424e-81  3.410345e-79
[22]  5.447786e-77  7.821658e-75  1.013356e-72  1.189000e-70  1.267638e-68  1.231736e-66  1.093852e-64
[29]  8.900857e-63  6.652193e-61  4.576232e-59  2.903632e-57  1.702481e-55  9.240350e-54  4.650130e-52
[36]  2.173043e-50  9.442985e-49  3.820823e-47  1.441257e-45  5.074077e-44  1.669028e-42  5.134399e-41
[43] 1.478542e-39  3.989016e-38  1.009089e-36  2.395206e-35  5.338260e-34  1.117816e-32  2.200410e-31
[50]  4.074043e-30  7.098105e-29  1.164233e-27  1.798390e-26  2.617103e-25  3.589044e-24  4.639451e-23
[57]  5.654244e-22  6.497925e-21  7.042397e-20  7.198582e-19  6.940175e-18  6.310859e-17  5.412268e-16
[64]  4.377256e-15  3.338067e-14  2.399811e-13  1.626091e-12  1.038184e-11  6.243346e-11  3.535115e-10
[71]  1.883810e-09  9.442711e-09  4.449741e-08  1.970041e-07  8.188671e-07  3.193112e-06  1.167109e-05
[78]  3.994913e-05  1.279299e-04  3.828641e-04  1.069633e-03  2.786293e-03  6.759071e-03  1.525017e-02
[85]  3.196401e-02  6.216690e-02  1.120899e-01  1.872547e-01  2.898395e-01  4.160339e-01  5.550192e-01
[92] 6.909666e-01  8.079129e-01  8.953150e-01  9.511926e-01  9.811343e-01  9.942110e-01  9.986807e-01
[99]  9.998018e-01  9.999853e-01  1.000000e+00


# Density plot
= p-values =
plot(0:100, dhyper(0:100, 100, 10^3-100, 100), type='h')
==  p-values ==
</syntaxhighlight>
* Prob(Data | H0)
[[:File:Dhyper.svg]]
* https://en.wikipedia.org/wiki/P-value
* [https://amstat.tandfonline.com/toc/utas20/73/sup1 Statistical Inference in the 21st Century: A World Beyond p < 0.05] The American Statistician, 2019
* [https://matloff.wordpress.com/2016/03/07/after-150-years-the-asa-says-no-to-p-values/ THE ASA SAYS NO TO P-VALUES] The problem is that with large samples, significance tests pounce on tiny, unimportant departures from the null hypothesis. We have the opposite problem with small samples: The power of the test is low, and we will announce that there is “no significant effect” when in fact we may have too little data to know whether the effect is important.
* [http://www.r-statistics.com/2016/03/its-not-the-p-values-fault-reflections-on-the-recent-asa-statement/ It’s not the p-values’ fault]
* [https://stablemarkets.wordpress.com/2016/05/21/exploring-p-values-with-simulations-in-r/ Exploring P-values with Simulations in R] from Stable Markets.
* p-value and [https://en.wikipedia.org/wiki/Effect_size effect size]. http://journals.sagepub.com/doi/full/10.1177/1745691614553988
* [https://datascienceplus.com/ditch-p-values-use-bootstrap-confidence-intervals-instead/ Ditch p-values. Use Bootstrap confidence intervals instead]


Moreover,
== Misuse of p-values ==
<pre>
* https://en.wikipedia.org/wiki/Misuse_of_p-values. The p-value does not indicate the size or importance of the observed effect.
  1 - phyper(q=10, m, n, k)
* Question: If we are fitting a multivariate regression and variable 1 ends with p-value .01 and variable 2 has p-value .001. How do we describe variable 2 is more significant than variable 1?
= 1 - sum_{x=0}^{x=10} phyper(x, m, n, k)
** Answer: you can say that variable 2 has a smaller p-value than variable 1. A p-value is a measure of the strength of evidence '''against the null hypothesis'''. It is the probability of observing a test statistic as extreme or more extreme than the one calculated from your data, assuming the null hypothesis is true. The smaller the p-value, the stronger the evidence '''against the null hypothesis''' and in favor of the alternative hypothesis. In your example, variable 2 has a smaller p-value than variable 1, which means that there is stronger evidence '''against the null hypothesis''' for variable 2 than for variable 1. <u>However, it is important to note that a smaller p-value does not necessarily mean that one variable has a stronger effect or is more important than the other.</u> Instead of comparing p-values directly, it would be more appropriate to look at '''effect sizes''' and '''confidence intervals''' to determine the relative importance of each variable.
= 1 - sum(a[1:11]) # R's index starts from 1.
* Question: do p-values show the relative importance of different predictors?
</pre>
** P-values can indicate the statistical significance of a predictor in a model, but they do not directly measure the relative importance of different predictors.
** A p-value is a measure of the probability that the observed relationship between a predictor and the response variable occurred by chance under the null hypothesis. A smaller p-value suggests that it is less likely that the observed relationship occurred by chance, which often leads to the conclusion that the predictor is statistically significant.
** However, p-values do not tell us about the size or magnitude of an effect, nor do they directly compare the effects of different predictors. ''Two predictors might both be statistically significant, but one might have a much larger '''effect''' on the response variable than the other'' (There are several statistical measures that can be used to assess the relative importance of predictors in a model: Standardized Coefficients, Partial Correlation Coefficients, Variable Importance in Projection (VIP), Variable Importance Measures in Tree-Based Models, LASSO (Least Absolute Shrinkage and Selection Operator) and Relative Weights Analysis).
** Moreover, p-values are sensitive to sample size. With a large enough sample size, even tiny, unimportant differences can become statistically significant.
** Therefore, while p-values are a useful tool in model analysis, they should not be used alone to determine the relative importance of predictors. Other statistical measures and domain knowledge should also be considered.


Another example is the data from [https://david.ncifcrf.gov/helps/functional_annotation.html#fisher the functional annotation tool] in DAVID.
== Distribution of p values in medical abstracts ==
<pre>
* http://www.ncbi.nlm.nih.gov/pubmed/26608725
              | gene list | not gene list |
* [https://github.com/jtleek/tidypvals An R package with several million published p-values in tidy data sets] by Jeff Leek.
-------------------------------------------------------
pathway        |  3  (q)  |              | 40 (m)
-------------------------------------------------------
not in pathway |  297      |              | 29960 (n)
-------------------------------------------------------
              |  300 (k)  |              | 30000
</pre>
The one-tailed p-value from the hypergeometric test is calculated as 1 - phyper(3-1, 40, 29960, 300) = 0.0074.


== [https://en.wikipedia.org/wiki/Fisher%27s_exact_test Fisher's exact test] ==
== nominal p-value and Empirical p-values ==
Following the above example from the DAVID website, the following R command calculates the Fisher exact test for independence in 2x2 contingency tables.
* Nominal p-values are based on asymptotic null distributions
<syntaxhighlight lang='rsplus'>
* Empirical p-values are computed from simulations/permutations
> fisher.test(matrix(c(3, 40, 297, 29960), nr=2)) #  alternative = "two.sided" by default
* [https://stats.stackexchange.com/questions/536116/what-is-the-concepts-of-nominal-and-actual-significance-level What is the concepts of nominal and '''actual''' significance level?]
** The nominal significance level is the significance level a test is designed to achieve. This is very often 5% or 1%. Now in many situations the nominal significance level can't be achieved precisely. This can happen because the distribution is discrete and doesn't allow for a precise given rejection probability, and/or because the theory behind the test is asymptotic, i.e., the nominal level is only achieved for 𝑛→∞.
 
== (nominal) alpha level ==
Conventional methodology for statistical testing is, in advance of undertaking the test, to set a NOMINAL ALPHA CRITERION LEVEL (often 0.05). The outcome is classified as showing STATISTICAL SIGNIFICANCE if the actual ALPHA (probability of the outcome under the null hypothesis) is no greater than this NOMINAL ALPHA CRITERION LEVEL.
* http://www.translationdirectory.com/glossaries/glossary033.htm
* http://courses.washington.edu/p209s07/lecturenotes/Week%205_Monday%20overheads.pdf
 
== Normality assumption ==
[https://www.biorxiv.org/content/early/2018/12/20/498931 Violating the normality assumption may be the lesser of two evils]


        Fisher's Exact Test for Count Data
== Second-Generation p-Values ==
[https://amstat.tandfonline.com/doi/full/10.1080/00031305.2018.1537893 An Introduction to Second-Generation p-Values] Blume et al, 2020


data: matrix(c(3, 40, 297, 29960), nr = 2)
== Small p-value due to very large sample size ==
p-value = 0.008853
* [https://stats.stackexchange.com/a/44466 How to correct for small p-value due to very large sample size]
alternative hypothesis: true odds ratio is not equal to 1
* [https://www.galitshmueli.com/system/files/Print%20Version.pdf Too big to fail: large samples and the p-value problem], Lin 2013. Cited by [https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2263-6#Sec17 ComBat] paper.
95 percent confidence interval:
* [https://stats.stackexchange.com/a/44466 How to correct for small p-value due to very large sample size]
  1.488738 23.966741
* [https://math.stackexchange.com/a/2939553 Does 𝑝-value change with sample size?]
sample estimates:
* [https://sebastiansauer.github.io/pvalue_sample_size/ The effect of sample on p-values. A simulation]
odds ratio
* [https://data.library.virginia.edu/power-and-sample-size-analysis-using-simulation/ Power and Sample Size Analysis using Simulation]
  7.564602
* [https://stats.stackexchange.com/questions/73045/simulating-p-values-as-a-function-of-sample-size Simulating p-values as a function of sample size]
* [https://researchutopia.wordpress.com/2013/11/10/understanding-p-values-via-simulations/ Understanding p-values via simulations]
* [https://www.r-bloggers.com/2018/04/p-values-sample-size-and-data-mining/ P-Values, Sample Size and Data Mining]


> fisher.test(matrix(c(3, 40, 297, 29960), nr=2), alternative="greater")
== Bayesian ==
* Bayesian believers, who adhere to Bayesian statistics, often have a different perspective on hypothesis testing compared to '''frequentist statisticians'''. '''In Bayesian statistics, the focus is on estimating the probability of a hypothesis being true given the data, rather than on the probability of the data given a specific hypothesis (as in p-values).'''
* Bayesian believers generally prefer using Bayesian methods, such as computing credible intervals or Bayes factors, which provide more directly interpretable results in terms of the probability of hypotheses. These methods can be seen as more informative than p-values, as they give a range of plausible values for the parameter of interest or directly compare the relative plausibility of different hypotheses.


        Fisher's Exact Test for Count Data
= T-statistic =
See [[T-test#T-statistic|T-statistic]].


data:  matrix(c(3, 40, 297, 29960), nr = 2)
= ANOVA =
p-value = 0.008853
See [[T-test#ANOVA|ANOVA]].
alternative hypothesis: true odds ratio is greater than 1
 
95 percent confidence interval:
= [https://en.wikipedia.org/wiki/Goodness_of_fit Goodness of fit] =
1.973  Inf
== [https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test Chi-square tests] ==
sample estimates:
* [http://freakonometrics.hypotheses.org/20531 An application of chi-square tests]
odds ratio
 
  7.564602
== Fitting distribution ==
[https://magesblog.com/post/2011-12-01-fitting-distributions-with-r/ Fitting distributions with R]


> fisher.test(matrix(c(3, 40, 297, 29960), nr=2), alternative="less")
== Normality distribution check ==
[https://finnstats.com/index.php/2021/11/09/anderson-darling-test-in-r/ Anderson-Darling Test in R (Quick Normality Check)]


        Fisher's Exact Test for Count Data
== Kolmogorov-Smirnov test ==
* [https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test Kolmogorov-Smirnov test]
* [https://www.rdocumentation.org/packages/dgof/versions/1.2/topics/ks.test ks.test()] in R
* [https://www.statology.org/kolmogorov-smirnov-test-r/ Kolmogorov-Smirnov Test in R (With Examples)]
* [https://rpubs.com/mharris/KSplot kolmogorov-smirnov plot]
* [https://stackoverflow.com/a/27282758 Visualizing the Kolmogorov-Smirnov statistic in ggplot2]


data: matrix(c(3, 40, 297, 29960), nr = 2)
= Contingency Tables =
p-value = 0.9991
[https://finnstats.com/index.php/2021/05/09/contingency-coefficient-association/ How to Measure Contingency-Coefficient (Association Strength)]. '''gplots::balloonplot()''' and '''corrplot::corrplot()''' .
alternative hypothesis: true odds ratio is less than 1
95 percent confidence interval:
  0.00000 20.90259
sample estimates:
odds ratio
  7.564602
</syntaxhighlight>


From the documentation of [https://stat.ethz.ch/R-manual/R-devel/library/stats/html/fisher.test.html fisher.test]
== What statistical test should I do ==
<pre>
[https://statsandr.com/blog/what-statistical-test-should-i-do/ What statistical test should I do?]
Usage:
    fisher.test(x, y = NULL, workspace = 200000, hybrid = FALSE,
                control = list(), or = 1, alternative = "two.sided",
                conf.int = TRUE, conf.level = 0.95,
                simulate.p.value = FALSE, B = 2000)
</pre>
* For 2 by 2 cases, p-values are obtained directly using the (central or non-central) hypergeometric distribution.
* For 2 by 2 tables, the null of conditional independence is equivalent to the hypothesis that the odds ratio equals one.
* The alternative for a one-sided test is based on the odds ratio, so ‘alternative = "greater"’ is a test of the odds ratio being bigger than ‘or’.
* Two-sided tests are based on the probabilities of the tables, and take as ‘more extreme’ all tables with probabilities less than or equal to that of the observed table, the p-value being the sum of such probabilities.


== Chi-square independence test ==
== Graphically show association ==
[https://www.rdatagen.net/post/a-little-intuition-and-simulation-behind-the-chi-square-test-of-independence-part-2/ Exploring the underlying theory of the chi-square test through simulation - part 2]


== [https://en.wikipedia.org/wiki/Gene_set_enrichment_analysis GSEA] ==
# '''Bar Graphs''': Bar graphs can be used to compare the frequency of different categories in two variables. Each bar represents a category, and the height of the bar represents its frequency. You can create side-by-side bar graphs or stacked bar graphs to compare frequencies across categories. See [https://statisticsbyjim.com/basics/contingency-table/ Contingency Table: Definition, Examples & Interpreting] (row totals) and [https://online.stat.psu.edu/stat100/lesson/6/6.1 Two Different Categorical Variables] (column totals).
Determines whether an a priori defined set of genes shows statistically significant, concordant differences between two biological states
# '''Mosaic Plots''': A mosaic plot gives a visual representation of the relationship between two categorical variables. It's a rectangular grid that represents the total population, and it's divided into smaller rectangles that represent the categories of each variable. The size of each rectangle is proportional to the frequency of each category. See [https://yardsale8.github.io/stat110_book/chp3/mosaic.html Visualizing Association With Mosaic Plots].
# '''Categorical Scatterplots''': In seaborn, a Python data visualization library, there are categorical scatterplots that adjust the positions of points on the categorical axis with a small amount of random "jitter" or using an algorithm that prevents them from overlapping. See [https://seaborn.pydata.org/tutorial/categorical.html Visualizing categorical data].
# '''Contingency Tables''': While not a graphical method, contingency tables are often used in conjunction with graphical methods. A contingency table displays how many individuals fall in each combination of categories for two variables.


* https://www.bioconductor.org/help/course-materials/2015/SeattleApr2015/E_GeneSetEnrichment.html
Q: How to guess whether two variables are associated by looking at the counts in a 2x2 contingency table:<br>
* http://software.broadinstitute.org/gsea/index.jsp
* '''Observe the distribution of counts''': If the counts are evenly distributed across the cells of the table, it suggests that there may not be a strong association between the two variables. However, if the counts are unevenly distributed, it suggests that there may be an association.
* [http://www.biorxiv.org/content/biorxiv/early/2017/09/08/186288.full.pdf Statistical power of gene-set enrichment analysis is a function of gene set correlation structure] by SWANSON 2017
* '''Compare the diagonal cells''': If the counts in the diagonal cells (top left to bottom right or top right to bottom left) are high compared to the off-diagonal cells, it suggests a '''positive association''' between the two variables. Conversely, if the counts in the off-diagonal cells are high, it suggests a '''negative association'''. See [[Statistics#Odds_ratio_and_Risk_ratio |odds ratio]] >1 (pos association) or <1 (neg association).
* [https://www.biorxiv.org/content/10.1101/674267v1 Towards a gold standard for benchmarking gene set enrichment analysis], [http://bioconductor.org/packages/release/bioc/html/GSEABenchmarkeR.html GSEABenchmarkeR] package
* Calculate and compare the '''row and column totals''': If the row and column totals are similar, it suggests that there may not be a strong association between the two variables. However, if the row and column totals are very different, it suggests that there may be an association.


Two categories of GSEA procedures:
Q: When creating a barplot of percentages from a contingency table, whether you calculate percentages by dividing counts by row totals or column totals? A: It depends on the question you’re trying to answer. See [https://statisticsbyjim.com/basics/contingency-table/ Contingency Table: Definition, Examples & Interpreting].
* Competitive: compare genes in the test set relative to all other genes.
* '''Row Totals''': If you’re interested in understanding the distribution of a '''variable''' within each '''row category''', you would calculate percentages by dividing counts by row totals. This is often used when the '''row variable''' is the '''independent variable''' and you want to see how the column variable ('''dependent variable''') is distributed within each level of the row variable.
* Self-contained: whether the gene-set is more DE than one were to expect under the null of no association between two phenotype conditions (without reference to other genes in the genome). For example the method by [http://home.cc.umanitoba.ca/~psgendb/birchhomedir/doc/MeV/manual/gsea.html Jiang & Gentleman Bioinformatics 2007]
* Column Totals: If you’re interested in understanding the distribution of a variable within each column category, you would calculate percentages by dividing counts by column totals. This is often used when the column variable is the independent variable and you want to see how the row variable (dependent variable) is distributed within each level of the column variable.


= Confidence vs Credibility Intervals =
[https://wiki.taichimd.us/view/Ggplot2#Barplot_with_colors_for_a_2nd_variable Barplot with colors for a 2nd variable].
http://freakonometrics.hypotheses.org/18117


= Power analysis/Sample Size determination =
== Measure the association in a contingency table ==
* [https://en.wikipedia.org/wiki/Sample_size_determination Sample size determination] from Wikipedia
<ul>
* Power and Sample Size Determination http://www.stat.wisc.edu/~st571-1/10-power-2.pdf#page=12
<li>'''Phi coefficient''': The Phi coefficient is a measure of association that is used for 2x2 contingency tables. It ranges from -1 to 1, with 0 indicating no association and values close to -1 or 1 indicating a strong association. The formula for Phi coefficient is:
* http://biostat.mc.vanderbilt.edu/wiki/pub/Main/AnesShortCourse/HypothesisTestingPart1.pdf#page=40
Phi = (ad - bc) / sqrt((a+b)(c+d)(a+c)(b+d)), where a, b, c, and d are the frequency counts in the four cells of the contingency table.
* [http://r-video-tutorial.blogspot.com/2017/07/power-analysis-and-sample-size.html Power analysis and sample size calculation for Agriculture] ('''pwr, lmSupport, simr''' packages are used)
<li>'''Cramer's V''': Cramer's V is a measure of association that is used for contingency tables of any size. It ranges from 0 to 1, with 0 indicating no association and values close to 1 indicating a strong association. The formula for Cramer's V is:
* [http://daniellakens.blogspot.com/2016/11/why-within-subject-designs-require-less.html Why Within-Subject Designs Require Fewer Participants than Between-Subject Designs]
V = sqrt(Chi-Square / (n*(min(r,c)-1))), where Chi-Square is the Chi-Square statistic, n is the total sample size, and r and c are the number of rows and columns in the contingency table.
<li>'''Odds ratio''': The odds ratio is a measure of association that is commonly used in medical research and epidemiology. It compares the odds of an event occurring in one group compared to another group. The odds ratio can be calculated as:
OR = (a/b) / (c/d), where a, b, c, and d are the frequency counts in the four cells of the contingency table. An odds ratio of 1 indicates no association, while values greater than 1 indicate a positive association and values less than 1 indicate a negative association.
</ul>


== Power analysis for default Bayesian t-tests ==
== Odds ratio and Risk ratio ==
http://daniellakens.blogspot.com/2016/01/power-analysis-for-default-bayesian-t.html
<ul>
<li>[https://en.wikipedia.org/wiki/Odds_ratio Odds ratio] and [https://en.wikipedia.org/wiki/Relative_risk Risk ratio/relative risk].
* In practice the odds ratio is commonly used for '''case-control studies''', as the relative risk cannot be estimated.
* Relative risk is used in the statistical analysis of the data of ecological, cohort, medical and '''intervention studies''', to estimate the strength of the association between exposures (treatments or risk factors) and outcomes.
<li>[https://www.r-bloggers.com/2022/02/odds-ratio-interpretation-quick-guide/ Odds Ratio Interpretation Quick Guide] </li>
<li>The odds ratio is often used to evaluate the strength of the '''association''' between two binary variables and to compare the '''risk of an event''' occurring between two groups.
* An odds ratio greater than 1 indicates that the event is more likely to occur in the first group, while an odds ratio less than 1 indicates that the event is more likely to occur in the second group.
* In general, a larger odds ratio indicates a stronger association between the two variables, while a smaller odds ratio indicates a weaker association.
<li>The ratio of the '''odds of an event''' occurring in one '''group''' to the odds of it occurring in another group
<pre>
                        Treatment  | Control 
-------------------------------------------------
Event occurs        |  A        |  B     
-------------------------------------------------
Event does not occur |  C        |  D     
-------------------------------------------------
Odds                |  A/C      |  B/D
-------------------------------------------------
Risk                |  A/(A+C)  |  B/(B+D)
</pre>
* '''Odds''' Ratio = (A / C) / (B / D) = (AD) / (BC)
* '''Risk''' Ratio = (A / (A+C)) / (C / (B+D))
</li>
<li>Real example. In a study published in the Journal of the American Medical Association, researchers investigated the '''association between''' the use of nonsteroidal anti-inflammatory drugs (''NSAIDs'') and the ''risk of developing gastrointestinal bleeding''. Suppose odds ratio = 2.5 and risk ratio is 1.5. The interpretation of the results in this study is as follows:
* The odds ratio of 2.5 indicates that the odds of gastrointestinal bleeding are 2.5 times higher in the group of patients taking NSAIDs compared to the group of patients not taking NSAIDs.
* The risk ratio of 1.5 indicates that the risk of gastrointestinal bleeding is 1.5 times higher in the group of patients taking NSAIDs compared to the group of patients not taking NSAIDs.
* In this example, both the odds ratio and the risk ratio indicate a significant association between NSAID use and the risk of gastrointestinal bleeding. However, the risk ratio is lower than the odds ratio, indicating that the overall prevalence of gastrointestinal bleeding in the study population is relatively low.
<li>What is the main difference in the interpretation of odds ratio and risk ratio?
* Odds are a measure of the probability of an event occurring, expressed as the ratio of the number of ways the event can occur to the number of ways it cannot occur. For example, if the probability of an event occurring is 0.5 (or 50%), the odds of the event occurring would be 1:1 (or 1 to 1).
* Risk is a measure of the probability of an event occurring, expressed as the ratio of the number of events that occur to the total number of events. For example, if 10 out of 100 people experience an event, the risk of the event occurring would be 10%.
* The main difference between the two measures is that the odds ratio is more sensitive to changes in the '''frequency of the event''', while the risk ratio is more sensitive to changes in the '''overall prevalence of the event'''.
* This means that the odds ratio is more useful for comparing the odds of an event occurring between two groups when the event is relatively '''rare''', while the risk ratio is more useful for comparing the risk of an event occurring between two groups when the event is more '''common'''.
</ul>


== Using simulation for power analysis: an example based on a stepped wedge study design ==
== Hypergeometric, One-tailed Fisher exact test ==
https://www.rdatagen.net/post/using-simulation-for-power-analysis-an-example/
* [https://bioconductor.org/packages/release/bioc/vignettes/GSEABenchmarkeR/inst/doc/GSEABenchmarkeR.html ORA is inapplicable if there are few genes satisfying the significance threshold, or if almost all genes are DE]. See also the '''flexible''' adjustment method for the handling of multiple testing correction.
 
* https://www.bioconductor.org/help/course-materials/2009/SeattleApr09/gsea/ (Are interesting features over-represented? or are selected genes more often in the ''GO category'' than expected by chance?)
== Power analysis and sample size calculation for Agriculture ==
* https://en.wikipedia.org/wiki/Hypergeometric_distribution. '' In a test for over-representation of successes in the sample, the hypergeometric p-value is calculated as the probability of randomly drawing '''k''' or more successes from the population in '''n''' total draws. In a test for under-representation, the p-value is the probability of randomly drawing '''k''' or fewer successes.''
http://r-video-tutorial.blogspot.com/2017/07/power-analysis-and-sample-size.html
* http://stats.stackexchange.com/questions/62235/one-tailed-fishers-exact-test-and-the-hypergeometric-distribution
 
* Two sided hypergeometric test
== Power calculation for proportions (shiny app) ==
** http://stats.stackexchange.com/questions/155189/how-to-make-a-two-tailed-hypergeometric-test
https://juliasilge.shinyapps.io/power-app/
** http://stats.stackexchange.com/questions/140107/p-value-in-a-two-tail-test-with-asymmetric-null-distribution
 
** http://stats.stackexchange.com/questions/19195/explaining-two-tailed-tests
== Derive the formula/manual calculation ==
* https://www.biostars.org/p/90662/ When computing the p-value (tail probability), consider to use 1 - Prob(observed -1) instead of 1 - Prob(observed) for discrete distribution.
* [http://powerandsamplesize.com/Knowledge/derive-z-test-1-sample-1-sided One-sample 1-sided test], [http://www.cyclismo.org/tutorial/R/power.html#calculating-the-power-using-a-normal-distribution One sample 2-sided test]
* https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Hypergeometric.html p(x) = choose(m, x) choose(n, k-x) / choose(m+n, k).
* [http://gchang.people.ysu.edu/class/s5817/L/L5817_1_2_PowerSampleSize_n.pdf#page=6 Two-sample 2-sided T test] (<math>n</math> is the sample size in each group)
<pre>
:<math> 
        drawn  | not drawn |
\begin{align}
-------------------------------------
Power & = P_{\mu_1-\mu_2 = \Delta}(\frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\sigma^2/n + \sigma^2/n}} > Z_{\alpha /2}) +
white |  x      |          | m
    P_{\mu_1-\mu_2 = \Delta}(\frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\sigma^2/n + \sigma^2/n}} < -Z_{\alpha /2}) \\
-------------------------------------
    &  \approx P_{\mu_1-\mu_2 = \Delta}(\frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\sigma^2/n + \sigma^2/n}} > Z_{\alpha /2}) \\
black |  k-x    |          | n
    & =  P_{\mu_1-\mu_2 = \Delta}(\frac{\bar{X}_1 - \bar{X}_2 - \Delta}{\sqrt{2 * \sigma^2/n}} > Z_{\alpha /2} - \frac{\Delta}{\sqrt{2 * \sigma^2/n}}) \\
-------------------------------------
    & = \Phi(-(Z_{\alpha /2} - \frac{\Delta}{\sqrt{2 * \sigma^2/n}})) \\
      |  k      |          | m+n
    & = 1 - \beta =\Phi(Z_\beta)
</pre>
\end{align}
</math>
Therefore
:<math>
\begin{align}
Z_{\beta} &= - Z_{\alpha/2} + \frac{\Delta}{\sqrt{2 * \sigma^2/n}} \\
Z_{\beta} + Z_{\alpha/2} & =  \frac{\Delta}{\sqrt{2 * \sigma^2/n}}  \\
2 * (Z_{\beta} + Z_{\alpha/2})^2 * \sigma^2/\Delta^2 & = n \\
n & = 2 * (Z_{\beta} + Z_{\alpha/2})^2 * \sigma^2/\Delta^2
\end{align}
</math>
<syntaxhighlight lang='rsplus'>
# alpha = .05, delta = 200, n = 79.5, sigma=450
1 - pnorm(1.96 - 200*sqrt(79.5)/(sqrt(2)*450)) + pnorm(-1.96 - 200*sqrt(79.5)/(sqrt(2)*450))
# [1] 0.8
pnorm(-1.96 - 200*sqrt(79.5)/(sqrt(2)*450))
# [1] 9.58e-07
1 - pnorm(1.96 - 200*sqrt(79.5)/(sqrt(2)*450))
# [1] 0.8
</syntaxhighlight>


== [http://geraldbelton.com/calculating-required-sample-size-in-r-and-sas/#sthash.jT6fZ29h.dpbs Calculating required sample size in R and SAS] ==
For example, k=100, m=100, m+n=1000,
'''pwr''' package is used. For two-sided test, the formula for sample size is
{{Pre}}
 
> 1 - phyper(10, 100, 10^3-100, 100, log.p=F)
:<math> n_{\mbox{each group}} = \frac{2 * (Z_{\alpha/2} + Z_\beta)^2 * \sigma^2}{\Delta^2} = \frac{2 * (Z_{\alpha/2} + Z_\beta)^2}{d^2} </math>
[1] 0.4160339
 
> a <- dhyper(0:10, 100, 10^3-100, 100)
where <math>Z_\alpha</math> is value of the Normal distribution which cuts off an upper tail probability of <math>\alpha</math>, <math>\Delta</math> is the difference sought, <math>\sigma</math> is the presumed standard deviation of the outcome, <math>\alpha</math> is the type 1 error, <math>\beta</math> is the type II error and (Cohen's) d is the '''effect size''' - difference between the means divided by the pooled standard deviation.   
> cumsum(rev(a))
 
  [1] 1.566158e-140 1.409558e-135 3.136408e-131 3.067025e-127 1.668004e-123 5.739613e-120 1.355765e-116
<syntaxhighlight lang='rsplus'>
  [8] 2.325536e-113 3.018276e-110 3.058586e-107 2.480543e-104 1.642534e-101 9.027724e-99  4.175767e-96
# An example from http://www.stat.columbia.edu/~gelman/stuff_for_blog/c13.pdf#page=3
[15]  1.644702e-93  5.572070e-91  1.638079e-88  4.210963e-86  9.530281e-84  1.910424e-81  3.410345e-79
# Method 1.
[22]  5.447786e-77  7.821658e-75  1.013356e-72  1.189000e-70  1.267638e-68  1.231736e-66  1.093852e-64
require(pwr)
[29]  8.900857e-63  6.652193e-61  4.576232e-59  2.903632e-57  1.702481e-55  9.240350e-54  4.650130e-52
pwr.t.test(d=200/450, power=.8, sig.level=.05,
[36]  2.173043e-50  9.442985e-49  3.820823e-47  1.441257e-45  5.074077e-44  1.669028e-42  5.134399e-41
          type="two.sample", alternative="two.sided")
[43]  1.478542e-39  3.989016e-38  1.009089e-36  2.395206e-35  5.338260e-34  1.117816e-32  2.200410e-31
#
[50]  4.074043e-30  7.098105e-29  1.164233e-27  1.798390e-26  2.617103e-25  3.589044e-24  4.639451e-23
#    Two-sample t test power calculation
[57]  5.654244e-22  6.497925e-21  7.042397e-20  7.198582e-19  6.940175e-18  6.310859e-17  5.412268e-16
#
[64]  4.377256e-15  3.338067e-14  2.399811e-13  1.626091e-12  1.038184e-11  6.243346e-11  3.535115e-10
#              n = 80.4
[71]  1.883810e-09  9.442711e-09  4.449741e-08  1.970041e-07  8.188671e-07  3.193112e-06  1.167109e-05
#              d = 0.444
[78]  3.994913e-05  1.279299e-04  3.828641e-04  1.069633e-03  2.786293e-03  6.759071e-03  1.525017e-02
#      sig.level = 0.05
[85]  3.196401e-02  6.216690e-02  1.120899e-01  1.872547e-01  2.898395e-01  4.160339e-01  5.550192e-01
#          power = 0.8
[92]  6.909666e-01  8.079129e-01  8.953150e-01  9.511926e-01  9.811343e-01  9.942110e-01  9.986807e-01
#    alternative = two.sided
[99]  9.998018e-01  9.999853e-01  1.000000e+00
#
# NOTE: n is number in *each* group


# Method 2.
# Density plot
2*(qnorm(.975) + qnorm(.8))^2*450^2/(200^2)
plot(0:100, dhyper(0:100, 100, 10^3-100, 100), type='h')
# [1] 79.5
</pre>
2*(1.96 + .84)^2*450^2 / (200^2)
[[:File:Dhyper.svg]]
# [1] 79.4
</syntaxhighlight>
And stats::power.t.test() function.
<syntaxhighlight lang='rsplus'>
power.t.test(n = 79.5, delta = 200, sd = 450, sig.level = .05,
            type ="two.sample", alternative = "two.sided")
#
#    Two-sample t test power calculation
#
#              n = 79.5
#          delta = 200
#            sd = 450
#      sig.level = 0.05
#          power = 0.795
#    alternative = two.sided
#
# NOTE: n is number in *each* group
</syntaxhighlight>


== R package related to power analysis ==
Moreover,
[https://cran.r-project.org/web/views/ExperimentalDesign.html CRAN Task View: Design of Experiments]
<pre>
  1 - phyper(q=10, m, n, k)
= 1 - sum_{x=0}^{x=10} phyper(x, m, n, k)
= 1 - sum(a[1:11]) # R's index starts from 1.
</pre>


* [https://cran.r-project.org/web/packages/powerAnalysis/index.html powerAnalysis] w/o vignette
Another example is the data from [https://david.ncifcrf.gov/helps/functional_annotation.html#fisher the functional annotation tool] in DAVID.
* [https://cran.r-project.org/web/packages/powerbydesign/index.html powerbydesign] w/o vignette
<pre>
* [https://cran.r-project.org/web/packages/easypower/index.html easypower] w/ vignette
              | gene list | not gene list |
* [https://cran.r-project.org/web/packages/pwr/index.html pwr] w/ vignette, https://www.statmethods.net/stats/power.html. The reference is Cohen's book.
-------------------------------------------------------
* [https://github.com/rpsychologist/powerlmm powerlmm] Power Analysis for Longitudinal Multilevel/Linear Mixed-Effects Models.
pathway        |  3  (q)  |              | 40 (m)
* [https://cran.r-project.org/web/packages/ssize.fdr/index.html ssize.fdr] w/o vignette
-------------------------------------------------------
* [https://cran.r-project.org/web/packages/samplesize/index.html samplesize] w/o vignette
not in pathway |  297      |              | 29960 (n)
* [https://cran.r-project.org/web/packages/ssizeRNA/index.html ssizeRNA] w/ vignette
-------------------------------------------------------
* power.t.test(), power.anova.test(), power.prop.test() from [https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html stats] package
              |  300 (k)  |              | 30000
</pre>
The one-tailed p-value from the hypergeometric test is calculated as 1 - phyper(3-1, 40, 29960, 300) = 0.0074.


== Russ Lenth Java applets ==
== [https://en.wikipedia.org/wiki/Fisher%27s_exact_test Fisher's exact test] ==
https://homepage.divms.uiowa.edu/~rlenth/Power/index.html
Following the above example from the DAVID website, the following R command calculates the Fisher exact test for independence in 2x2 contingency tables.
{{Pre}}
> fisher.test(matrix(c(3, 40, 297, 29960), nr=2)) #  alternative = "two.sided" by default


== Bootstrap method ==
        Fisher's Exact Test for Count Data
[https://academic.oup.com/biostatistics/advance-article/doi/10.1093/biostatistics/kxy054/5106666 The upstrap] Crainiceanu & Crainiceanu, Biostatistics 2018


== Multiple Testing Case ==
data:  matrix(c(3, 40, 297, 29960), nr = 2)
[https://www.tandfonline.com/doi/abs/10.1198/016214504000001646 Optimal Sample Size for Multiple Testing The Case of Gene Expression Microarrays]
p-value = 0.008853
 
alternative hypothesis: true odds ratio is not equal to 1
= Common covariance/correlation structures =
95 percent confidence interval:
See [https://onlinecourses.science.psu.edu/stat502/node/228 psu.edu]. Assume covariance <math>\Sigma = (\sigma_{ij})_{p\times p} </math>
  1.488738 23.966741
sample estimates:
odds ratio
  7.564602


* Diagonal structure: <math>\sigma_{ij} = 0</math> if <math>i \neq j</math>.
> fisher.test(matrix(c(3, 40, 297, 29960), nr=2), alternative="greater")
* Compound symmetry: <math>\sigma_{ij} = \rho</math> if <math>i \neq j</math>.
* First-order autoregressive AR(1) structure: <math>\sigma_{ij} = \rho^{|i - j|}</math>. <syntaxhighlight lang='rsplus'>
rho <- .8
p <- 5
blockMat <- rho ^ abs(matrix(1:p, p, p, byrow=T) - matrix(1:p, p, p))
</syntaxhighlight>
* Banded matrix: <math>\sigma_{ii}=1, \sigma_{i,i+1}=\sigma_{i+1,i} \neq 0, \sigma_{i,i+2}=\sigma_{i+2,i} \neq 0</math> and <math>\sigma_{ij}=0</math> for <math>|i-j| \ge 3</math>.
* Spatial Power
* Unstructured Covariance
* [https://en.wikipedia.org/wiki/Toeplitz_matrix Toeplitz structure]


To create blocks of correlation matrix, use the "%x%" operator. See [https://www.rdocumentation.org/packages/base/versions/3.4.3/topics/kronecker kronecker()].
        Fisher's Exact Test for Count Data
<syntaxhighlight lang='rsplus'>
covMat <- diag(n.blocks) %x% blockMat
</syntaxhighlight>


= Counter/Special Examples =
data:  matrix(c(3, 40, 297, 29960), nr = 2)
== Correlated does not imply independence ==
p-value = 0.008853
Suppose X is a normally-distributed random variable with zero mean. Let Y = X^2. Clearly X and Y are not independent: if you know X, you also know Y.  And if you know Y, you know the absolute value of X.
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
  1.973  Inf
sample estimates:
odds ratio
  7.564602


The covariance of X and Y is
> fisher.test(matrix(c(3, 40, 297, 29960), nr=2), alternative="less")
<pre>
  Cov(X,Y) = E(XY) - E(X)E(Y) = E(X^3) - 0*E(Y) = E(X^3)
          = 0,  
</pre>
because the distribution of X is symmetric around zero.  Thus the correlation r(X,Y) = Cov(X,Y)/Sqrt[Var(X)Var(Y)] = 0, and we have a situation where the variables are not independent, yet
have (linear) correlation r(X,Y) = 0.


This example shows how a linear correlation coefficient does not encapsulate anything about the quadratic dependence of Y upon X.
        Fisher's Exact Test for Count Data
 
== Spearman vs Pearson correlation ==
Pearson benchmarks linear relationship, Spearman benchmarks monotonic relationship. https://stats.stackexchange.com/questions/8071/how-to-choose-between-pearson-and-spearman-correlation


data:  matrix(c(3, 40, 297, 29960), nr = 2)
p-value = 0.9991
alternative hypothesis: true odds ratio is less than 1
95 percent confidence interval:
  0.00000 20.90259
sample estimates:
odds ratio
  7.564602
</pre>
[https://www.statsandr.com/blog/fisher-s-exact-test-in-r-independence-test-for-a-small-sample/ Fisher's exact test in R: independence test for a small sample]
From the documentation of [https://stat.ethz.ch/R-manual/R-devel/library/stats/html/fisher.test.html fisher.test]
<pre>
<pre>
x=(1:100); 
Usage:
y=exp(x);                       
    fisher.test(x, y = NULL, workspace = 200000, hybrid = FALSE,
cor(x,y, method='spearman') # 1
                control = list(), or = 1, alternative = "two.sided",
cor(x,y, method='pearson') # .25
                conf.int = TRUE, conf.level = 0.95,
                simulate.p.value = FALSE, B = 2000)
</pre>
</pre>
* For 2 by 2 cases, p-values are obtained directly using the (central or non-central) hypergeometric distribution.
* For 2 by 2 tables, the null of conditional independence is equivalent to the hypothesis that the odds ratio equals one.
* The alternative for a one-sided test is based on the odds ratio, so ‘alternative = "greater"’ is a test of the odds ratio being bigger than ‘or’.
* Two-sided tests are based on the probabilities of the tables, and take as ‘more extreme’ all tables with probabilities less than or equal to that of the observed table, the p-value being the sum of such probabilities.


== Spearman vs Wilcoxon ==
== Boschloo's test ==
By [http://www.talkstats.com/threads/wilcoxon-signed-rank-test-or-spearmans-rho.42395/ this post]
https://en.wikipedia.org/wiki/Boschloo%27s_test
* Wilcoxon used to compare categorical versus non-normal continuous variable
* Spearman's rho used to compare two continuous (including '''ordinal''') variables that one or both aren't normally distributed


== Spearman vs [https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient Kendall correlation] ==
== Chi-square independence test ==
* Kendall's tau coefficient (after the Greek letter τ), is a statistic used to measure the '''ordinal''' association between two measured quantities.
* https://en.wikipedia.org/wiki/Chi-squared_test.
* [https://stats.stackexchange.com/questions/3943/kendall-tau-or-spearmans-rho Kendall Tau or Spearman's rho?]
** Chi-Square = Σ[(O - E)^2 / E]
** We can see expected_{ij} = n_{i.}*n_{.j}/n_{..}
** The Chi-Square test statistic follows a Chi-Square distribution with degrees of freedom equal to (r-1) x (c-1)
** The Chi-Square test is generally a '''two-sided''' test, meaning that it tests for a significant difference between the observed and expected frequencies in both directions (i.e., either a greater than or less than difference).
* [https://statsandr.com/blog/chi-square-test-of-independence-by-hand/ Chi-square test of independence by hand]
<pre>
> chisq.test(matrix(c(14,0,4,10), nr=2), correct=FALSE)


== [http://en.wikipedia.org/wiki/Anscombe%27s_quartet Anscombe quartet] ==
Pearson's Chi-squared test


Four datasets have almost same properties: same mean in X, same mean in Y, same variance in X, (almost) same variance in Y, same correlation in X and Y, same linear regression.  
data: matrix(c(14, 0, 4, 10), nr = 2)
X-squared = 15.556, df = 1, p-value = 8.012e-05


[[:File:Anscombe quartet 3.svg]]
# How about the case if expected=0 for some elements?
> chisq.test(matrix(c(14,0,4,0), nr=2), correct=FALSE)


== The real meaning of spurious correlations ==
Pearson's Chi-squared test
https://nsaunders.wordpress.com/2017/02/03/the-real-meaning-of-spurious-correlations/
<syntaxhighlight lang='rsplus'>
library(ggplot2)
set.seed(123)
spurious_data <- data.frame(x = rnorm(500, 10, 1),
                            y = rnorm(500, 10, 1),
                            z = rnorm(500, 30, 3))
cor(spurious_data$x, spurious_data$y)
# [1] -0.05943856
spurious_data %>% ggplot(aes(x, y)) + geom_point(alpha = 0.3) +
theme_bw() + labs(title = "Plot of y versus x for 500 observations with N(10, 1)")


cor(spurious_data$x / spurious_data$z, spurious_data$y / spurious_data$z)
data:  matrix(c(14, 0, 4, 0), nr = 2)
# [1] 0.4517972
X-squared = NaN, df = 1, p-value = NA
spurious_data %>% ggplot(aes(x/z, y/z)) + geom_point(aes(color = z), alpha = 0.5) +
theme_bw() + geom_smooth(method = "lm") +
scale_color_gradientn(colours = c("red", "white", "blue")) +
labs(title = "Plot of y/z versus x/z for 500 observations with x,y N(10, 1); z N(30, 3)")


spurious_data$z <- rnorm(500, 30, 6)
Warning message:
cor(spurious_data$x / spurious_data$z, spurious_data$y / spurious_data$z)
In chisq.test(matrix(c(14, 0, 4, 0), nr = 2), correct = FALSE) :
# [1] 0.8424597
  Chi-squared approximation may be incorrect
spurious_data %>% ggplot(aes(x/z, y/z)) + geom_point(aes(color = z), alpha = 0.5) +
</pre>
theme_bw() + geom_smooth(method = "lm") +
[https://www.rdatagen.net/post/a-little-intuition-and-simulation-behind-the-chi-square-test-of-independence-part-2/ Exploring the underlying theory of the chi-square test through simulation - part 2]
scale_color_gradientn(colours = c("red", "white", "blue")) +
 
labs(title = "Plot of y/z versus x/z for 500 observations with x,y N(10, 1); z N(30, 6)")
The result of Fisher exact test and chi-square test can be quite different.
</syntaxhighlight>
<pre>
# https://myweb.uiowa.edu/pbreheny/7210/f15/notes/9-24.pdf#page=4
R> Job <- matrix(c(16,48,67,21,0,19,53,88), nr=2, byrow=T)
R> dimnames(Job) <- list(A=letters[1:2],B=letters[1:4])
R> fisher.test(Job)
 
Fisher's Exact Test for Count Data
 
data:  Job
p-value < 2.2e-16
alternative hypothesis: two.sided
 
R> chisq.test(c(16,48,67,21), c(0,19,53,88))
 
Pearson's Chi-squared test
 
data:  c(16, 48, 67, 21) and c(0, 19, 53, 88)
X-squared = 12, df = 9, p-value = 0.2133
 
Warning message:
In chisq.test(c(16, 48, 67, 21), c(0, 19, 53, 88)) :
  Chi-squared approximation may be incorrect
</pre>
 
== Cochran-Armitage test for trend (2xk) ==
* [https://en.wikipedia.org/wiki/Cochran%E2%80%93Armitage_test_for_trend Cochran–Armitage test for trend]
* [https://search.r-project.org/CRAN/refmans/DescTools/html/CochranArmitageTest.html CochranArmitageTest()]. CochranArmitageTest(dose, alternative="one.sided") if dose is a 2xk or kx2 matrix.
* [https://rdocumentation.org/packages/stats/versions/3.6.2/topics/prop.trend.test ?prop.trend.test]. prop.trend.test(dose[2,] , colSums(dose))
 
== PAsso: Partial Association between ordinal variables after adjustment ==
https://github.com/XiaoruiZhu/PAsso
 
== Cochran-Mantel-Haenszel (CMH) & Association Tests for Ordinal Table ==
* [https://predictivehacks.com/contingency-tables-in-r/ Contingency Tables In R]
* [https://rcompanion.org/handbook/H_09.html Association Tests for Ordinal Table]
* [https://online.stat.psu.edu/stat504/lesson/5/5.3/5.3.5 5.3.5 - Cochran-Mantel-Haenszel Test] psu.edu
* https://en.wikipedia.org/wiki/Cochran%E2%80%93Mantel%E2%80%93Haenszel_statistics
 
== GSEA ==
See [[GSEA|GSEA]].


= Time series =
== McNemar’s test on paired nominal data ==
* [http://ellisp.github.io/blog/2016/12/07/arima-prediction-intervals Why time series forecasts prediction intervals aren't as good as we'd hope]
https://en.wikipedia.org/wiki/McNemar%27s_test


== Structural change ==
== R ==
[https://datascienceplus.com/structural-changes-in-global-warming/ Structural Changes in Global Warming]
[https://predictivehacks.com/contingency-tables-in-r/ Contingency Tables In R]. Two-Way Tables, Mosaic plots, Proportions of the Contingency Tables, Rows and Columns Totals, Statistical Tests, Three-Way Tables, Cochran-Mantel-Haenszel (CMH) Methods.


== AR(1) processes and random walks ==
= Case control study =
[https://fdabl.github.io/r/Spurious-Correlation.html Spurious correlations and random walks]
* See an example from the '''odds ratio''' calculation in https://en.wikipedia.org/wiki/Odds_ratio where it shows odds ratio can be calculated but '''relative risk''' cannot in the '''case-control study''' (useful in a rare-disease case).
* https://www.statisticshowto.datasciencecentral.com/case-control-study/
* https://medical-dictionary.thefreedictionary.com/case-control+study
* https://en.wikipedia.org/wiki/Case%E2%80%93control_study Cf. '''randomized controlled trial''', '''cohort study'''
* https://www.students4bestevidence.net/blog/2017/12/06/case-control-and-cohort-studies-overview/
* https://quizlet.com/16214330/case-control-study-flash-cards/


= Measurement Error model =
= Confidence vs Credibility Intervals =
* [https://en.wikipedia.org/wiki/Errors-in-variables_models Errors-in-variables models/errors-in-variables models or measurement error models]
http://freakonometrics.hypotheses.org/18117
 
== T-distribution vs normal distribution ==
* [https://www.statology.org/normal-distribution-vs-t-distribution/ Normal Distribution vs. t-Distribution: What’s the Difference?]
 
= Power analysis/Sample Size determination =
See [[Power|Power]].
 
= Common covariance/correlation structures =
See [https://onlinecourses.science.psu.edu/stat502/node/228 psu.edu]. Assume covariance <math>\Sigma = (\sigma_{ij})_{p\times p} </math>
 
* Diagonal structure: <math>\sigma_{ij} = 0</math> if <math>i \neq j</math>.
* Compound symmetry: <math>\sigma_{ij} = \rho</math> if <math>i \neq j</math>.
* First-order autoregressive AR(1) structure: <math>\sigma_{ij} = \rho^{|i - j|}</math>. <syntaxhighlight lang='rsplus'>
rho <- .8
p <- 5
blockMat <- rho ^ abs(matrix(1:p, p, p, byrow=T) - matrix(1:p, p, p))
</syntaxhighlight>
* Banded matrix: <math>\sigma_{ii}=1, \sigma_{i,i+1}=\sigma_{i+1,i} \neq 0, \sigma_{i,i+2}=\sigma_{i+2,i} \neq 0</math> and <math>\sigma_{ij}=0</math> for <math>|i-j| \ge 3</math>.
* Spatial Power
* Unstructured Covariance
* [https://en.wikipedia.org/wiki/Toeplitz_matrix Toeplitz structure]
 
To create blocks of correlation matrix, use the "%x%" operator. See [https://www.rdocumentation.org/packages/base/versions/3.4.3/topics/kronecker kronecker()].
{{Pre}}
covMat <- diag(n.blocks) %x% blockMat
</pre>
 
= Counter/Special Examples =
* [https://www.tandfonline.com/doi/full/10.1080/00031305.2021.2004922 Myths About Linear and Monotonic Associations: Pearson’s r, Spearman’s ρ, and Kendall’s τ] van den Heuvel 2022
 
== Math myths ==
* [https://twitter.com/mathladyhazel/status/1557225372890152960 How 1+2+3+4+5+6+7+..... equals a negative number! ] S=-1/8
* [https://en.wikipedia.org/wiki/1_+_2_+_3_+_4_+_%E2%8B%AF 1 + 2 + 3 + 4 + ⋯ = -1/12]
 
== Correlated does not imply independence ==
Suppose X is a normally-distributed random variable with zero mean.  Let Y = X^2.  Clearly X and Y are not independent: if you know X, you also know Y.  And if you know Y, you know the absolute value of X.
 
The covariance of X and Y is
<pre>
  Cov(X,Y) = E(XY) - E(X)E(Y) = E(X^3) - 0*E(Y) = E(X^3)
          = 0,
</pre>
because the distribution of X is symmetric around zero.  Thus the correlation r(X,Y) = Cov(X,Y)/Sqrt[Var(X)Var(Y)] = 0, and we have a situation where the variables are not independent, yet
have (linear) correlation r(X,Y) = 0.
 
This example shows how a linear correlation coefficient does not encapsulate anything about the quadratic dependence of Y upon X.
 
== Significant p value but no correlation ==
[https://stats.stackexchange.com/a/333752 Post] where p-value = 1.18e-06 but cor=0.067. p-value does not say anything about the size of r.
 
== Spearman vs Pearson correlation ==
Pearson benchmarks linear relationship, Spearman benchmarks monotonic relationship. https://stats.stackexchange.com/questions/8071/how-to-choose-between-pearson-and-spearman-correlation
 
[https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#Testing_using_Student's_t-distribution Testing using Student's t-distribution] cor.test() (T-distribution with n-1 d.f.). The normality assumption is used in test. For estimation, it affects the unbiased and efficiency. See [https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#Sensitivity_to_the_data_distribution Sensitivity to the data distribution].
<pre>
x=(1:100); 
y=exp(x);                       
cor(x,y, method='spearman') # 1
cor(x,y, method='pearson')  # .25
</pre>
 
== Spearman vs Wilcoxon ==
By [http://www.talkstats.com/threads/wilcoxon-signed-rank-test-or-spearmans-rho.42395/ this post]
* Wilcoxon used to compare categorical versus non-normal continuous variable
* Spearman's rho used to compare two continuous (including '''ordinal''') variables that one or both aren't normally distributed
 
== Spearman vs [https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient Kendall correlation] ==
* Kendall's tau coefficient (after the Greek letter τ), is a statistic used to measure the '''ordinal''' association between two measured quantities.
* [https://statisticaloddsandends.wordpress.com/2019/07/08/spearmans-rho-and-kendalls-tau/ Spearman’s rho and Kendall’s tau] from Statistical Odds & Ends
* [https://stats.stackexchange.com/questions/3943/kendall-tau-or-spearmans-rho Kendall Tau or Spearman's rho?]
* [https://finnstats.com/index.php/2021/06/10/kendalls-rank-correlation-in-r-correlation-test/ Kendall’s Rank Correlation in R-Correlation Test]
* Kendall’s tau is also '''more robust (less sensitive) to ties and outliers''' than Spearman’s rho. However, if the data are continuous or nearly so, Spearman’s rho may be more appropriate.
* Kendall’s tau is preferred when dealing with '''small samples'''. [https://datascience.stackexchange.com/questions/64260/pearson-vs-spearman-vs-kendall Pearson vs Spearman vs Kendall].
* '''Interpretation of concordant and discordant pairs''': Kendall’s tau quantifies the difference between the percentage of concordant and discordant pairs among all possible pairwise events, which can be a more direct interpretation in certain contexts
* Although Kendall’s tau has a higher computation complexity (O(n^2)) compared to Spearman’s rho (O(n logn)), it can still be preferred in certain scenarios.
 
== Pearson/Spearman/Kendall correlations ==
* [https://www.r-bloggers.com/2023/09/pearson-spearman-and-kendall-correlation-coefficients-by-hand/ Calculate Pearson, Spearman and Kendall correlation coefficients by hand]
* [https://datascience.stackexchange.com/questions/64260/pearson-vs-spearman-vs-kendall Pearson vs Spearman vs Kendall]. Formula in one page.
* [https://ademos.people.uic.edu/Chapter22.html Chapter 22: Correlation Types and When to Use Them] from uic.edu
 
== [http://en.wikipedia.org/wiki/Anscombe%27s_quartet Anscombe quartet] ==
 
Four datasets have almost same properties: same mean in X, same mean in Y, same variance in X, (almost) same variance in Y, same correlation in X and Y, same linear regression.
 
[[:File:Anscombe quartet 3.svg]]
 
== phi correlation for binary variables ==
https://en.wikipedia.org/wiki/Phi_coefficient. A Pearson correlation coefficient estimated for two binary variables will return the phi coefficient.
<pre>
set.seed(1)
data <- data.frame(x=sample(c(0,1), 100, replace = T), y= sample(c(0,1), 100, replace = T))
cor(data$x, data$y)
# [1] -0.03887781
 
library(psych)
psych::phi(table(data$x, data$y))
# [1] -0.04
</pre>
 
== The real meaning of spurious correlations ==
https://nsaunders.wordpress.com/2017/02/03/the-real-meaning-of-spurious-correlations/
{{Pre}}
library(ggplot2)
set.seed(123)
spurious_data <- data.frame(x = rnorm(500, 10, 1),
                            y = rnorm(500, 10, 1),
                            z = rnorm(500, 30, 3))
cor(spurious_data$x, spurious_data$y)
# [1] -0.05943856
spurious_data %>% ggplot(aes(x, y)) + geom_point(alpha = 0.3) +
theme_bw() + labs(title = "Plot of y versus x for 500 observations with N(10, 1)")
 
cor(spurious_data$x / spurious_data$z, spurious_data$y / spurious_data$z)
# [1] 0.4517972
spurious_data %>% ggplot(aes(x/z, y/z)) + geom_point(aes(color = z), alpha = 0.5) +
theme_bw() + geom_smooth(method = "lm") +
scale_color_gradientn(colours = c("red", "white", "blue")) +
labs(title = "Plot of y/z versus x/z for 500 observations with x,y N(10, 1); z N(30, 3)")
 
spurious_data$z <- rnorm(500, 30, 6)
cor(spurious_data$x / spurious_data$z, spurious_data$y / spurious_data$z)
# [1] 0.8424597
spurious_data %>% ggplot(aes(x/z, y/z)) + geom_point(aes(color = z), alpha = 0.5) +
theme_bw() + geom_smooth(method = "lm") +
scale_color_gradientn(colours = c("red", "white", "blue")) +
labs(title = "Plot of y/z versus x/z for 500 observations with x,y N(10, 1); z N(30, 6)")
</pre>
 
== A New Coefficient of Correlation ==
[https://towardsdatascience.com/a-new-coefficient-of-correlation-64ae4f260310 A New Coefficient of Correlation] Chatterjee, 2020 Jasa
 
= Time series =
* Time Series in 5-Minutes
** [https://www.business-science.io/code-tools/2020/08/26/five-minute-time-series-seasonality.html Part 4: Seasonality]
* [http://ellisp.github.io/blog/2016/12/07/arima-prediction-intervals Why time series forecasts prediction intervals aren't as good as we'd hope]
 
== Structural change ==
[https://datascienceplus.com/structural-changes-in-global-warming/ Structural Changes in Global Warming]
 
== AR(1) processes and random walks ==
[https://fdabl.github.io/r/Spurious-Correlation.html Spurious correlations and random walks]
 
= Measurement Error model =
* [https://en.wikipedia.org/wiki/Errors-in-variables_models Errors-in-variables models/errors-in-variables models or measurement error models]
* [https://onlinelibrary.wiley.com/doi/10.1111/biom.13112 Simulation‐‐Selection‐‐Extrapolation: Estimation in High‐‐Dimensional Errors‐‐in‐‐Variables Models] Nghiem 2019
* [https://onlinelibrary.wiley.com/doi/10.1111/biom.13112 Simulation‐‐Selection‐‐Extrapolation: Estimation in High‐‐Dimensional Errors‐‐in‐‐Variables Models] Nghiem 2019


= Dictionary =
= Polya Urn Model =
* '''Prognosis''' is the probability that an event or diagnosis will result in a particular outcome.
[https://blog.ephorie.de/the-polya-urn-model-a-simple-simulation-of-the-rich-get-richer The Pólya Urn Model: A simple Simulation of “The Rich get Richer”]
** For example, on the paper [http://clincancerres.aacrjournals.org/content/18/21/6065.figures-only Developing and Validating Continuous Genomic Signatures in Randomized Clinical Trials for Predictive Medicine] by Matsui 2012, the prognostic score .1 (0.9) represents a '''good (poor)''' prognosis.
 
** Prostate cancer has a much higher one-year overall survival rate than pancreatic cancer, and thus has a better prognosis. See [https://en.wikipedia.org/wiki/Survival_rate Survival rate] in wikipedia.
= Dictionary =
 
* '''Prognosis''' is the probability that an event or diagnosis will result in a particular outcome.
= Data =
** For example, on the paper [http://clincancerres.aacrjournals.org/content/18/21/6065.figures-only Developing and Validating Continuous Genomic Signatures in Randomized Clinical Trials for Predictive Medicine] by Matsui 2012, the prognostic score .1 (0.9) represents a '''good (poor)''' prognosis.
== Eleven quick tips for finding research data ==
** Prostate cancer has a much higher one-year overall survival rate than pancreatic cancer, and thus has a better prognosis. See [https://en.wikipedia.org/wiki/Survival_rate Survival rate] in wikipedia.
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006038
 
= Statistical guidance =
* [https://osf.io/preprints/metaarxiv/q6ajt Statistical guidance to authors at top-ranked scientific journals: A cross-disciplinary assessment]
* [https://www.youtube.com/watch?v=iu4VsEv1WIo How to get your article rejected by the BMJ: 12 common statistical issues] Richard Riley
 
= Books, learning material =
* [https://leanpub.com/biostatmethods Methods in Biostatistics with R] ($)
* [http://web.stanford.edu/class/bios221/book/ Modern Statistics for Modern Biology] (free)
* Principles of Applied Statistics, by David Cox & Christl Donnelly
* [https://www.amazon.com/Freedman-Robert-Pisani-Statistics-Hardcover/dp/B004QNRMDK/ Statistics] by David Freedman,Robert Pisani, Roger Purves
* [https://onlinelibrary.wiley.com/topic/browse/000113 Wiley Online Library -> Statistics] (Access by NIH Library)
* [https://web.stanford.edu/~hastie/CASI/ Computer Age Statistical Inference: Algorithms, Evidence and Data Science] by Efron and Hastie 2016
* [https://si.biostat.washington.edu/suminst/sisg2020/modules UW Biostatistics Summer Courses] (4 institutes)
* [https://www.springer.com/series/2848/books Statistics for Biology and Health] Springer.
* [https://pyoflife.com/bayesian-essentials-with-r/ Bayesian Essentials with R]
* [https://www.maths.ed.ac.uk/~swood34/core-statistics.pdf Core Statistics] Simon Wood
 
= Social =
== JSM ==
* 2019
** [https://minecr.shinyapps.io/jsm2019-schedule/ JSM 2019] and the [http://www.citizen-statistician.org/2019/07/shiny-for-jsm-2019/ post].
** [https://rviews.rstudio.com/2019/07/19/an-r-users-guide-to-jsm-2019/ An R Users Guide to JSM 2019]
 
== Following ==
* [http://jtleek.com/ Jeff Leek], https://twitter.com/jtleek
* Revolutions, http://blog.revolutionanalytics.com/
* RStudio Blog, https://blog.rstudio.com/
* Sean Davis, https://twitter.com/seandavis12, https://github.com/seandavi
* [http://stephenturner.us/post/ Stephen Turner], https://twitter.com/genetics_blog
 
== COPSS ==
[https://zh.wikipedia.org/wiki/考普斯会长奖 考普斯會長獎] COPSS


= Books =
== 美國國家科學院 United States National Academy of Sciences/NAS ==
* [https://leanpub.com/biostatmethods Methods in Biostatistics with R] ($)
[https://zh.wikipedia.org/wiki/美国国家科学院 美國國家科學院]
* [http://web.stanford.edu/class/bios221/book/ Modern Statistics for Modern Biology] (free)
* Principles of Applied Statistics, by David Cox & Christl Donnelly
* [https://www.amazon.com/Freedman-Robert-Pisani-Statistics-Hardcover/dp/B004QNRMDK/ Statistics] by David Freedman,Robert Pisani, Roger Purves
* [https://onlinelibrary.wiley.com/topic/browse/000113 Wiley Online Library -> Statistics] (Access by NIH Library)
* [https://web.stanford.edu/~hastie/CASI/ Computer Age Statistical Inference: Algorithms, Evidence and Data Science] by Efron and Hastie 2016
 
= Social =
== JSM ==
* 2019
** [https://minecr.shinyapps.io/jsm2019-schedule/ JSM 2019] and the [http://www.citizen-statistician.org/2019/07/shiny-for-jsm-2019/ post].
** [https://rviews.rstudio.com/2019/07/19/an-r-users-guide-to-jsm-2019/ An R Users Guide to JSM 2019]
 
== Following ==
* [http://jtleek.com/ Jeff Leek], https://twitter.com/jtleek
* Revolutions, http://blog.revolutionanalytics.com/
* RStudio Blog, https://blog.rstudio.com/
* Sean Davis, https://twitter.com/seandavis12, https://github.com/seandavi
* [http://stephenturner.us/post/ Stephen Turner], https://twitter.com/genetics_blog

Latest revision as of 09:23, 21 April 2024

Statisticians

The most important statistical ideas of the past 50 years

What are the most important statistical ideas of the past 50 years?, JASA 2021

Some Advice

Data

Rules for initial data analysis

Ten simple rules for initial data analysis

Types of probabilities

See this illustration

Exploratory Analysis (EDA)

Kurtosis

Kurtosis in R-What do you understand by Kurtosis?

Phi coefficient

  • Phi coefficient. Its values is [-1, 1]. A value of zero means that the binary variables are not positively or negatively associated.
  • Cramér’s V. Its value is [0, 1]. A value of zero indicates that there is no association between the two variables. This means that knowing the value of one variable does not help predict the value of the other variable.
    library(vcd)
    cramersV <- assocstats(table(x, y))$cramer
    

Coefficient of variation (CV)

Motivating the coefficient of variation (CV) for beginners:

  • Boss: Measure it 5 times.
  • You: 8, 8, 9, 6, and 8
  • B: SD=1. Make it three times more precise!
  • Y: 0.20 0.20 0.23 0.15 0.20 meters. SD=0.3!
  • B: All you did was change to meters! Report the CV instead!
  • Y: Damn it.
R> sd(c(8, 8, 9, 6, 8))
[1] 1.095445
R> sd(c(8, 8, 9, 6, 8)*2.54/100)
[1] 0.02782431

Agreement

Pitfalls

Common pitfalls in statistical analysis: Measures of agreement 2017

Cohen's Kappa statistic (2-class)

Fleiss Kappa statistic (more than two raters)

  • https://en.wikipedia.org/wiki/Fleiss%27_kappa
  • Fleiss kappa (more than two raters) to test interrater reliability or to evaluate the repeatability and stability of models (robustness). This was used by Cancer prognosis prediction of Zheng 2020. "In our case, each trained model is designed to be a rater to assign the affiliation of each variable (gene or pathway). We conducted 20 replications of fivefold cross validation. As such, we had 100 trained models, or 100 raters in total, among which the agreement was measured by the Fleiss kappa..."
  • Fleiss’ Kappa in R: For Multiple Categorical Variables. irr::kappam.fleiss() was used.
  • Kappa statistic vs ICC
    • ICC and Kappa totally disagree
    • Measures of Interrater Agreement by Mandrekar 2011. "In certain clinical studies, agreement between the raters is assessed for a clinical outcome that is measured on a continuous scale. In such instances, intraclass correlation is calculated as a measure of agreement between the raters. Intraclass correlation is equivalent to weighted kappa under certain conditions, see the study by Fleiss and Cohen6, 7 for details."

ICC: intra-class correlation

See ICC

Compare two sets of p-values

https://stats.stackexchange.com/q/155407

Computing different kinds of correlations

correlation package

Association is not causation

Predictive power score

Transform sample values to their percentiles

  • ecdf()
  • quantile()
    • An example from the TreatmentSelection package where "type = 1" was used.
    R> x <- c(1,2,3,4,4.5,6,7)
    R> Fn <- ecdf(x)
    R> Fn     # a *function*
    Empirical CDF 
    Call: ecdf(x)
     x[1:7] =      1,      2,      3,  ...,      6,      7
    R> Fn(x)  # returns the percentiles for x
    [1] 0.1428571 0.2857143 0.4285714 0.5714286 0.7142857 0.8571429 1.0000000
    R> diff(Fn(x))
    [1] 0.1428571 0.1428571 0.1428571 0.1428571 0.1428571 0.1428571
    R> quantile(x, Fn(x))
    14.28571% 28.57143% 42.85714% 57.14286% 71.42857% 85.71429%      100% 
     1.857143  2.714286  3.571429  4.214286  4.928571  6.142857  7.000000 
    R> quantile(x, Fn(x), type = 1) 
    14.28571% 28.57143% 42.85714% 57.14286% 71.42857% 85.71429%      100% 
          1.0       2.0       3.0       4.0       4.5       6.0       7.0 
    
    R> x <- c(2, 6, 8, 10, 20)
    R> Fn <- ecdf(x)
    R> Fn(x)
    [1] 0.2 0.4 0.6 0.8 1.0
    
  • Definition of a Percentile in Statistics and How to Calculate It
  • https://en.wikipedia.org/wiki/Percentile
  • Percentile vs. Quartile vs. Quantile: What’s the Difference?
    • Percentiles: Range from 0 to 100.
    • Quartiles: Range from 0 to 4.
    • Quantiles: Range from any value to any other value.

Standardization

Feature standardization considered harmful

Eleven quick tips for finding research data

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006038

An archive of 1000+ datasets distributed with R

https://vincentarelbundock.github.io/Rdatasets/

Data and global

  • Age Structure from One Data in World. Our World in Data is a non-profit organization that provides free and open access to data and insights on how the world is changing across 115 topics.

Box(Box, whisker & outlier)

An example for a graphical explanation. File:Boxplot.svg, File:Geom boxplot.png

> x=c(0,4,15, 1, 6, 3, 20, 5, 8, 1, 3)
> summary(x)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
      0       2       4       6       7      20 
> sort(x)
 [1]  0  1  1  3  3  4  5  6  8 15 20
> y <- boxplot(x, col = 'grey')
> t(y$stats)
     [,1] [,2] [,3] [,4] [,5]
[1,]    0    2    4    7    8
# the extreme of the lower whisker, the lower hinge, the median, 
# the upper hinge and the extreme of the upper whisker

# https://en.wikipedia.org/wiki/Quartile#Example_1
> summary(c(6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49))
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   6.00   25.50   40.00   33.18   42.50   49.00
  • The lower and upper edges of box (also called the lower/upper hinge) is determined by the first and 3rd quartiles (2 and 7 in the above example).
    • 2 = median(c(0, 1, 1, 3, 3, 4)) = (1+3)/2
    • 7 = median(c(4, 5, 6, 8, 15, 20)) = (6+8)/2
    • IQR = 7 - 2 = 5
  • The thick dark horizon line is the median (4 in the example).
  • Outliers are defined by (the empty circles in the plot)
    • Observations larger than 3rd quartile + 1.5 * IQR (7+1.5*5=14.5) and
    • smaller than 1st quartile - 1.5 * IQR (2-1.5*5=-5.5).
    • Note that the cutoffs are not shown in the Box plot.
  • Whisker (defined using the cutoffs used to define outliers)
    • Upper whisker is defined by the largest "data" below 3rd quartile + 1.5 * IQR (8 in this example). Note Upper whisker is NOT defined as 3rd quartile + 1.5 * IQR.
    • Lower whisker is defined by the smallest "data" greater than 1st quartile - 1.5 * IQR (0 in this example). Note lower whisker is NOT defined as 1st quartile - 1.5 * IQR.
    • See another example below where we can see the whiskers fall on observations.

Note the wikipedia lists several possible definitions of a whisker. R uses the 2nd method (Tukey boxplot) to define whiskers.

Create boxplots from a list object

Normally we use a vector to create a single boxplot or a formula on a data to create boxplots.

But we can also use split() to create a list and then make boxplots.

Dot-box plot

File:Boxdot.svg

geom_boxplot

Note the geom_boxplot() does not create crossbars. See How to generate a boxplot graph with whisker by ggplot or this. A trick is to add the stat_boxplot() function.

Without jitter

ggplot(dfbox, aes(x=sample, y=expr)) +
  geom_boxplot() +
  theme(axis.text.x=element_text(color = "black", angle=30, vjust=.8, 
                                 hjust=0.8, size=6),  
        plot.title = element_text(hjust = 0.5)) +
  labs(title="", y = "", x = "") 

With jitter

ggplot(dfbox, aes(x=sample, y=expr)) +
  geom_boxplot(outlier.shape=NA) + #avoid plotting outliers twice
  geom_jitter(position=position_jitter(width=.2, height=0)) +
  theme(axis.text.x=element_text(color = "black", angle=30, vjust=.8, 
                                 hjust=0.8, size=6),  
        plot.title = element_text(hjust = 0.5)) +
  labs(title="", y = "", x = "") 

Why geom_boxplot identify more outliers than base boxplot?

What do hjust and vjust do when making a plot using ggplot? The value of hjust and vjust are only defined between 0 and 1: 0 means left-justified, 1 means right-justified.

Other boxplots

File:Lotsboxplot.png

Annotated boxplot

https://stackoverflow.com/a/38032281

stem and leaf plot

stem(). See R Tutorial.

Note that stem plot is useful when there are outliers.

> stem(x)

  The decimal point is 10 digit(s) to the right of the |

   0 | 00000000000000000000000000000000000000000000000000000000000000000000+419
   1 |
   2 |
   3 |
   4 |
   5 |
   6 |
   7 |
   8 |
   9 |
  10 |
  11 |
  12 | 9

> max(x)
[1] 129243100275
> max(x)/1e10
[1] 12.92431

> stem(y)

  The decimal point is at the |

  0 | 014478
  1 | 0
  2 | 1
  3 | 9
  4 | 8

> y
 [1] 3.8667356428 0.0001762708 0.7993462430 0.4181079732 0.9541728562
 [6] 4.7791262101 0.6899313108 2.1381289177 0.0541736818 0.3868776083

> set.seed(1234)
> z <- rnorm(10)*10
> z
 [1] -12.070657   2.774292  10.844412 -23.456977   4.291247   5.060559
 [7]  -5.747400  -5.466319  -5.644520  -8.900378
> stem(z)

  The decimal point is 1 digit(s) to the right of the |

  -2 | 3
  -1 | 2
  -0 | 9665
   0 | 345
   1 | 1

Box-Cox transformation

CLT/Central limit theorem

Central limit theorem

Delta method

Delta

the Holy Trinity (LRT, Wald, Score tests)

Don't invert that matrix

Different matrix decompositions/factorizations

set.seed(1234)
x <- matrix(rnorm(10*2), nr= 10)
cmat <- cov(x); cmat
# [,1]       [,2]
# [1,]  0.9915928 -0.1862983
# [2,] -0.1862983  1.1392095

# cholesky decom
d1 <- chol(cmat)
t(d1) %*% d1  # equal to cmat
d1  # upper triangle
# [,1]       [,2]
# [1,] 0.9957875 -0.1870864
# [2,] 0.0000000  1.0508131

# svd
d2 <- svd(cmat)
d2$u %*% diag(d2$d) %*% t(d2$v) # equal to cmat
d2$u %*% diag(sqrt(d2$d))
# [,1]      [,2]
# [1,] -0.6322816 0.7692937
# [2,]  0.9305953 0.5226872

Model Estimation with R

Model Estimation by Example Demonstrations with R. Michael Clark

Regression

Regression

Non- and semi-parametric regression

Mean squared error

Splines

k-Nearest neighbor regression

  • class::knn()
  • k-NN regression in practice: boundary problem, discontinuities problem.
  • Weighted k-NN regression: want weight to be small when distance is large. Common choices - weight = kernel(xi, x)

Kernel regression

  • Instead of weighting NN, weight ALL points. Nadaraya-Watson kernel weighted average:

[math]\displaystyle{ \hat{y}_q = \sum c_{qi} y_i/\sum c_{qi} = \frac{\sum \text{Kernel}_\lambda(\text{distance}(x_i, x_q))*y_i}{\sum \text{Kernel}_\lambda(\text{distance}(x_i, x_q))} }[/math].

  • Choice of bandwidth [math]\displaystyle{ \lambda }[/math] for bias, variance trade-off. Small [math]\displaystyle{ \lambda }[/math] is over-fitting. Large [math]\displaystyle{ \lambda }[/math] can get an over-smoothed fit. Cross-validation.
  • Kernel regression leads to locally constant fit.
  • Issues with high dimensions, data scarcity and computational complexity.

Principal component analysis

See PCA.

Partial Least Squares (PLS)

[math]\displaystyle{ X = T P^\mathrm{T} + E }[/math]
[math]\displaystyle{ Y = U Q^\mathrm{T} + F }[/math]
where X is an [math]\displaystyle{ n \times m }[/math] matrix of predictors, Y is an [math]\displaystyle{ n \times p }[/math] matrix of responses; T and U are [math]\displaystyle{ n \times l }[/math] matrices that are, respectively, projections of X (the X score, component or factor matrix) and projections of Y (the Y scores); P and Q are, respectively, [math]\displaystyle{ m \times l }[/math] and [math]\displaystyle{ p \times l }[/math] orthogonal loading matrices; and matrices E and F are the error terms, assumed to be independent and identically distributed random normal variables. The decompositions of X and Y are made so as to maximise the covariance between T and U (projection matrices).

High dimension

dimRed package

dimRed package

Feature selection

Goodness-of-fit

Independent component analysis

ICA is another dimensionality reduction method.

ICA vs PCA

ICS vs FA

Robust independent component analysis

robustica: customizable robust independent component analysis 2022

Canonical correlation analysis

Non-negative CCA

Correspondence analysis

Non-negative matrix factorization

Optimization and expansion of non-negative matrix factorization

Nonlinear dimension reduction

The Specious Art of Single-Cell Genomics by Chari 2021

t-SNE

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a technique for dimensionality reduction that is particularly well suited for the visualization of high-dimensional datasets.

Perplexity parameter

  • Balance attention between local and global aspects of the dataset
  • A guess about the number of close neighbors
  • In a real setting is important to try different values
  • Must be lower than the number of input records
  • Interactive t-SNE ? Online. We see in addition to perplexity there are learning rate and max iterations.

Classifying digits with t-SNE: MNIST data

Below is an example from datacamp Advanced Dimensionality Reduction in R.

The mnist_sample is very small 200x785. Here (Exploring handwritten digit classification: a tidy analysis of the MNIST dataset) is a large data with 60k records (60000 x 785).

  1. Generating t-SNE features
    library(readr)
    library(dplyr)
    
    # 104MB
    mnist_raw <- read_csv("https://pjreddie.com/media/files/mnist_train.csv", col_names = FALSE)
    mnist_10k <- mnist_raw[1:10000, ]
    colnames(mnist_10k) <- c("label", paste0("pixel", 0:783))
    
    library(ggplot2)
    library(Rtsne)
    
    tsne <- Rtsne(mnist_10k[, -1], perplexity = 5)
    tsne_plot <- data.frame(tsne_x= tsne$Y[1:5000,1],
                            tsne_y = tsne$Y[1:5000,2],
                            digit = as.factor(mnist_10k[1:5000,]$label))
    # visualize obtained embedding
    ggplot(tsne_plot, aes(x= tsne_x, y = tsne_y, color = digit)) +
      ggtitle("MNIST embedding of the first 5K digits") +
      geom_text(aes(label = digit)) + theme(legend.position= "none")
    
  2. Computing centroids
    library(data.table)
    # Get t-SNE coordinates
    centroids <- as.data.table(tsne$Y[1:5000,])
    setnames(centroids, c("X", "Y"))
    centroids[, label := as.factor(mnist_10k[1:5000,]$label)]
    # Compute centroids
    centroids[, mean_X := mean(X), by = label]
    centroids[, mean_Y := mean(Y), by = label]
    centroids <- unique(centroids, by = "label")
    # visualize centroids
    ggplot(centroids, aes(x= mean_X, y = mean_Y, color = label)) +
      ggtitle("Centroids coordinates") + geom_text(aes(label = label)) +
      theme(legend.position = "none")
    
  3. Classifying new digits
    # Get new examples of digits 4 and 9
    distances <- as.data.table(tsne$Y[5001:10000,])
    setnames(distances, c("X" , "Y"))
    distances[, label := mnist_10k[5001:10000,]$label]
    distances <- distances[label == 4 | label == 9]
    # Compute the distance to the centroids
    distances[, dist_4 := sqrt(((X - centroids[label==4,]$mean_X) + 
                                (Y - centroids[label==4,]$mean_Y))^2)]
    dim(distances)
    # [1] 928   4
    distances[1:3, ]
    #            X        Y label   dist_4
    # 1: -15.90171 27.62270     4 1.494578
    # 2: -33.66668 35.69753     9 8.195562
    # 3: -16.55037 18.64792     9 8.128860
    
    # Plot distance to each centroid
    ggplot(distances, aes(x=dist_4, fill = as.factor(label))) + 
      geom_histogram(binwidth=5, alpha=.5, position="identity", show.legend = F)
    

Fashion MNIST data

  • fashion_mnist is only 500x785
  • keras has 60k x 785. Miniconda is required when we want to use the package.

tSNE vs PCA

Two groups example

suppressPackageStartupMessages({
  library(splatter)
  library(scater)
})

sim.groups <- splatSimulate(group.prob = c(0.5, 0.5), method = "groups",
                            verbose = FALSE)
sim.groups <- logNormCounts(sim.groups)
sim.groups <- runPCA(sim.groups)
plotPCA(sim.groups, colour_by = "Group") # 2 groups separated in PC1

sim.groups <- runTSNE(sim.groups)
plotTSNE(sim.groups, colour_by = "Group") # 2 groups separated in TSNE2

UMAP

GECO

GECO: gene expression clustering optimization app for non-linear data visualization of patterns

Visualize the random effects

http://www.quantumforest.com/2012/11/more-sense-of-random-effects/

Calibration

  • Search by image: graphical explanation of calibration problem
  • Does calibrating classification models improve prediction?
    • Calibrating a classification model can improve the reliability and accuracy of the predicted probabilities, but it may not necessarily improve the overall prediction performance of the model in terms of metrics such as accuracy, precision, or recall.
    • Calibration is about ensuring that the predicted probabilities from a model match the observed proportions of outcomes in the data. This can be important when the predicted probabilities are used to make decisions or when they are presented to users as a measure of confidence or uncertainty.
    • However, calibrating a model does not change its ability to discriminate between positive and negative outcomes. In other words, calibration does not affect how well the model separates the classes, but rather how accurately it estimates the probabilities of class membership.
    • In some cases, calibrating a model may improve its overall prediction performance by making the predicted probabilities more accurate. However, this is not always the case, and the impact of calibration on prediction performance may vary depending on the specific needs and goals of the analysis.
  • A real-world example of calibration in machine learning is in the field of fraud detection. In this case, it might be desirable to have the model predict probabilities of data belonging to each possible class instead of crude class labels. Gaining access to probabilities is useful for a richer interpretation of the responses, analyzing the model shortcomings, or presenting the uncertainty to the end-users ². A guide to model calibration | Wunderman Thompson Technology.
  • Another example where calibration is more important than prediction on new samples is in the field of medical diagnosis. In this case, it is important to have well-calibrated probabilities for the presence of a disease, so that doctors can make informed decisions about treatment. For example, if a diagnostic test predicts an 80% chance that a patient has a certain disease, doctors would expect that 80% of the time when such a prediction is made, the patient actually has the disease. This example does not mean that prediction on new samples is not feasible or not a concern, but rather that having well-calibrated probabilities is crucial for making accurate predictions and informed decisions.
  • Calibration: the Achilles heel of predictive analytics Calster 2019
  • https://www.itl.nist.gov/div898/handbook/pmd/section1/pmd133.htm Calibration and calibration curve.
    • Y=voltage (observed), X=temperature (true/ideal). The calibration curve for a thermocouple is often constructed by comparing thermocouple (observed)output to relatively (true)precise thermometer data.
    • when a new temperature is measured with the thermocouple, the voltage is converted to temperature terms by plugging the observed voltage into the regression equation and solving for temperature.
    • It is important to note that the thermocouple measurements, made on the secondary measurement scale, are treated as the response variable and the more precise thermometer results, on the primary scale, are treated as the predictor variable because this best satisfies the underlying assumptions (Y=observed, X=true) of the analysis.
    • Calibration interval
    • In almost all calibration applications the ultimate quantity of interest is the true value of the primary-scale measurement method associated with a measurement made on the secondary scale.
    • It seems the x-axis and y-axis have similar ranges in many application.
  • An Exercise in the Real World of Design and Analysis, Denby, Landwehr, and Mallows 2001. Inverse regression
  • How to determine calibration accuracy/uncertainty of a linear regression?
  • Linear Regression and Calibration Curves
  • Regression and calibration Shaun Burke
  • calibrate package
  • investr: An R Package for Inverse Estimation. Paper
  • The index of prediction accuracy: an intuitive measure useful for evaluating risk prediction models by Kattan and Gerds 2018. The following code demonstrates Figure 2.
    # Odds ratio =1 and calibrated model
    set.seed(666)
    x = rnorm(1000)           
    z1 = 1 + 0*x        
    pr1 = 1/(1+exp(-z1))
    y1 = rbinom(1000,1,pr1)  
    mean(y1) # .724, marginal prevalence of the outcome
    dat1 <- data.frame(x=x, y=y1)
    newdat1 <- data.frame(x=rnorm(1000), y=rbinom(1000, 1, pr1))
    
    # Odds ratio =1 and severely miscalibrated model
    set.seed(666)
    x = rnorm(1000)           
    z2 =  -2 + 0*x        
    pr2 = 1/(1+exp(-z2))  
    y2 = rbinom(1000,1,pr2)  
    mean(y2) # .12
    dat2 <- data.frame(x=x, y=y2)
    newdat2 <- data.frame(x=rnorm(1000), y=rbinom(1000, 1, pr2))
    
    library(riskRegression)
    lrfit1 <- glm(y ~ x, data = dat1, family = 'binomial')
    IPA(lrfit1, newdata = newdat1)
    #     Variable     Brier           IPA     IPA.gain
    # 1 Null model 0.1984710  0.000000e+00 -0.003160010
    # 2 Full model 0.1990982 -3.160010e-03  0.000000000
    # 3          x 0.1984800 -4.534668e-05 -0.003114664
    1 - 0.1990982/0.1984710
    # [1] -0.003160159
    
    lrfit2 <- glm(y ~ x, family = 'binomial')
    IPA(lrfit2, newdata = newdat1)
    #     Variable     Brier       IPA     IPA.gain
    # 1 Null model 0.1984710  0.000000 -1.859333763
    # 2 Full model 0.5674948 -1.859334  0.000000000
    # 3          x 0.5669200 -1.856437 -0.002896299
    1 - 0.5674948/0.1984710
    # [1] -1.859334
    From the simulated data, we see IPA = -3.16e-3 for a calibrated model and IPA = -1.86 for a severely miscalibrated model.

ROC curve

See ROC.

NRI (Net reclassification improvement)

Maximum likelihood

Difference of partial likelihood, profile likelihood and marginal likelihood

EM Algorithm

Mixture model

mixComp: Estimation of the Order of Mixture Distributions

MLE

Maximum Likelihood Distilled

Efficiency of an estimator

What does it mean by more “efficient” estimator

Inference

infer package

Generalized Linear Model

Link function

Link Functions versus Data Transforms

Extract coefficients, z, p-values

Use coef(summary(glmObject))

> coef(summary(glm.D93))
                 Estimate Std. Error       z value     Pr(>|z|)
(Intercept)  3.044522e+00  0.1708987  1.781478e+01 5.426767e-71
outcome2    -4.542553e-01  0.2021708 -2.246889e+00 2.464711e-02
outcome3    -2.929871e-01  0.1927423 -1.520097e+00 1.284865e-01
treatment2   1.337909e-15  0.2000000  6.689547e-15 1.000000e+00
treatment3   1.421085e-15  0.2000000  7.105427e-15 1.000000e+00

Quasi Likelihood

Quasi-likelihood is like log-likelihood. The quasi-score function (first derivative of quasi-likelihood function) is the estimating equation.

IRLS

Plot

https://strengejacke.wordpress.com/2015/02/05/sjplot-package-and-related-online-manuals-updated-rstats-ggplot/

Deviance, stats::deviance() and glmnet::deviance.glmnet() from R

## an example with offsets from Venables & Ripley (2002, p.189)
utils::data(anorexia, package = "MASS")

anorex.1 <- glm(Postwt ~ Prewt + Treat + offset(Prewt),
                family = gaussian, data = anorexia)
summary(anorex.1)

# Call:
#   glm(formula = Postwt ~ Prewt + Treat + offset(Prewt), family = gaussian, 
#       data = anorexia)
# 
# Deviance Residuals: 
#   Min        1Q    Median        3Q       Max  
# -14.1083   -4.2773   -0.5484    5.4838   15.2922  
# 
# Coefficients:
#   Estimate Std. Error t value Pr(>|t|)    
# (Intercept)  49.7711    13.3910   3.717 0.000410 ***
#   Prewt        -0.5655     0.1612  -3.509 0.000803 ***
#   TreatCont    -4.0971     1.8935  -2.164 0.033999 *  
#   TreatFT       4.5631     2.1333   2.139 0.036035 *  
#   ---
#   Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# 
# (Dispersion parameter for gaussian family taken to be 48.69504)
# 
# Null deviance: 4525.4  on 71  degrees of freedom
# Residual deviance: 3311.3  on 68  degrees of freedom
# AIC: 489.97
# 
# Number of Fisher Scoring iterations: 2

deviance(anorex.1)
# [1] 3311.263
  • In glmnet package. The deviance is defined to be 2*(loglike_sat - loglike), where loglike_sat is the log-likelihood for the saturated model (a model with a free parameter per observation). Null deviance is defined to be 2*(loglike_sat -loglike(Null)); The NULL model refers to the intercept model, except for the Cox, where it is the 0 model. Hence dev.ratio=1-deviance/nulldev, and this deviance method returns (1-dev.ratio)*nulldev.
x=matrix(rnorm(100*2),100,2)
y=rnorm(100)
fit1=glmnet(x,y) 
deviance(fit1)  # one for each lambda
#  [1] 98.83277 98.53893 98.29499 98.09246 97.92432 97.78472 97.66883
#  [8] 97.57261 97.49273 97.41327 97.29855 97.20332 97.12425 97.05861
# ...
# [57] 96.73772 96.73770
fit2 <- glmnet(x, y, lambda=.1) # fix lambda
deviance(fit2)
# [1] 98.10212
deviance(glm(y ~ x))
# [1] 96.73762
sum(residuals(glm(y ~ x))^2)
# [1] 96.73762

Saturated model

Testing

Generalized Additive Models

Simulate data

Density plot

# plot a Weibull distribution with shape and scale
func <- function(x) dweibull(x, shape = 1, scale = 3.38)
curve(func, .1, 10)

func <- function(x) dweibull(x, shape = 1.1, scale = 3.38)
curve(func, .1, 10)

The shape parameter plays a role on the shape of the density function and the failure rate.

  • Shape <=1: density is convex, not a hat shape.
  • Shape =1: failure rate (hazard function) is constant. Exponential distribution.
  • Shape >1: failure rate increases with time

Simulate data from a specified density

Permuted block randomization

Permuted block randomization using simstudy

Correlated data

Clustered data with marginal correlations

Generating clustered data with marginal correlations

Signal to noise ratio/SNR

[math]\displaystyle{ SNR = \frac{\sigma^2_{signal}}{\sigma^2_{noise}} = \frac{Var(f(X))}{Var(e)} }[/math] if Y = f(X) + e
  • The SNR is related to the correlation of Y and f(X). Assume X and e are independent ([math]\displaystyle{ X \perp e }[/math]):
[math]\displaystyle{ \begin{align} Cor(Y, f(X)) &= Cor(f(X)+e, f(X)) \\ &= \frac{Cov(f(X)+e, f(X))}{\sqrt{Var(f(X)+e) Var(f(X))}} \\ &= \frac{Var(f(X))}{\sqrt{Var(f(X)+e) Var(f(X))}} \\ &= \frac{\sqrt{Var(f(X))}}{\sqrt{Var(f(X)) + Var(e))}} = \frac{\sqrt{SNR}}{\sqrt{SNR + 1}} \\ &= \frac{1}{\sqrt{1 + Var(e)/Var(f(X))}} = \frac{1}{\sqrt{1 + SNR^{-1}}} \end{align} }[/math] SnrVScor.png
Or [math]\displaystyle{ SNR = \frac{Cor^2}{1-Cor^2} }[/math]

Some examples of signal to noise ratio

Effect size, Cohen's d and volcano plot

[math]\displaystyle{ \theta = \frac{\mu_1 - \mu_2} \sigma, }[/math]

Treatment/control

  • simdata() from biospear package
  • data.gen() from ROCSI package. The response contains continuous, binary and survival outcomes. The input include prevalence of predictive biomarkers, effect size (beta) for prognostic biomarker, etc.

Cauchy distribution has no expectation

https://en.wikipedia.org/wiki/Cauchy_distribution

replicate(10, mean(rcauchy(10000)))

Dirichlet distribution

  • Dirichlet distribution
    • It is a multivariate generalization of the beta distribution
    • The Dirichlet distribution is the conjugate prior of the categorical distribution and multinomial distribution.
  • dirmult::rdirichlet()

Relationships among probability distributions

https://en.wikipedia.org/wiki/Relationships_among_probability_distributions

What is the probability that two persons have the same initials

The post. The probability that at least two persons have the same initials depends on the size of the group. For a team of 8 people, simulations suggest that the probability is close to 4.1%. This probability increases with the size of the group. If there are 1000 people in the room, the probability is almost 100%. How many people do you need to guarantee that two of them have the same initals?

Multiple comparisons

Take an example, Suppose 550 out of 10,000 genes are significant at .05 level

  1. P-value < .05 ==> Expect .05*10,000=500 false positives
  2. False discovery rate < .05 ==> Expect .05*550 =27.5 false positives
  3. Family wise error rate < .05 ==> The probablity of at least 1 false positive <.05

According to Lifetime Risk of Developing or Dying From Cancer, there is a 39.7% risk of developing a cancer for male during his lifetime (in other words, 1 out of every 2.52 men in US will develop some kind of cancer during his lifetime) and 37.6% for female. So the probability of getting at least one cancer patient in a 3-generation family is 1-.6**3 - .63**3 = 0.95.

Flexible method

?GSEABenchmarkeR::runDE. Unadjusted (too few DE genes), FDR, and Bonferroni (too many DE genes) are applied depending on the proportion of DE genes.

Family-Wise Error Rate (FWER)

Bonferroni

False Discovery Rate/FDR

Suppose [math]\displaystyle{ p_1 \leq p_2 \leq ... \leq p_n }[/math]. Then

[math]\displaystyle{ \text{FDR}_i = \text{min}(1, n* p_i/i) }[/math].

So if the number of tests ([math]\displaystyle{ n }[/math]) is large and/or the original p value ([math]\displaystyle{ p_i }[/math]) is large, then FDR can hit the value 1.

However, the simple formula above does not guarantee the monotonicity property from the FDR. So the calculation in R is more complicated. See How Does R Calculate the False Discovery Rate.

Below is the histograms of p-values and FDR (BH adjusted) from a real data (Pomeroy in BRB-ArrayTools).

File:Hist bh.svg

And the next is a scatterplot w/ histograms on the margins from a null data. The curve looks like f(x)=log(x).

File:Scatterhist.svg

q-value

q-value is defined as the minimum FDR that can be attained when calling that feature significant (i.e., expected proportion of false positives incurred when calling that feature significant).

If gene X has a q-value of 0.013 it means that 1.3% of genes that show p-values at least as small as gene X are false positives.

Another view: q-value = FDR adjusted p-value. A p-value of 5% means that 5% of all tests will result in false positives. A q-value of 5% means that 5% of significant results will result in false positives. here.

Double dipping

Double dipping

SAM/Significance Analysis of Microarrays

The percentile option is used to define the number of falsely called genes based on 'B' permutations. If we use the 90-th percentile, the number of significant genes will be less than if we use the 50-th percentile/median.

In BRCA dataset, using the 90-th percentile will get 29 genes vs 183 genes if we use median.

Required number of permutations for a permutation-based p-value

Multivariate permutation test

In BRCA dataset, using 80% confidence gives 116 genes vs 237 genes if we use 50% confidence (assuming maximum proportion of false discoveries is 10%). The method is published on EL Korn, JF Troendle, LM McShane and R Simon, Controlling the number of false discoveries: Application to high dimensional genomic data, Journal of Statistical Planning and Inference, vol 124, 379-398 (2004).

The role of the p-value in the multitesting problem

https://www.tandfonline.com/doi/full/10.1080/02664763.2019.1682128

String Permutations Algorithm

https://youtu.be/nYFd7VHKyWQ

combinat package

Find all Permutations

coin package: Resampling

Resampling Statistics

Empirical Bayes Normal Means Problem with Correlated Noise

Solving the Empirical Bayes Normal Means Problem with Correlated Noise Sun 2018

The package cashr and the source code of the paper

Bayes

Bayes factor

Empirical Bayes method

Naive Bayes classifier

Understanding Naïve Bayes Classifier Using R

MCMC

Speeding up Metropolis-Hastings with Rcpp

offset() function

Offset in Poisson regression

  1. We need to model rates instead of counts
  2. More generally, you use offsets because the units of observation are different in some dimension (different populations, different geographic sizes) and the outcome is proportional to that dimension.

An example from here

Y  <- c(15,  7, 36,  4, 16, 12, 41, 15)
N  <- c(4949, 3534, 12210, 344, 6178, 4883, 11256, 7125)
x1 <- c(-0.1, 0, 0.2, 0, 1, 1.1, 1.1, 1)
x2 <- c(2.2, 1.5, 4.5, 7.2, 4.5, 3.2, 9.1, 5.2)

glm(Y ~ offset(log(N)) + (x1 + x2), family=poisson) # two variables
# Coefficients:
# (Intercept)           x1           x2
#     -6.172       -0.380        0.109
#
# Degrees of Freedom: 7 Total (i.e. Null);  5 Residual
# Null Deviance:	    10.56
# Residual Deviance: 4.559 	AIC: 46.69
glm(Y ~ offset(log(N)) + I(x1+x2), family=poisson)  # one variable
# Coefficients:
# (Intercept)   I(x1 + x2)
#   -6.12652      0.04746
#
# Degrees of Freedom: 7 Total (i.e. Null);  6 Residual
# Null Deviance:	    10.56
# Residual Deviance: 8.001 	AIC: 48.13

Offset in Cox regression

An example from biospear::PCAlasso()

coxph(Surv(time, status) ~ offset(off.All), data = data)
# Call:  coxph(formula = Surv(time, status) ~ offset(off.All), data = data)
#
# Null model
#   log likelihood= -2391.736 
#   n= 500 

# versus without using offset()
coxph(Surv(time, status) ~ off.All, data = data)
# Call:
# coxph(formula = Surv(time, status) ~ off.All, data = data)
#
#          coef exp(coef) se(coef)    z    p
# off.All 0.485     1.624    0.658 0.74 0.46
#
# Likelihood ratio test=0.54  on 1 df, p=0.5
# n= 500, number of events= 438 
coxph(Surv(time, status) ~ off.All, data = data)$loglik
# [1] -2391.702 -2391.430    # initial coef estimate, final coef

Offset in linear regression

Overdispersion

https://en.wikipedia.org/wiki/Overdispersion

Var(Y) = phi * E(Y). If phi > 1, then it is overdispersion relative to Poisson. If phi <1, we have under-dispersion (rare).

Heterogeneity

The Poisson model fit is not good; residual deviance/df >> 1. The lack of fit maybe due to missing data, covariates or overdispersion.

Subjects within each covariate combination still differ greatly.

Consider Quasi-Poisson or negative binomial.

Test of overdispersion or underdispersion in Poisson models

https://stats.stackexchange.com/questions/66586/is-there-a-test-to-determine-whether-glm-overdispersion-is-significant

Poisson

Negative Binomial

The mean of the Poisson distribution can itself be thought of as a random variable drawn from the gamma distribution thereby introducing an additional free parameter.

Binomial

Count data

Zero counts

Bias

Bias in Small-Sample Inference With Count-Data Models Blackburn 2019

Survival data analysis

See Survival data analysis

Logistic regression

Simulate binary data from the logistic model

https://stats.stackexchange.com/questions/46523/how-to-simulate-artificial-data-for-logistic-regression

set.seed(666)
x1 = rnorm(1000)           # some continuous variables 
x2 = rnorm(1000)
z = 1 + 2*x1 + 3*x2        # linear combination with a bias
pr = 1/(1+exp(-z))         # pass through an inv-logit function
y = rbinom(1000,1,pr)      # bernoulli response variable
 
#now feed it to glm:
df = data.frame(y=y,x1=x1,x2=x2)
glm( y~x1+x2,data=df,family="binomial")

Building a Logistic Regression model from scratch

https://www.analyticsvidhya.com/blog/2015/10/basics-logistic-regression

Algorithm didn’t converge & probabilities 0/1

Prediction

Odds ratio

  • https://en.wikipedia.org/wiki/Odds_ratio. It seems a larger OR does not imply a smaller Fisher's exact p-value. See an example on Fig 4 here.
  • Odds ratio = exp(coefficient). For example, if the coefficient for a predictor variable in your logistic regression model is 0.5, the odds ratio for that variable would be: exp(0.5) = 1.64. This means that, for every unit increase in the predictor variable, the odds of the binary outcome occurring increase by a factor of 1.64. A larger odds ratio indicates a stronger association between the predictor variable and the binary outcome, while a smaller odds ratio indicates a weaker association.
  • why the odds ratio is exp(coefficient) in logistic regression? The odds ratio is the exponent of the coefficient in a logistic regression model because the logistic regression model is based on the logit function, which is the natural logarithm of the odds ratio. The logit function takes the following form: logit(p) = log(p/(1-p)), where p is the probability of the binary outcome occurring.
  • Clinical example: Imagine that you are conducting a study to investigate the association between body mass index (BMI) and the risk of developing type 2 diabetes. Fit a logistic regression using BMI as the covariate. Calculate the odds ratio for the BMI variable: exp(coefficient) = 1.64. This means that, for every unit increase in BMI, the odds of a patient developing type 2 diabetes increase by a factor of 1.64.
  • Probability vs. odds: Probability and odds can differ from each other in many ways. For example, probability (of an event) typically appears as a percentage, while you can express odds as a fraction or ratio (the ratio of the number of ways the event can occur to the number of ways it cannot occur). Another difference is that probability uses a range that only exists between the numbers zero and one, while odds use a range that has no limits.
  • Calculate the odds ratio from the coefficient estimates; see this post.
    require(MASS)
    N  <- 100               # generate some data
    X1 <- rnorm(N, 175, 7)
    X2 <- rnorm(N,  30, 8)
    X3 <- abs(rnorm(N, 60, 30))
    Y  <- 0.5*X1 - 0.3*X2 - 0.4*X3 + 10 + rnorm(N, 0, 12)
    
    # dichotomize Y and do logistic regression
    Yfac   <- cut(Y, breaks=c(-Inf, median(Y), Inf), labels=c("lo", "hi"))
    glmFit <- glm(Yfac ~ X1 + X2 + X3, family=binomial(link="logit"))
    
    exp(cbind(coef(glmFit), confint(glmFit)))  
    

AUC

A small introduction to the ROCR package

       predict.glm()             ROCR::prediction()     ROCR::performance()
glmobj ------------> predictTest -----------------> ROCPPred ---------> AUC
newdata                labels

Gompertz function

Medical applications

RCT

The design effect of a cluster randomized trial with baseline measurements

Subgroup analysis

Other related keywords: recursive partitioning, randomized clinical trials (RCT)

Interaction analysis

Statistical Learning

LDA (Fisher's linear discriminant), QDA

Bagging

Chapter 8 of the book.

  • Bootstrap mean is approximately a posterior average.
  • Bootstrap aggregation or bagging average: Average the prediction over a collection of bootstrap samples, thereby reducing its variance. The bagging estimate is defined by
[math]\displaystyle{ \hat{f}_{bag}(x) = \frac{1}{B}\sum_{b=1}^B \hat{f}^{*b}(x). }[/math]

Where Bagging Might Work Better Than Boosting

CLASSIFICATION FROM SCRATCH, BAGGING AND FORESTS 10/8

Boosting

AdaBoost

AdaBoost.M1 by Freund and Schapire (1997):

The error rate on the training sample is [math]\displaystyle{ \bar{err} = \frac{1}{N} \sum_{i=1}^N I(y_i \neq G(x_i)), }[/math]

Sequentially apply the weak classification algorithm to repeatedly modified versions of the data, thereby producing a sequence of weak classifiers [math]\displaystyle{ G_m(x), m=1,2,\dots,M. }[/math]

The predictions from all of them are combined through a weighted majority vote to produce the final prediction: [math]\displaystyle{ G(x) = sign[\sum_{m=1}^M \alpha_m G_m(x)]. }[/math] Here [math]\displaystyle{ \alpha_1,\alpha_2,\dots,\alpha_M }[/math] are computed by the boosting algorithm and weight the contribution of each respective [math]\displaystyle{ G_m(x) }[/math]. Their effect is to give higher influence to the more accurate classifiers in the sequence.

Dropout regularization

DART: Dropout Regularization in Boosting Ensembles

Gradient boosting

Gradient descent

Gradient descent is a first-order iterative optimization algorithm for finding the minimum of a function.

  • Gradient Descent in R by Econometric Sense. Example of using the trivial cost function 1.2 * (x-2)^2 + 3.2. R code is provided and visualization of steps is interesting! The unknown parameter is the learning rate.
    repeat until convergence {
      Xn+1 = Xn - α∇F(Xn) 
    }
    

    Where ∇F(x) would be the derivative for the cost function at hand and α is the learning rate.

The error function from a simple linear regression looks like

[math]\displaystyle{ \begin{align} Err(m,b) &= \frac{1}{N}\sum_{i=1}^n (y_i - (m x_i + b))^2, \\ \end{align} }[/math]

We compute the gradient first for each parameters.

[math]\displaystyle{ \begin{align} \frac{\partial Err}{\partial m} &= \frac{2}{n} \sum_{i=1}^n -x_i(y_i - (m x_i + b)), \\ \frac{\partial Err}{\partial b} &= \frac{2}{n} \sum_{i=1}^n -(y_i - (m x_i + b)) \end{align} }[/math]

The gradient descent algorithm uses an iterative method to update the estimates using a tuning parameter called learning rate.

new_m &= m_current - (learningRate * m_gradient) 
new_b &= b_current - (learningRate * b_gradient) 

After each iteration, derivative is closer to zero. Coding in R for the simple linear regression.

Gradient descent vs Newton's method

Classification and Regression Trees (CART)

Construction of the tree classifier

  • Node proportion
[math]\displaystyle{ p(1|t) + \dots + p(6|t) =1 }[/math] where [math]\displaystyle{ p(j|t) }[/math] define the node proportions (class proportion of class j on node t. Here we assume there are 6 classes.
  • Impurity of node t
[math]\displaystyle{ i(t) }[/math] is a nonnegative function [math]\displaystyle{ \phi }[/math] of the [math]\displaystyle{ p(1|t), \dots, p(6|t) }[/math] such that [math]\displaystyle{ \phi(1/6,1/6,\dots,1/6) }[/math] = maximumm [math]\displaystyle{ \phi(1,0,\dots,0)=0, \phi(0,1,0,\dots,0)=0, \dots, \phi(0,0,0,0,0,1)=0 }[/math]. That is, the node impurity is largest when all classes are equally mixed together in it, and smallest when the node contains only one class.
  • Gini index of impurity
[math]\displaystyle{ i(t) = - \sum_{j=1}^6 p(j|t) \log p(j|t). }[/math]
  • Goodness of the split s on node t
[math]\displaystyle{ \Delta i(s, t) = i(t) -p_Li(t_L) - p_Ri(t_R). }[/math] where [math]\displaystyle{ p_R }[/math] are the proportion of the cases in t go into the left node [math]\displaystyle{ t_L }[/math] and a proportion [math]\displaystyle{ p_R }[/math] go into right node [math]\displaystyle{ t_R }[/math].

A tree was grown in the following way: At the root node [math]\displaystyle{ t_1 }[/math], a search was made through all candidate splits to find that split [math]\displaystyle{ s^* }[/math] which gave the largest decrease in impurity;

[math]\displaystyle{ \Delta i(s^*, t_1) = \max_{s} \Delta i(s, t_1). }[/math]
  • Class character of a terminal node was determined by the plurality rule. Specifically, if [math]\displaystyle{ p(j_0|t)=\max_j p(j|t) }[/math], then t was designated as a class [math]\displaystyle{ j_0 }[/math] terminal node.

R packages

Partially additive (generalized) linear model trees

Supervised Classification, Logistic and Multinomial

Variable selection

Review

Variable selection – A review and recommendations for the practicing statistician by Heinze et al 2018.

Variable selection and variable importance plot

Variable selection and cross-validation

Mallow Cp

Mallows's Cp addresses the issue of overfitting. The Cp statistic calculated on a sample of data estimates the mean squared prediction error (MSPE).

[math]\displaystyle{ E\sum_j (\hat{Y}_j - E(Y_j\mid X_j))^2/\sigma^2, }[/math]

The Cp statistic is defined as

[math]\displaystyle{ C_p={SSE_p \over S^2} - N + 2P. }[/math]

Variable selection for mode regression

http://www.tandfonline.com/doi/full/10.1080/02664763.2017.1342781 Chen & Zhou, Journal of applied statistics ,June 2017

lmSubsets

lmSubsets: Exact variable-subset selection in linear regression. 2020

Permutation method

BASIC XAI with DALEX — Part 2: Permutation-based variable importance

Neural network

Support vector machine (SVM)

Quadratic Discriminant Analysis (qda), KNN

Machine Learning. Stock Market Data, Part 3: Quadratic Discriminant Analysis and KNN

KNN

KNN Algorithm Machine Learning

Regularization

Regularization is a process of introducing additional information in order to solve an ill-posed problem or to prevent overfitting

Regularization: Ridge, Lasso and Elastic Net from datacamp.com. Bias and variance trade-off in parameter estimates was used to lead to the discussion.

Regularized least squares

https://en.wikipedia.org/wiki/Regularized_least_squares. Ridge/ridge/elastic net regressions are special cases.

Ridge regression

Since L2 norm is used in the regularization, ridge regression is also called L2 regularization.

ridge regression with glmnet

Hoerl and Kennard (1970a, 1970b) introduced ridge regression, which minimizes RSS subject to a constraint [math]\displaystyle{ \sum|\beta_j|^2 \le t }[/math]. Note that though ridge regression shrinks the OLS estimator toward 0 and yields a biased estimator [math]\displaystyle{ \hat{\beta} = (X^TX + \lambda X)^{-1} X^T y }[/math] where [math]\displaystyle{ \lambda=\lambda(t) }[/math], a function of t, the variance is smaller than that of the OLS estimator.

The solution exists if [math]\displaystyle{ \lambda \gt 0 }[/math] even if [math]\displaystyle{ n \lt p }[/math].

Ridge regression (L2 penalty) only shrinks the coefficients. In contrast, Lasso method (L1 penalty) tries to shrink some coefficient estimators to exactly zeros. This can be seen from comparing the coefficient path plot from both methods.

Geometrically (contour plot of the cost function), the L1 penalty (the sum of absolute values of coefficients) will incur a probability of some zero coefficients (i.e. some coefficient hitting the corner of a diamond shape in the 2D case). For example, in the 2D case (X-axis=[math]\displaystyle{ \beta_0 }[/math], Y-axis=[math]\displaystyle{ \beta_1 }[/math]), the shape of the L1 penalty [math]\displaystyle{ |\beta_0| + |\beta_1| }[/math] is a diamond shape whereas the shape of the L2 penalty ([math]\displaystyle{ \beta_0^2 + \beta_1^2 }[/math]) is a circle.

Lasso/glmnet, adaptive lasso and FAQs

glmnet

Lasso logistic regression

https://freakonometrics.hypotheses.org/52894

Lagrange Multipliers

A Simple Explanation of Why Lagrange Multipliers Works

How to solve lasso/convex optimization

Quadratic programming

Constrained optimization

Jaya Package. Jaya Algorithm is a gradient-free optimization algorithm. It can be used for Maximization or Minimization of a function for solving both constrained and unconstrained optimization problems. It does not contain any hyperparameters.

Highly correlated covariates

1. Elastic net

2. Group lasso

Grouped data

Other Lasso

Comparison by plotting

If we are running simulation, we can use the DALEX package to visualize the fitting result from different machine learning methods and the true model. See http://smarterpoland.pl/index.php/2018/05/ml-models-what-they-cant-learn.

Prediction

Prediction, Estimation, and Attribution Efron 2020

Postprediction inference/Inference based on predicted outcomes

Methods for correcting inference based on outcomes predicted by machine learning Wang 2020. postpi package.

SHAP/SHapley Additive exPlanation: feature importance for each class

Imbalanced/unbalanced Classification

See ROC.

Deep Learning

Tensor Flow (tensorflow package)

Biological applications

Machine learning resources

The Bias-Variance Trade-Off & "DOUBLE DESCENT" in the test error

https://twitter.com/daniela_witten/status/1292293102103748609 and an easy to read Thread Reader.

  • (Thread #17) The key point is with 20 DF, n=p, and there's exactly ONE least squares fit that has zero training error. And that fit happens to have oodles of wiggles.....
  • (Thread #18) but as we increase the DF so that p>n, there are TONS of interpolating least squares fits. The MINIMUM NORM least squares fit is the "least wiggly" of those zillions of fits. And the "least wiggly" among them is even less wiggly than the fit when p=n !!!
  • (Thread #19) "double descent" is happening b/c DF isn't really the right quantity for the the x-axis: like, the fact that we are choosing the minimum norm least squares fit actually means that the spline with 36 DF is **less** flexible than the spline with 20 DF.
  • (Thread #20) if had used a ridge penalty when fitting the spline (instead of least squares)? Well then we wouldn't have interpolated training set, we wouldn't have seen double descent, AND we would have gotten better test error (for the right value of the tuning parameter!)
  • (Thread #21) When we use (stochastic) gradient descent to fit a neural net, we are actually picking out the minimum norm solution!! So the spline example is a pretty good analogy for what is happening when we see double descent for neural nets.

Survival data

Deep learning for survival outcomes Steingrimsson, 2020

Randomization inference

Randomization test

What is a Randomization Test?

Model selection criteria

All models are wrong

All models are wrong from George Box.

MSE

Akaike information criterion/AIC

[math]\displaystyle{ \mathrm{AIC} \, = \, 2k - 2\ln(\hat L) }[/math], where k be the number of estimated parameters in the model.
  • Smaller is better (error criteria)
  • Akaike proposed to approximate the expectation of the cross-validated log likelihood [math]\displaystyle{ E_{test}E_{train} [log L(x_{test}| \hat{\beta}_{train})] }[/math] by [math]\displaystyle{ log L(x_{train} | \hat{\beta}_{train})-k }[/math].
  • Leave-one-out cross-validation is asymptotically equivalent to AIC, for ordinary linear regression models.
  • AIC can be used to compare two models even if they are not hierarchically nested.
  • AIC() from the stats package.
  • broom::glance() was used.
  • Generally resampling based measures such as cross-validation should be preferred over theoretical measures such as Aikake's Information Criteria. Understanding the Bias-Variance Tradeoff & Accurately Measuring Model Prediction Error.

BIC

[math]\displaystyle{ \mathrm{BIC} \, = \, \ln(n) \cdot 2k - 2\ln(\hat L) }[/math], where k be the number of estimated parameters in the model.

Overfitting

AIC vs AUC

What is the difference in what AIC and c-statistic (AUC) actually measure for model fit?

Roughly speaking:

  • AIC is telling you how good your model fits for a specific mis-classification cost.
  • AUC is telling you how good your model would work, on average, across all mis-classification costs.

Frank Harrell: AUC (C-index) has the advantage of measuring the concordance probability as you stated, aside from cost/utility considerations. To me the bottom line is the AUC should be used to describe discrimination of one model, not to compare 2 models. For comparison we need to use the most powerful measure: deviance and those things derived from deviance: generalized 𝑅2 and AIC.

Variable selection and model estimation

Proper variable selection: Use only training data or full data?

  • training observations to perform all aspects of model-fitting—including variable selection
  • make use of the full data set in order to obtain more accurate coefficient estimates (This statement is arguable)

Cross-Validation

References:

R packages:

Bias–variance tradeoff

Data splitting

Split-Sample Model Validation

PRESS statistic (LOOCV) in regression

The PRESS statistic (predicted residual error sum of squares) [math]\displaystyle{ \sum_i (y_i - \hat{y}_{i,-i})^2 }[/math] provides another way to find the optimal model in regression. See the formula for the ridge regression case.

LOOCV vs 10-fold CV in classification

  • Background: Variance of mean for correlated data. If the variables have equal variance σ2 and the average correlation of distinct variables is ρ, then the variance of their mean is
[math]\displaystyle{ \operatorname{Var}\left(\overline{X}\right) = \frac{\sigma^2}{n} + \frac{n - 1}{n}\rho\sigma^2. }[/math]
This implies that the variance of the mean increases with the average of the correlations.

Monte carlo cross-validation

This method creates multiple random splits of the dataset into training and validation data. See Wikipedia.

  • It is not creating replicates of CV samples.
  • As the number of random splits approaches infinity, the result of repeated random sub-sampling validation tends towards that of leave-p-out cross-validation.

Difference between CV & bootstrapping

Differences between cross validation and bootstrapping to estimate the prediction error

  • CV tends to be less biased but K-fold CV has fairly large variance.
  • Bootstrapping tends to drastically reduce the variance but gives more biased results (they tend to be pessimistic).
  • The 632 and 632+ rules methods have been adapted to deal with the bootstrap bias
  • Repeated CV does K-fold several times and averages the results similar to regular K-fold

.632 and .632+ bootstrap

[math]\displaystyle{ Err_{.632} = 0.368 \overline{err} + 0.632 Err_{boot(1)} }[/math]
[math]\displaystyle{ \hat{E}^*[\phi_{\mathcal{F}}(S)] = .368 \hat{E}[\phi_{f}(S)] + 0.632 \hat{E}[\phi_{f_b}(S_{-b})] }[/math]
where [math]\displaystyle{ \hat{E}[\phi_{f}(S)] }[/math] is the naive estimate of [math]\displaystyle{ \phi_f }[/math] using the entire dataset.

Create partitions for cross-validation

n <- 42; nfold <- 5  # unequal partition
folds <- split(sample(1:n), rep(1:nfold, length = n))  # a list
sapply(folds, length)

cv.glmnet()

sample(rep(seq(nfolds), length = N))  # a vector
set.seed(1); sample(rep(seq(3), length = 20)) 
# [1] 1 1 1 2 1 1 2 2 2 3 3 2 3 1 3 3 3 1 2 2

Another way is to use replace=TRUE in sample() (not quite uniform compared to the last method, strange)

sample(1:nfolds, N, replace=TRUE) # a vector
set.seed(1); sample(1:3, 20, replace=TRUE
# [1] 1 3 1 2 1 3 3 2 2 3 3 1 1 1 2 2 2 2 3 1
table(.Last.value)
# .Last.value
# 1 2 3 
# 7 7 6 

Another simple example. Split the data into 70% training data and 30% testing data

mysplit <- sample(c(rep(0, 0.7 * nrow(df)), rep(1, nrow(df) - 0.7 * nrow(df))))
train <- df[mysplit == 0, ] 
test <- df[mysplit == 1, ]  

Create training/testing data

  • ?createDataPartition.
  • caret createDataPartition returns more samples than expected. It is more complicated than it looks.
    set.seed(1)
    createDataPartition(rnorm(10), p=.3)
    # $Resample1
    # [1] 1 2 4 5
    
    set.seed(1)
    createDataPartition(rnorm(10), p=.5)
    # $Resample1
    # [1] 1 2 4 5 6 9
    
  • Stratified sampling: Stratified Sampling in R (With Examples), initial_split() from tidymodels. With a strata argument, the random sampling is conducted within the stratification variable. So it guaranteed each strata (stratify variable level) has observations in training and testing sets.
    > library(rsample) # or library(tidymodels)
    > table(mtcars$cyl)
     4  6  8 
    11  7 14
    > set.seed(22)
    > sp <- initial_split(mtcars, prop=.8, strata = cyl)
       # 80% training and 20% testing sets
    > table(training(sp)$cyl)
     4  6  8 
     8  5 11 
    > table(testing(sp)$cyl)
    4 6 8 
    3 2 3 
    > 8/11; 5/7; 11/14 # split by initial_split()
    [1] 0.7272727
    [1] 0.7142857
    [1] 0.7857143
    > 9/11; 6/7; 12/14 # if we try to increase 1 observation
    [1] 0.8181818
    [1] 0.8571429
    [1] 0.8571429
    > (8+5+11)/nrow(mtcars)
    [1] 0.75
    > (9+6+12)/nrow(mtcars)
    [1] 0.84375   # looks better
    
    > set.seed(22)
    > sp2 <- initial_split(mtcars, prop=.8)
    table(training(sp2)$cyl)
     4  6  8 
     8  7 10 
    > table(testing(sp2)$cyl)
    4 8 
    3 4 
     # not what we want since cyl "6" has no observations
    

Nested resampling

Nested resampling is need when we want to tuning a model by using a grid search. The default settings of a model are likely not optimal for each data set out. So an inner CV has to be performed with the aim to find the best parameter set of a learner for each fold.

See a diagram at https://i.stack.imgur.com/vh1sZ.png

In BRB-ArrayTools -> class prediction with multiple methods, the alpha (significant level of threshold used for gene selection, 2nd option in individual genes) can be viewed as a tuning parameter for the development of a classifier.

Pre-validation/pre-validated predictor

  • Pre-validation and inference in microarrays Tibshirani and Efron, Statistical Applications in Genetics and Molecular Biology, 2002.
  • See glmnet vignette
  • http://www.stat.columbia.edu/~tzheng/teaching/genetics/papers/tib_efron.pdf#page=5. In each CV, we compute the estimate of the response. This estimate of the response will serve as a new predictor (pre-validated 'predictor' ) in the final fitting model.
  • P1101 of Sachs 2016. With pre-validation, instead of computing the statistic [math]\displaystyle{ \phi }[/math] for each of the held-out subsets ([math]\displaystyle{ S_{-b} }[/math] for the bootstrap or [math]\displaystyle{ S_{k} }[/math] for cross-validation), the fitted signature [math]\displaystyle{ \hat{f}(X_i) }[/math] is estimated for [math]\displaystyle{ X_i \in S_{-b} }[/math] where [math]\displaystyle{ \hat{f} }[/math] is estimated using [math]\displaystyle{ S_{b} }[/math]. This process is repeated to obtain a set of pre-validated 'signature' estimates [math]\displaystyle{ \hat{f} }[/math]. Then an association measure [math]\displaystyle{ \phi }[/math] can be calculated using the pre-validated signature estimates and the true outcomes [math]\displaystyle{ Y_i, i = 1, \ldots, n }[/math].
  • Another description from the paper The Spike-and-Slab Lasso Generalized Linear Models for Prediction and Associated Genes Detection. The prevalidation method is a variant of cross-validation. We then use [math]\displaystyle{ (y_i, \hat{\eta}_i) }[/math] to compute the measures described above. The cross-validated linear predictor for each patient is derived independently of the observed response of the patient, and hence the “prevalidated” dataset Embedded Image can essentially be treated as a “new dataset.” Therefore, this procedure provides valid assessment of the predictive performance of the model. To get stable results, we run 10× 10-fold cross-validation for real data analysis.
  • In CV, left-out samples = hold-out cases = test set

Custom cross validation

Cross validation vs regularization

When Cross-Validation is More Powerful than Regularization

Cross-validation with confidence (CVC)

JASA 2019 by Jing Lei, pdf, code

Correlation data

Cross-Validation for Correlated Data Rabinowicz, JASA 2020

Bias in Error Estimation

Bias due to unsupervised preprocessing

On the cross-validation bias due to unsupervised preprocessing 2022. Below I follow the practice from Biowulf to install Mamba. In this example, the 'project1' subfolder (2.0 GB) is located in '~/conda/envs' directory.

$ which python3
/usr/bin/python3

$ wget https://github.com/conda-forge/miniforge/releases/latest/download/Mambaforge-Linux-x86_64.sh
$ bash Mambaforge-Linux-x86_64.sh -p /home/brb/conda -b
$ source ~/conda/etc/profile.d/conda.sh && source ~/conda/etc/profile.d/mamba.sh
$ mkdir -p ~/bin
$ cat <<'__EOF__' > ~/bin/myconda
__conda_setup="$('/home/$USER/conda/bin/conda' 'shell.bash' 'hook' 2> /dev/null)"
if [ $? -eq 0 ]; then
    eval "$__conda_setup"
else
    if [ -f "/home/$USER/conda/etc/profile.d/conda.sh" ]; then
        . "/home/$USER/conda/etc/profile.d/conda.sh"
    else
        export PATH="/home/$USER/conda/bin:$PATH"
    fi
fi
unset __conda_setup

if [ -f "/home/$USER/conda/etc/profile.d/mamba.sh" ]; then
    . "/home/$USER/conda/etc/profile.d/mamba.sh"
fi
__EOF__
$ source ~/bin/myconda

$ export MAMBA_NO_BANNER=1
$ mamba create -n project1 python=3.7 numpy scipy scikit-learn mkl-service mkl_random pandas matplotlib
$ mamba activate project1
$ which python  # /home/brb/conda/envs/project1/bin/python

$ git clone https://github.com/mosco/unsupervised-preprocessing.git
$ cd unsupervised-preprocessing/
$ python    # Ctrl+d to quit
$ mamba deactivate

Pitfalls of applying machine learning in genomics

Navigating the pitfalls of applying machine learning in genomics 2022

Bootstrap

See Bootstrap

Clustering

See Clustering.

Cross-sectional analysis

  • https://en.wikipedia.org/wiki/Cross-sectional_study. The opposite of cross-sectional analysis is longitudinal analysis.
  • Cross-sectional analysis refers to a type of research method in which data is collected at a single point in time from a group of individuals, organizations, or other units of analysis. This approach contrasts with longitudinal studies, which follow the same group of individuals or units over an extended period of time.
    • In a cross-sectional analysis, researchers typically collect data from a sample of individuals or units that are representative of the population of interest. This data can then be used to examine patterns, relationships, or differences among the units at a specific point in time.
    • Cross-sectional analysis is commonly used in fields such as sociology, psychology, public health, and economics to study topics such as demographics, health behaviors, income inequality, and social attitudes. While cross-sectional analysis can provide valuable insights into the characteristics of a population at a given point in time, it cannot establish causality or determine changes over time.

Mixed Effect Model

See Longitudinal analysis.

Entropy

[math]\displaystyle{ \begin{align} Entropy &= \sum \log(1/p(x)) p(x) = \sum Surprise P(Surprise) \end{align} }[/math]

Definition

Entropy is defined by -log2(p) where p is a probability. Higher entropy represents higher unpredictable of an event.

Some examples:

  • Fair 2-side die: Entropy = -.5*log2(.5) - .5*log2(.5) = 1.
  • Fair 6-side die: Entropy = -6*1/6*log2(1/6) = 2.58
  • Weighted 6-side die: Consider pi=.1 for i=1,..,5 and p6=.5. Entropy = -5*.1*log2(.1) - .5*log2(.5) = 2.16 (less unpredictable than a fair 6-side die).

Use

When entropy was applied to the variable selection, we want to select a class variable which gives a largest entropy difference between without any class variable (compute entropy using response only) and with that class variable (entropy is computed by adding entropy in each class level) because this variable is most discriminative and it gives most information gain. For example,

  • entropy (without any class)=.94,
  • entropy(var 1) = .69,
  • entropy(var 2)=.91,
  • entropy(var 3)=.725.

We will choose variable 1 since it gives the largest gain (.94 - .69) compared to the other variables (.94 -.91, .94 -.725).

Why is picking the attribute with the most information gain beneficial? It reduces entropy, which increases predictability. A decrease in entropy signifies an decrease in unpredictability, which also means an increase in predictability.

Consider a split of a continuous variable. Where should we cut the continuous variable to create a binary partition with the highest gain? Suppose cut point c1 creates an entropy .9 and another cut point c2 creates an entropy .1. We should choose c2.

Related

In addition to information gain, gini (dʒiːni) index is another metric used in decision tree. See wikipedia page about decision tree learning.

Ensembles

Bagging

Draw N bootstrap samples and summary the results (averaging for regression problem, majority vote for classification problem). Decrease variance without changing bias. Not help much with underfit or high bias models.

Random forest

Boosting

Instead of selecting data points randomly with the boostrap, it favors the misclassified points.

Algorithm:

  • Initialize the weights
  • Repeat
    • resample with respect to weights
    • retrain the model
    • recompute weights

Since boosting requires computation in iterative and bagging can be run in parallel, bagging has an advantage over boosting when the data is very large.

Time series

p-values

p-values

Misuse of p-values

  • https://en.wikipedia.org/wiki/Misuse_of_p-values. The p-value does not indicate the size or importance of the observed effect.
  • Question: If we are fitting a multivariate regression and variable 1 ends with p-value .01 and variable 2 has p-value .001. How do we describe variable 2 is more significant than variable 1?
    • Answer: you can say that variable 2 has a smaller p-value than variable 1. A p-value is a measure of the strength of evidence against the null hypothesis. It is the probability of observing a test statistic as extreme or more extreme than the one calculated from your data, assuming the null hypothesis is true. The smaller the p-value, the stronger the evidence against the null hypothesis and in favor of the alternative hypothesis. In your example, variable 2 has a smaller p-value than variable 1, which means that there is stronger evidence against the null hypothesis for variable 2 than for variable 1. However, it is important to note that a smaller p-value does not necessarily mean that one variable has a stronger effect or is more important than the other. Instead of comparing p-values directly, it would be more appropriate to look at effect sizes and confidence intervals to determine the relative importance of each variable.
  • Question: do p-values show the relative importance of different predictors?
    • P-values can indicate the statistical significance of a predictor in a model, but they do not directly measure the relative importance of different predictors.
    • A p-value is a measure of the probability that the observed relationship between a predictor and the response variable occurred by chance under the null hypothesis. A smaller p-value suggests that it is less likely that the observed relationship occurred by chance, which often leads to the conclusion that the predictor is statistically significant.
    • However, p-values do not tell us about the size or magnitude of an effect, nor do they directly compare the effects of different predictors. Two predictors might both be statistically significant, but one might have a much larger effect on the response variable than the other (There are several statistical measures that can be used to assess the relative importance of predictors in a model: Standardized Coefficients, Partial Correlation Coefficients, Variable Importance in Projection (VIP), Variable Importance Measures in Tree-Based Models, LASSO (Least Absolute Shrinkage and Selection Operator) and Relative Weights Analysis).
    • Moreover, p-values are sensitive to sample size. With a large enough sample size, even tiny, unimportant differences can become statistically significant.
    • Therefore, while p-values are a useful tool in model analysis, they should not be used alone to determine the relative importance of predictors. Other statistical measures and domain knowledge should also be considered.

Distribution of p values in medical abstracts

nominal p-value and Empirical p-values

  • Nominal p-values are based on asymptotic null distributions
  • Empirical p-values are computed from simulations/permutations
  • What is the concepts of nominal and actual significance level?
    • The nominal significance level is the significance level a test is designed to achieve. This is very often 5% or 1%. Now in many situations the nominal significance level can't be achieved precisely. This can happen because the distribution is discrete and doesn't allow for a precise given rejection probability, and/or because the theory behind the test is asymptotic, i.e., the nominal level is only achieved for 𝑛→∞.

(nominal) alpha level

Conventional methodology for statistical testing is, in advance of undertaking the test, to set a NOMINAL ALPHA CRITERION LEVEL (often 0.05). The outcome is classified as showing STATISTICAL SIGNIFICANCE if the actual ALPHA (probability of the outcome under the null hypothesis) is no greater than this NOMINAL ALPHA CRITERION LEVEL.

Normality assumption

Violating the normality assumption may be the lesser of two evils

Second-Generation p-Values

An Introduction to Second-Generation p-Values Blume et al, 2020

Small p-value due to very large sample size

Bayesian

  • Bayesian believers, who adhere to Bayesian statistics, often have a different perspective on hypothesis testing compared to frequentist statisticians. In Bayesian statistics, the focus is on estimating the probability of a hypothesis being true given the data, rather than on the probability of the data given a specific hypothesis (as in p-values).
  • Bayesian believers generally prefer using Bayesian methods, such as computing credible intervals or Bayes factors, which provide more directly interpretable results in terms of the probability of hypotheses. These methods can be seen as more informative than p-values, as they give a range of plausible values for the parameter of interest or directly compare the relative plausibility of different hypotheses.

T-statistic

See T-statistic.

ANOVA

See ANOVA.

Goodness of fit

Chi-square tests

Fitting distribution

Fitting distributions with R

Normality distribution check

Anderson-Darling Test in R (Quick Normality Check)

Kolmogorov-Smirnov test

Contingency Tables

How to Measure Contingency-Coefficient (Association Strength). gplots::balloonplot() and corrplot::corrplot() .

What statistical test should I do

What statistical test should I do?

Graphically show association

  1. Bar Graphs: Bar graphs can be used to compare the frequency of different categories in two variables. Each bar represents a category, and the height of the bar represents its frequency. You can create side-by-side bar graphs or stacked bar graphs to compare frequencies across categories. See Contingency Table: Definition, Examples & Interpreting (row totals) and Two Different Categorical Variables (column totals).
  2. Mosaic Plots: A mosaic plot gives a visual representation of the relationship between two categorical variables. It's a rectangular grid that represents the total population, and it's divided into smaller rectangles that represent the categories of each variable. The size of each rectangle is proportional to the frequency of each category. See Visualizing Association With Mosaic Plots.
  3. Categorical Scatterplots: In seaborn, a Python data visualization library, there are categorical scatterplots that adjust the positions of points on the categorical axis with a small amount of random "jitter" or using an algorithm that prevents them from overlapping. See Visualizing categorical data.
  4. Contingency Tables: While not a graphical method, contingency tables are often used in conjunction with graphical methods. A contingency table displays how many individuals fall in each combination of categories for two variables.

Q: How to guess whether two variables are associated by looking at the counts in a 2x2 contingency table:

  • Observe the distribution of counts: If the counts are evenly distributed across the cells of the table, it suggests that there may not be a strong association between the two variables. However, if the counts are unevenly distributed, it suggests that there may be an association.
  • Compare the diagonal cells: If the counts in the diagonal cells (top left to bottom right or top right to bottom left) are high compared to the off-diagonal cells, it suggests a positive association between the two variables. Conversely, if the counts in the off-diagonal cells are high, it suggests a negative association. See odds ratio >1 (pos association) or <1 (neg association).
  • Calculate and compare the row and column totals: If the row and column totals are similar, it suggests that there may not be a strong association between the two variables. However, if the row and column totals are very different, it suggests that there may be an association.

Q: When creating a barplot of percentages from a contingency table, whether you calculate percentages by dividing counts by row totals or column totals? A: It depends on the question you’re trying to answer. See Contingency Table: Definition, Examples & Interpreting.

  • Row Totals: If you’re interested in understanding the distribution of a variable within each row category, you would calculate percentages by dividing counts by row totals. This is often used when the row variable is the independent variable and you want to see how the column variable (dependent variable) is distributed within each level of the row variable.
  • Column Totals: If you’re interested in understanding the distribution of a variable within each column category, you would calculate percentages by dividing counts by column totals. This is often used when the column variable is the independent variable and you want to see how the row variable (dependent variable) is distributed within each level of the column variable.

Barplot with colors for a 2nd variable.

Measure the association in a contingency table

  • Phi coefficient: The Phi coefficient is a measure of association that is used for 2x2 contingency tables. It ranges from -1 to 1, with 0 indicating no association and values close to -1 or 1 indicating a strong association. The formula for Phi coefficient is: Phi = (ad - bc) / sqrt((a+b)(c+d)(a+c)(b+d)), where a, b, c, and d are the frequency counts in the four cells of the contingency table.
  • Cramer's V: Cramer's V is a measure of association that is used for contingency tables of any size. It ranges from 0 to 1, with 0 indicating no association and values close to 1 indicating a strong association. The formula for Cramer's V is: V = sqrt(Chi-Square / (n*(min(r,c)-1))), where Chi-Square is the Chi-Square statistic, n is the total sample size, and r and c are the number of rows and columns in the contingency table.
  • Odds ratio: The odds ratio is a measure of association that is commonly used in medical research and epidemiology. It compares the odds of an event occurring in one group compared to another group. The odds ratio can be calculated as: OR = (a/b) / (c/d), where a, b, c, and d are the frequency counts in the four cells of the contingency table. An odds ratio of 1 indicates no association, while values greater than 1 indicate a positive association and values less than 1 indicate a negative association.

Odds ratio and Risk ratio

  • Odds ratio and Risk ratio/relative risk.
    • In practice the odds ratio is commonly used for case-control studies, as the relative risk cannot be estimated.
    • Relative risk is used in the statistical analysis of the data of ecological, cohort, medical and intervention studies, to estimate the strength of the association between exposures (treatments or risk factors) and outcomes.
  • Odds Ratio Interpretation Quick Guide
  • The odds ratio is often used to evaluate the strength of the association between two binary variables and to compare the risk of an event occurring between two groups.
    • An odds ratio greater than 1 indicates that the event is more likely to occur in the first group, while an odds ratio less than 1 indicates that the event is more likely to occur in the second group.
    • In general, a larger odds ratio indicates a stronger association between the two variables, while a smaller odds ratio indicates a weaker association.
  • The ratio of the odds of an event occurring in one group to the odds of it occurring in another group
                            Treatment  | Control   
    -------------------------------------------------
    Event occurs         |   A         |   B       
    -------------------------------------------------
    Event does not occur |   C         |   D       
    -------------------------------------------------
    Odds                 |   A/C       |   B/D
    -------------------------------------------------
    Risk                 |   A/(A+C)   |   B/(B+D)
    
    • Odds Ratio = (A / C) / (B / D) = (AD) / (BC)
    • Risk Ratio = (A / (A+C)) / (C / (B+D))
  • Real example. In a study published in the Journal of the American Medical Association, researchers investigated the association between the use of nonsteroidal anti-inflammatory drugs (NSAIDs) and the risk of developing gastrointestinal bleeding. Suppose odds ratio = 2.5 and risk ratio is 1.5. The interpretation of the results in this study is as follows:
    • The odds ratio of 2.5 indicates that the odds of gastrointestinal bleeding are 2.5 times higher in the group of patients taking NSAIDs compared to the group of patients not taking NSAIDs.
    • The risk ratio of 1.5 indicates that the risk of gastrointestinal bleeding is 1.5 times higher in the group of patients taking NSAIDs compared to the group of patients not taking NSAIDs.
    • In this example, both the odds ratio and the risk ratio indicate a significant association between NSAID use and the risk of gastrointestinal bleeding. However, the risk ratio is lower than the odds ratio, indicating that the overall prevalence of gastrointestinal bleeding in the study population is relatively low.
  • What is the main difference in the interpretation of odds ratio and risk ratio?
    • Odds are a measure of the probability of an event occurring, expressed as the ratio of the number of ways the event can occur to the number of ways it cannot occur. For example, if the probability of an event occurring is 0.5 (or 50%), the odds of the event occurring would be 1:1 (or 1 to 1).
    • Risk is a measure of the probability of an event occurring, expressed as the ratio of the number of events that occur to the total number of events. For example, if 10 out of 100 people experience an event, the risk of the event occurring would be 10%.
    • The main difference between the two measures is that the odds ratio is more sensitive to changes in the frequency of the event, while the risk ratio is more sensitive to changes in the overall prevalence of the event.
    • This means that the odds ratio is more useful for comparing the odds of an event occurring between two groups when the event is relatively rare, while the risk ratio is more useful for comparing the risk of an event occurring between two groups when the event is more common.

Hypergeometric, One-tailed Fisher exact test

         drawn   | not drawn | 
-------------------------------------
white |   x      |           | m
-------------------------------------
black |  k-x     |           | n
-------------------------------------
      |   k      |           | m+n

For example, k=100, m=100, m+n=1000,

> 1 - phyper(10, 100, 10^3-100, 100, log.p=F)
[1] 0.4160339
> a <- dhyper(0:10, 100, 10^3-100, 100)
> cumsum(rev(a))
  [1] 1.566158e-140 1.409558e-135 3.136408e-131 3.067025e-127 1.668004e-123 5.739613e-120 1.355765e-116
  [8] 2.325536e-113 3.018276e-110 3.058586e-107 2.480543e-104 1.642534e-101  9.027724e-99  4.175767e-96
 [15]  1.644702e-93  5.572070e-91  1.638079e-88  4.210963e-86  9.530281e-84  1.910424e-81  3.410345e-79
 [22]  5.447786e-77  7.821658e-75  1.013356e-72  1.189000e-70  1.267638e-68  1.231736e-66  1.093852e-64
 [29]  8.900857e-63  6.652193e-61  4.576232e-59  2.903632e-57  1.702481e-55  9.240350e-54  4.650130e-52
 [36]  2.173043e-50  9.442985e-49  3.820823e-47  1.441257e-45  5.074077e-44  1.669028e-42  5.134399e-41
 [43]  1.478542e-39  3.989016e-38  1.009089e-36  2.395206e-35  5.338260e-34  1.117816e-32  2.200410e-31
 [50]  4.074043e-30  7.098105e-29  1.164233e-27  1.798390e-26  2.617103e-25  3.589044e-24  4.639451e-23
 [57]  5.654244e-22  6.497925e-21  7.042397e-20  7.198582e-19  6.940175e-18  6.310859e-17  5.412268e-16
 [64]  4.377256e-15  3.338067e-14  2.399811e-13  1.626091e-12  1.038184e-11  6.243346e-11  3.535115e-10
 [71]  1.883810e-09  9.442711e-09  4.449741e-08  1.970041e-07  8.188671e-07  3.193112e-06  1.167109e-05
 [78]  3.994913e-05  1.279299e-04  3.828641e-04  1.069633e-03  2.786293e-03  6.759071e-03  1.525017e-02
 [85]  3.196401e-02  6.216690e-02  1.120899e-01  1.872547e-01  2.898395e-01  4.160339e-01  5.550192e-01
 [92]  6.909666e-01  8.079129e-01  8.953150e-01  9.511926e-01  9.811343e-01  9.942110e-01  9.986807e-01
 [99]  9.998018e-01  9.999853e-01  1.000000e+00

# Density plot
plot(0:100, dhyper(0:100, 100, 10^3-100, 100), type='h')

File:Dhyper.svg

Moreover,

  1 - phyper(q=10, m, n, k) 
= 1 - sum_{x=0}^{x=10} phyper(x, m, n, k)
= 1 - sum(a[1:11]) # R's index starts from 1.

Another example is the data from the functional annotation tool in DAVID.

               | gene list | not gene list | 
-------------------------------------------------------
pathway        |   3  (q)  |               | 40 (m)
-------------------------------------------------------
not in pathway |  297      |               | 29960 (n)
-------------------------------------------------------
               |  300 (k)  |               | 30000

The one-tailed p-value from the hypergeometric test is calculated as 1 - phyper(3-1, 40, 29960, 300) = 0.0074.

Fisher's exact test

Following the above example from the DAVID website, the following R command calculates the Fisher exact test for independence in 2x2 contingency tables.

> fisher.test(matrix(c(3, 40, 297, 29960), nr=2)) #  alternative = "two.sided" by default

        Fisher's Exact Test for Count Data

data:  matrix(c(3, 40, 297, 29960), nr = 2)
p-value = 0.008853
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
  1.488738 23.966741
sample estimates:
odds ratio
  7.564602

> fisher.test(matrix(c(3, 40, 297, 29960), nr=2), alternative="greater")

        Fisher's Exact Test for Count Data

data:  matrix(c(3, 40, 297, 29960), nr = 2)
p-value = 0.008853
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
 1.973   Inf
sample estimates:
odds ratio
  7.564602

> fisher.test(matrix(c(3, 40, 297, 29960), nr=2), alternative="less")

        Fisher's Exact Test for Count Data

data:  matrix(c(3, 40, 297, 29960), nr = 2)
p-value = 0.9991
alternative hypothesis: true odds ratio is less than 1
95 percent confidence interval:
  0.00000 20.90259
sample estimates:
odds ratio
  7.564602

Fisher's exact test in R: independence test for a small sample

From the documentation of fisher.test

Usage:
     fisher.test(x, y = NULL, workspace = 200000, hybrid = FALSE,
                 control = list(), or = 1, alternative = "two.sided",
                 conf.int = TRUE, conf.level = 0.95,
                 simulate.p.value = FALSE, B = 2000)
  • For 2 by 2 cases, p-values are obtained directly using the (central or non-central) hypergeometric distribution.
  • For 2 by 2 tables, the null of conditional independence is equivalent to the hypothesis that the odds ratio equals one.
  • The alternative for a one-sided test is based on the odds ratio, so ‘alternative = "greater"’ is a test of the odds ratio being bigger than ‘or’.
  • Two-sided tests are based on the probabilities of the tables, and take as ‘more extreme’ all tables with probabilities less than or equal to that of the observed table, the p-value being the sum of such probabilities.

Boschloo's test

https://en.wikipedia.org/wiki/Boschloo%27s_test

Chi-square independence test

  • https://en.wikipedia.org/wiki/Chi-squared_test.
    • Chi-Square = Σ[(O - E)^2 / E]
    • We can see expected_{ij} = n_{i.}*n_{.j}/n_{..}
    • The Chi-Square test statistic follows a Chi-Square distribution with degrees of freedom equal to (r-1) x (c-1)
    • The Chi-Square test is generally a two-sided test, meaning that it tests for a significant difference between the observed and expected frequencies in both directions (i.e., either a greater than or less than difference).
  • Chi-square test of independence by hand
> chisq.test(matrix(c(14,0,4,10), nr=2), correct=FALSE)

	Pearson's Chi-squared test

data:  matrix(c(14, 0, 4, 10), nr = 2)
X-squared = 15.556, df = 1, p-value = 8.012e-05

# How about the case if expected=0 for some elements?
> chisq.test(matrix(c(14,0,4,0), nr=2), correct=FALSE)

	Pearson's Chi-squared test

data:  matrix(c(14, 0, 4, 0), nr = 2)
X-squared = NaN, df = 1, p-value = NA

Warning message:
In chisq.test(matrix(c(14, 0, 4, 0), nr = 2), correct = FALSE) :
  Chi-squared approximation may be incorrect

Exploring the underlying theory of the chi-square test through simulation - part 2

The result of Fisher exact test and chi-square test can be quite different.

# https://myweb.uiowa.edu/pbreheny/7210/f15/notes/9-24.pdf#page=4
R> Job <- matrix(c(16,48,67,21,0,19,53,88), nr=2, byrow=T)
R> dimnames(Job) <- list(A=letters[1:2],B=letters[1:4])
R> fisher.test(Job)

	Fisher's Exact Test for Count Data

data:  Job
p-value < 2.2e-16
alternative hypothesis: two.sided

R> chisq.test(c(16,48,67,21), c(0,19,53,88))

	Pearson's Chi-squared test

data:  c(16, 48, 67, 21) and c(0, 19, 53, 88)
X-squared = 12, df = 9, p-value = 0.2133

Warning message:
In chisq.test(c(16, 48, 67, 21), c(0, 19, 53, 88)) :
  Chi-squared approximation may be incorrect

Cochran-Armitage test for trend (2xk)

PAsso: Partial Association between ordinal variables after adjustment

https://github.com/XiaoruiZhu/PAsso

Cochran-Mantel-Haenszel (CMH) & Association Tests for Ordinal Table

GSEA

See GSEA.

McNemar’s test on paired nominal data

https://en.wikipedia.org/wiki/McNemar%27s_test

R

Contingency Tables In R. Two-Way Tables, Mosaic plots, Proportions of the Contingency Tables, Rows and Columns Totals, Statistical Tests, Three-Way Tables, Cochran-Mantel-Haenszel (CMH) Methods.

Case control study

Confidence vs Credibility Intervals

http://freakonometrics.hypotheses.org/18117

T-distribution vs normal distribution

Power analysis/Sample Size determination

See Power.

Common covariance/correlation structures

See psu.edu. Assume covariance [math]\displaystyle{ \Sigma = (\sigma_{ij})_{p\times p} }[/math]

  • Diagonal structure: [math]\displaystyle{ \sigma_{ij} = 0 }[/math] if [math]\displaystyle{ i \neq j }[/math].
  • Compound symmetry: [math]\displaystyle{ \sigma_{ij} = \rho }[/math] if [math]\displaystyle{ i \neq j }[/math].
  • First-order autoregressive AR(1) structure: [math]\displaystyle{ \sigma_{ij} = \rho^{|i - j|} }[/math].
    rho <- .8
    p <- 5
    blockMat <- rho ^ abs(matrix(1:p, p, p, byrow=T) - matrix(1:p, p, p))
  • Banded matrix: [math]\displaystyle{ \sigma_{ii}=1, \sigma_{i,i+1}=\sigma_{i+1,i} \neq 0, \sigma_{i,i+2}=\sigma_{i+2,i} \neq 0 }[/math] and [math]\displaystyle{ \sigma_{ij}=0 }[/math] for [math]\displaystyle{ |i-j| \ge 3 }[/math].
  • Spatial Power
  • Unstructured Covariance
  • Toeplitz structure

To create blocks of correlation matrix, use the "%x%" operator. See kronecker().

covMat <- diag(n.blocks) %x% blockMat

Counter/Special Examples

Math myths

Correlated does not imply independence

Suppose X is a normally-distributed random variable with zero mean. Let Y = X^2. Clearly X and Y are not independent: if you know X, you also know Y. And if you know Y, you know the absolute value of X.

The covariance of X and Y is

  Cov(X,Y) = E(XY) - E(X)E(Y) = E(X^3) - 0*E(Y) = E(X^3)
           = 0, 

because the distribution of X is symmetric around zero. Thus the correlation r(X,Y) = Cov(X,Y)/Sqrt[Var(X)Var(Y)] = 0, and we have a situation where the variables are not independent, yet have (linear) correlation r(X,Y) = 0.

This example shows how a linear correlation coefficient does not encapsulate anything about the quadratic dependence of Y upon X.

Significant p value but no correlation

Post where p-value = 1.18e-06 but cor=0.067. p-value does not say anything about the size of r.

Spearman vs Pearson correlation

Pearson benchmarks linear relationship, Spearman benchmarks monotonic relationship. https://stats.stackexchange.com/questions/8071/how-to-choose-between-pearson-and-spearman-correlation

Testing using Student's t-distribution cor.test() (T-distribution with n-1 d.f.). The normality assumption is used in test. For estimation, it affects the unbiased and efficiency. See Sensitivity to the data distribution.

x=(1:100);  
y=exp(x);                        
cor(x,y, method='spearman') # 1
cor(x,y, method='pearson')  # .25

Spearman vs Wilcoxon

By this post

  • Wilcoxon used to compare categorical versus non-normal continuous variable
  • Spearman's rho used to compare two continuous (including ordinal) variables that one or both aren't normally distributed

Spearman vs Kendall correlation

  • Kendall's tau coefficient (after the Greek letter τ), is a statistic used to measure the ordinal association between two measured quantities.
  • Spearman’s rho and Kendall’s tau from Statistical Odds & Ends
  • Kendall Tau or Spearman's rho?
  • Kendall’s Rank Correlation in R-Correlation Test
  • Kendall’s tau is also more robust (less sensitive) to ties and outliers than Spearman’s rho. However, if the data are continuous or nearly so, Spearman’s rho may be more appropriate.
  • Kendall’s tau is preferred when dealing with small samples. Pearson vs Spearman vs Kendall.
  • Interpretation of concordant and discordant pairs: Kendall’s tau quantifies the difference between the percentage of concordant and discordant pairs among all possible pairwise events, which can be a more direct interpretation in certain contexts
  • Although Kendall’s tau has a higher computation complexity (O(n^2)) compared to Spearman’s rho (O(n logn)), it can still be preferred in certain scenarios.

Pearson/Spearman/Kendall correlations

Anscombe quartet

Four datasets have almost same properties: same mean in X, same mean in Y, same variance in X, (almost) same variance in Y, same correlation in X and Y, same linear regression.

File:Anscombe quartet 3.svg

phi correlation for binary variables

https://en.wikipedia.org/wiki/Phi_coefficient. A Pearson correlation coefficient estimated for two binary variables will return the phi coefficient.

set.seed(1)
data <- data.frame(x=sample(c(0,1), 100, replace = T), y= sample(c(0,1), 100, replace = T))
cor(data$x, data$y)
# [1] -0.03887781

library(psych)
psych::phi(table(data$x, data$y))
# [1] -0.04

The real meaning of spurious correlations

https://nsaunders.wordpress.com/2017/02/03/the-real-meaning-of-spurious-correlations/

library(ggplot2)
 
set.seed(123)
spurious_data <- data.frame(x = rnorm(500, 10, 1),
                            y = rnorm(500, 10, 1),
                            z = rnorm(500, 30, 3))
cor(spurious_data$x, spurious_data$y)
# [1] -0.05943856
spurious_data %>% ggplot(aes(x, y)) + geom_point(alpha = 0.3) + 
theme_bw() + labs(title = "Plot of y versus x for 500 observations with N(10, 1)")

cor(spurious_data$x / spurious_data$z, spurious_data$y / spurious_data$z)
# [1] 0.4517972
spurious_data %>% ggplot(aes(x/z, y/z)) + geom_point(aes(color = z), alpha = 0.5) +
 theme_bw() + geom_smooth(method = "lm") + 
scale_color_gradientn(colours = c("red", "white", "blue")) + 
labs(title = "Plot of y/z versus x/z for 500 observations with x,y N(10, 1); z N(30, 3)")

spurious_data$z <- rnorm(500, 30, 6)
cor(spurious_data$x / spurious_data$z, spurious_data$y / spurious_data$z)
# [1] 0.8424597
spurious_data %>% ggplot(aes(x/z, y/z)) + geom_point(aes(color = z), alpha = 0.5) + 
theme_bw() + geom_smooth(method = "lm") + 
scale_color_gradientn(colours = c("red", "white", "blue")) + 
labs(title = "Plot of y/z versus x/z for 500 observations with x,y N(10, 1); z N(30, 6)")

A New Coefficient of Correlation

A New Coefficient of Correlation Chatterjee, 2020 Jasa

Time series

Structural change

Structural Changes in Global Warming

AR(1) processes and random walks

Spurious correlations and random walks

Measurement Error model

Polya Urn Model

The Pólya Urn Model: A simple Simulation of “The Rich get Richer”

Dictionary

Statistical guidance

Books, learning material

Social

JSM

Following

COPSS

考普斯會長獎 COPSS

美國國家科學院 United States National Academy of Sciences/NAS

美國國家科學院